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Elliptic Quasi-Variational Inequalities and Application
to a Non-Stationary Problem in Hydraulics (*).

AVNER FRIEDMAN - ROBERT JENSEN (**)

dedicated to Hans Lewy

Introduction.

In this paper we consider the elliptic quasi-variational inequality: Find
a function w(x, y) in a rectangle 0  y  H* and a curve y = 

(0  x  a) such that

Here 0  h  H  H*, and oc, h, H, 1(x), G(x, y) are given. The func-
tions 1, G are assumed to satisfy:

(*) This work was partially supported by National Science Foundation Grant
MPS72-04959 A02.

(**) Northwestern University, Evanston.
Pervenuto alla Redazione il 27 Giugno 1975.
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and

The problem (0.1) arises in a natural way when one considers a non-
stationary filtration problem of water in a dam with vertical walls. This

problem leads to a parabolic quasi-variational inequality. Introducing a
finite difference scheme with respect to the variable t, one is led to a prob-
lem of the form (0.1).

The main result of this paper (Theorem 1.1) asserts that there exists a
unique solutions of (0.1) with T(x) which is continuous and positive valued
for O~x~a.

In Section 1 we state this main result more carefully. In Sections 2-4

we prove the existence part of Theorem 1.1 under the additional restriction
that G1I(x, y)  0. The existence proof for general G (satisfying (0.2), (0.3))
is completed in Section 5. In Section 6 we prove the uniqueness of the
solution.

The non-stationary filtration problem mentioned above is introduced in
Section 7 where it is also reduced to a parabolic quasi-variational inequality.
Finally, in Section 8 we apply Theorem 1.1 to the finite difference approx-
imation of the parabolic problem.

A non-stationary filtration problem was recently studied by Torelli [6], [7]
by other methods; for more details, see the remark at the end of Section 7.

1. - The main result.

Let a, a, h, H, H* be positive numbers, h  H  H*. Let

and denote by ( , ) and (, )o the scalar products in L2(B) and L 2(0, a), re-
spectively. Let 1(x), G(x, y) be given functions defined for 0 

Consider the following problem:
Find functions w(x, y), qJ(x) such that
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Notice that, by Sobolev’s inequality, y ~,v is necessarily continuously dif-
ferentiable in B. Notice also that if 0) &#x3E; 0 for 0 C x  a then the

variational inequality (1.6) becomes

or, in view of (1.1 ),

For a given the condition (1.6) together with w(O, 0) = H2 /2,
w(a, 0) = h2/2 determine w(x, 0) for 0  x  a. Thus system (1.1)-(1.6) (for
a given gg(x)) is just an elliptic variational inequality for w and (1.8) is a
regularity condition. The additional condition (1.7) on the free boundary
x = cp(x) changes the problem into (what we call) a quasi-variational ine-
quality (Q.V.I.).

In the sequel we shall assume that

The main result of this paper is the following:

4 - Annali delta Scuola Norm. Sup. di Pisa
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THEOREM 1.1. Let (1.11)-(1.13) hold. Then there exists one and only one
solutions w, q of the Q. V.I. (1.1)-(1.8) with q;(x) continuous and positive valued
for 

Theorem 1.1 is proved in Sections 2-6.
The motivation for studying the Q.V.I. (1.1)-(1.8) comes from a non-

stationary problem in hydraulics; this will be explained in detail in Section 7.
In Section 8 we shall apply Theorem 1.1 to the hydraulic problem.

The method of proof of Theorem 1.1 has some general features that
can be employed also to solve other Q.V.I. In particular y the boundary
conditions (1.3), (1.4) can be replaced by more general boundary conditions
without essentially affecting the proof.

In Sections 2-4 we shall prove the existence part of Theorem 1.1 when
the assumption (1.1) is replaced by the stronger assumption

In Section 5 we shall complete the proof of existence (under the assump-
tion (1.13)) by approximating G by functions G - 8Y (~~,0) which, of course
satisfy (1.14). The uniqueness part of Theorem 1.1 will be proved in Section 6.

2. - An approximating Q.V.I.

A general approach to solve Q.V.I. is by a fixed point theorem. In the

case of (1.1)-(1.8) this approach proceeds as follows:
Given cp in some class A, we solve the variational inequality (1.1)-(1.6),

(1.8) and denote its solution by One shows that y) is monotone

decreasing in y ; hence there is a curve y = g~(x) such that

Write §5 = Tgg. The problem of solving (1.1)-(1.8) is then equivalent to the
problem of finding a fixed point for the mapping T.

When T is continuous, some standard fixed point theorems may be
applicable. If T is not continuous, a fixed point theorem due to Tartar [5]
may be applicable in case T is a monotone mapping. For the present
problem, however, T is neither continuous nor monotone. We shall there-
fore proceed in a different manner. First we shall introduce an auxiliary
Q.V.I. which approximates the original Q.V.I. In this auxiliary Q.V.I.
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we have replaced the free boundary y = T(x) by a polygonal curve y = 1pn(x)
(n positive integer):

Thus, (U) is reduced to

and (1.6) is reduced to

We shall replace the condition (1.7) by the weaker condition

DEFINITION. The system (2.2), (1.2)-(1.5), (2.3), (2.4), (1.8) will be called
the n-approximating Q. V. I. and will be denoted by IIn .

THEOREM 2.1. Let (1.11 ), (1.12 ), (1.14) hold. Then there exists a solution

wn(x, y), 1pn(x) of the problem IIn, and 

PROOF. We proceed by the approach outlined at the beginning of this
section. Given an (n + I ) -polygonal curve y = with = H,

= h, we shall prove that there exists a unique solu-
tion wn of the variational inequality (2.2), (1.2)-(1.5), (2.3), (1.8) and y)
is monotone decreasing in y. Let y = 1jjn(x) be the (n + l)-polygonal curve
with vertices where

Thus,
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Let §3’° = We shall show later on that T has a fixed point.

LEMMA 2.2. There exists a unique solution wn of (2.2), (1.2)-(1.5), (2.3)
(1.8) and a2vn(x, 0.

PROOF. For any 0 C E C 1, let be a C°° function satisfying:

Consider the Dirichlet problem

Using standard elliptic estimates and Schauder’s fixed point theorem
one can show that (2.5)-(2.7) has a unique solution w = we in W2,V(B), for
any 1  p  oo. Set I I aw.,,.Iay. Then

Hence, by the maximum principle, ~ takes its maximum in B on the bound-
ary. By (1.3), (1.4), ~0 on x == 0 and on x = a. By (2.2), (2.3),

so that C cannot take its maximum at y = 0. Finally, at y = H*, (2.5 ) gives
~’v  0, since

(by the choice of (0)); conseqnently Q cannot take its maximum at y = H*.
We conclude that C  0 on the boundary of B and, therefore, ’,0 in B.

By standard arguments (see, for instance, [3]) one can show that, as
We converges to a function Zun which is the unique solution of (2.2),
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(1.2)-(1.5), (2.3), (1.8). Since we also have azvn/ay c 0. This com-

pletes the proof.
Denote by X the space of all polygonal curves (2.1) and introduce the

uniform norm 1111 p in X. Then X is a closed, bounded convex subset of the
finite dimensional Banach space consisting of (n+ I-) -polygonal curves with
vertices at The mapping T maps X into
itself.

LEMMA 2.3. - T is a continuous mapping.

PROOF. Let be in X,

We have to show that

Denote by w and wn the solutions of the variational inequalities (2.2),
(1.2)-(1.5), (2.3), (1.8) corresponding to 1p: and ipn respectively, and let 99 n , ipn
be the polygonal curves with vertices (xi, (Xi’ given by

Since

w? - %3n uniformly in B. Recalling that

we then conclude that

Thus

which implies that
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In order to complete the proof of (2.8), it remains to show that

Let

Since

(2.10) will follow from

The argument giving (2.9) also establishes that

We shall next prove that

in measure .

If this is false then there exist 60 &#x3E; 0, 0 such that

measure 

for a subsequence jitc&#x3E;o. In view of (2.12) we then have

measure

Let

The variational inequality for wg gives
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Since uniformly a.e. in S, the right-
hand side is if i is sufficiently large; here we used (2.14).
Since wg - wn weakly in W2’2(B), we get from (2.15), upon taking 

this is impossible since wn = 0 in S and measure by (2.14)
(since 

Having proved (2.13), we shall now establish (2.12). If (2.12) is false

then there exists a point such that

We shall need that fact that y(x) is continuous; the proof is similar to the
proof of Lemma 5.3 (given in Section 5) and will be omitted.

From (2.16) we deduce, upon using (2.13) and the continuity of y(x),
that for any 6 &#x3E; 0 there exist points ri  ~o C x, with x2 - x, C ~ such that

Since const independent of j,

where .K is a constant independent of j 
. 

and yl = max Let

in E, where CI is independent of 6.
We compare, in E, w70 with the function

where C12 = (cf. the argument following (3.5)). We con
elude that so that, in particular,
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where .Kl is a constant independent of 3. Since 6 is arbitrary, we get a
contradiction to (2.17).

Having proved Lemma 2.3, we recall that X is a closed, bounded convex
set in a finite dimensional Banach space. Since T maps X into itself and
is continuous, Brower’s fixed point theorem yields the existence of a fixed
point yn for T. Denote the corresponding solution of the variational ine-

quality by Then wn(x, y), 1pn(x) form a solution of the problem IIn.
This completes the proof of Theorem 2.1.

3. - Behavior of 1pn as n - oo.

Let

where (wn,1pn) is a solution of problem IIn. Thus,

LEMMA 3.1. At each point xo where  H*,

PROOF. Since wn(x, y) == 0 if y &#x3E; the variational inequality for wn
gives, for almost all x with  H*,

Taking we conclude that (3.1 ) holds for almost all zo with  H*.

To prove (3.1) for att x, we shall use the continuity of 1pn and the inequality
0. These two properties imply that the curve y = ~(x) defined by

is uniquely defined and continuous for x in a neighborhood of xo, provided

Let us first assume that (i) and (ii) hold. Then, for any 8 &#x3E; 0, the rectangle
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lies below the curve y = ~(x) if 6 is sufficiently small. But then, since Gy  0,

for some r~ &#x3E; 0. Hence, if then

also, wn # 0 a.e. in Ra since a.e. if ~x - xo ~  ~S.
Since wn is in (1  p  oo), we can represent it by

means of Green’s function Ga of - d w -~- aw = 0 in 

It follows (since on aRo) that in -R~. In particular,
wn(xo, ~(xo) -E) &#x3E; 0, i.e. Since sis arbitrary, 
We have assumed so far that (i) and (ii) hold. Now, if (i) does not hold

then (3.1) is trivially true. If, on the other hand, (ii) is not satisfied then
we can take ~(x) - H* in the above proof and conclude that 

&#x3E;, ’(xo) m H*, a contradiction; thus (ii) must be satisfied.

LEMMA 3.2. There exists a constant M such that, for any 0 c x’C x C x"c a,

PROOF. We shall first prove (3.2) in case x’ = xi, x" = x . Let ð = x"- x’.

For definiteness we take We may also assume that &#x3E;

and (x, is a vertex. Set Yo = 1jJn(x"). Let

where

Thus if indeed, this follows from the fact

that y) = 0 if x = xi, y &#x3E; and if x = x,, y &#x3E; 1pn(Xj).
Consider all the vertices with say

They must all lie above i. e. , &#x3E; yo. Indeed,
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if then Wn(Xl’ Yo) = 0, which is impossible (since on

111). We conclude that

Consequently, by (3.1),

if xZo  x  x,,, - The same inequality holds if 
i.e., if Suppose Then, if

and, by (3.1),

Clearly . Î . It follows that

provided Similarly one handles the case where 
 x  xi". We have thus proved that

Since in B, we now deduce that there is a positive constant c
such that

Consider the function
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We claim that, for a suitable C, v satisfies the variational inequality

where is the monotone operator fl(v) = {0} if v &#x3E; 0, (- C)09 0].
In fact, it suffices to choose C so that

Since wn is Lipschitz continuous (with coefficient independent of n) and
since it vanishes at the endpoints of the interval (whose length is  ~),
we have

where A is a constant independent of n. Also,

Hence,

then a standard comparison theorem for variational inequalities gives

Since (x, 1pn(x)) is a vertex, 1pn(x)) = 0 so that

Solving for y2 from (3.7), (3.6) we get

Hence, by (3.8),

This completes the proof of the lemma in case 
Consider next the case where x’, x" are not necessarily vertices, but

The point (x’, 1pn(x’)) lies on a segment of the polygonal curve
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y one of the endpoints (Xi’ 1jJn(Xi)) is such that Since

we may assume that 1pn(x’)  1jJn(x) and that (x, 1pn(x)) is a vertex, we have:
Also, clearly, 

Similarly let Xi be such that x C x" 
Applying the special case proved above for xi, x, x" and noting that

the assertion (3.2) follows.
It remains to consider the case where Without loss of

generality we may take 7 We also assume for definite-

ness that By what we have already proved,

Since

we get

LEMMA 3.3. Let f n(x) be a sequence of f unctions in L’(a, b) (where - oo 
 a  b  oo) satisfying :

(i) 11 f . 11, -  N (N constant);

(ii) g weakly in L" (a, b), for some 1  p  00;

(iii) there exists a continuous non-negative function for 0 c t  00,

such that = 0 and

PROOF. Suppose.

in measure.

and denote by , the Lebesgue measure on the real line.
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then, by (3.9), there cS &#x3E; 0 and a subsequence njtoo such that
p(iU’J) &#x3E; 6. Using this and (3.10), we find that

thus contradicting (ii). Consequently, if (3.9) holds then p(B) &#x3E; 0. Hence also

for some 8 &#x3E; 0, where

Let ro be a point of BE such that

i.e., ro is a Lebesgue point of g. Let r¡ &#x3E; 0 be so small that

and choose r so small that

Let

Then, from (3.15) we deduce that
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Hence, for the set

we have

Since there exists a sequence such that

Let xa, X-, X+ be the characteristic functions for the sets G, (xo - r, xo)
and (xo, r) respectively. By the weak convergence of in to g,

These relations together with (3.17) imply that there exist

points x’ in and x" in and jo such that

Recalling (3.18) we derive

and similarly

Thus

Since x"- x’  2r,  8/3 (by (3.13), (3.14)). We have thus derived
a contradiction to the assumption (iii). This proves that (3.9) cannot occur.
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LEMMA 3.4. There exists a set Nc (0, a) of measure zero and a subse-

quence 1jJn such that, as nj --~ oo,

the set S contains all the points ia/n, 0 c i c n, 1 c n  00. The functions 1jJ,
restricted to S, has a right limit at each point 

PROOF. The assertion (3.19) follows from Lemma 3.2, 3.3 by taking a
suitable subsequence 1jJnj of 1jJn. The function 1jJ(x) must clearly satisfy the
inequality

for any x" E S. Let xo E S. We claim that
exists as x E S, XtXo. Indeed, otherwise there exist sequences 

such that

where Taking in (3.20) x’ _ ~ i , = 8~ with suitable i, j, k
increasing to infinity, we a contradiction.

4. - Existence of a solution for the Q.V.I. in case 0.

There exists a sequence njt c&#x3E;o such that, as n = n, -&#x3E; oo,

for any 1  p  oo; here S is as in Lemma 3.4. Indeed, (4.1) follows from
Lemma 3.4 and (4.3) ((4.4)) follows from the fact that wn(x, y) (w"(z, 0))
is a solution of the variational inequality (1.1) ((1.6)) with and,
consequently, its norm is bounded uniformly with respect to n.

For simplicity we shall take Clearly Let
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Notice that w is a solution of the variational inequality (1.1)-(1.6), (1.8)
with T replaced by 1p in both (1.1) and (1.6); in particular,

If we show that

then w, g constitute a solution of the Q.V.I. (1.1 )-(1.8 ) . In the remaining
part of this section we shall prove the relation (4.6).

Let where x~ _ Then wn(x, y) = 0 if x = X,, y &#x3E; 1jJn(Xi)
and if y &#x3E; 1jJn(Xi+I). Hence, if 1jJn(Xi) 

where A = sup Iwxl. Similarly one shows that if 1pn(Xi+l) 
Taking n - oo and using (4.1 ), (4.2 ) we find that a. e. w(x, 1p(x)) = 0 ;

consequently gg(x)  1p(x). It remains to show that

Denote by S* the set of all points x E [0, a] for which either gg(x) = H* or

The variational inequality (4.5) for w implies that almost all x in [0, a]
belong to S*. Let

~S’o = 

We shall need the following lemma.

LEMMA 4.1. The f unction cp restricted to So has a right limit at each point of So.

PROOF. If the assertion is not true then there is point Xo E ~So and a
30 &#x3E; 0 such that for any E &#x3E; 0 we can find points x’ C x  x" in ~So with
xo  x’, x"- Xo  87 satisfying
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Assume for definiteness that

Sinc e x" E c S*,

Since V, restricted to So, has a right limit at Xo, we obtain

where o(1 ) -~ 0 if 8 2013~0. Recalling that Gy C 0, we deduce that there exists
a 6 &#x3E; 0 such that

provided 8 is sufficiently small.
Since w (x", yo ) = 0, also ~(~~/o+~o)=0 and, consequently,

where A = sup lw., 1. .
We shall compare wvith

Choosing C, y such that

we have

Hence, by a comparison theorem for variational inequalities,

In particular,

5 - Annali deta Scuo~a Norm. Sup, di Pisa
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Solving (4.9) for y2 we find that

if E is sufficiently small, so that ~(~)~-{-2~o. This contradicts (4.8)
Thus the lemma is proved.

Suppose now that (4.7) is false. Then there is a subset I~ of So of pos-
itive measure and a positive number 6 such that

Let ro be a point of density of K. Then (4.10) holds at a sequence of points
x = i Now, by Lemmas 3.4, 4,I, g and 1p, when restricted to So ,
have a right limit at xo . Consequently, for any s &#x3E; 0 there exists an interval

(xo, x,, + s’) such that

for all x E ~’o r1 (Xo, ro+ 8’), where 0), 0) are the right limits
(when restricted to So) at xo.

Suppose there exist vertices with xi , xj in

and with

Then, by Lemma 3.2, (4.11) and the fact that Xi, Xi belong to ~So,

provided 8’ is sufficiently small. Taking we get ~(~)~(~)-)-3~
which contradicts (4.12) unless 

The above remark implies that there exists an interval (fl, y) in (xo, 8’)
such that

We shall take n sufficiently large so that there are indeed vertices xi in y).
By decreasing if necessary we conclude from (4.13), (4.11) that

provided E’ is sufficiently small, and 
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Let ({3’, be any subinterval of (fJ,1’). Suppose

for a sequence n = njf oo. The variational inequality for then gives

for any v c L2(A), where A is the region defined by 
 T(x) -)- (5/4. Taking n = nj -* oo and using (4.1), (4.3), and recalling that
w(x, y) == 0 in A, we get

Since v is arbitrary, -1-~- aG - ay~ = 0 a.e. in A. Hence Gy = 0 in A,
which contradicts the assumption (1.14). We have thus proved that (4.15)
cannot hold in any subinterval (~’, and for any sequence n = nit 00.

We conclude that for any n sufficiently large there exist points Xln, x2n
in the interval (fl, (fl + y)J2) and in ~So with £in such that

For definiteness we shall take ·

Let (x3n, be the vertex with and with the smallest

y-coordinate. Then q;n(X3n) . · Now

by (4.14). is sufficiently small then

so that, by (4.16), It follows that (i = 1, 2), i.e.,
xln C X2n. Let x = Xln be the smallest number of the form ( j non-
negative integer) such that and let x = x2n be the largest num-
ber of the form ja/n such that · Since 

Next, by (4.14), (4.11 ), (4.16),
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o

i.e., I

Let y = ~/4. We claim that

(if n is sufficiently large). Indeed, otherwise we shall have (since 
and ’ljJn(X3n))

where c, e1 are positive constants, provided E’ is sufficiently small (depend-
ing on 6). We can now use a comparison argument (as in the proof of
Lemma 3.2) in the y &#x3E; y -+- b/8 and deduce that

Hence, if 8’ is sufficiently small,

which contradicts (4.17).
Having proved (4.18), we recall that Gy 0 and thus deduce the ine-

quality

is a positive constant depending only on sup ¡G1f I. Since x2n E So e 8*, ’I

We must therefore have
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is suffi.ciently small. Denoting by xin the point for which

we also have

Inequalities similar to (4.19), (4.20) can be obtained for three ponits in
the interval ((~+y)/2y~)y say, for definiteness, Taking

x3n, X2 = x2n, X3 = X4 = Y3n, we then have

and But this contradicts the inequality (3.2)
with x’ = x,, x"= X4 and either x = X2 (if or x = X3 (if
y~n(x3) ~ y~n(x2)), provided s’ is sufficiently small, depending on ð. This con-

tradiction shows that (4.10) is false; this completes the proof of (4.7).
We sum up:

LEMMA 4.2. Let (1.11), (1.12), (1.14) hold. Then there exists a solution

W, gJ of the Q.TT.I. (I , I ) - (1 . 8 ) .
In the next section we shall prove the same assertion when (1.14) is re-

placed by the weaker condition (1.13). We shall also prove in that section
that is continuous and positive valued.

5. - Existence of a solution of the Q.V.I.

In this section we shall complete the existence part of Theorem 1.1. Let

By Lemma 4.2 there exists a solution of the Q.V.I. (1.1)-(1.8) with
G replaced by GE .

Denote by Be the set of points x E [0, a] such that either = H*

or g6(r)  H* and
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From the variational inequality for W8 it follows that [0, a] - Se has meas-
ure zero.

LIF,MMA 5.1. There exists a constant -JI (independent of e) such that for
any three points x’, x, x" in ~S~ with 0 c x’ C x C x" ~ a, 0  8  1,

PROOF. We shall assume that the case  

can be handled similarly. We may assume that (p-(x’)  
Set Yo = 9 = Since -1 + ocG, - ay  0 at (x", Yo),

If then (5.1) follows with .M = 1. Suppose
then that

Let I == {(.r~i); ~ 2013 6,  x C x + 6,1 be an interval on which 0,
such that wE = 0 at the endpoints. Then .r~~2013~i~~-)-~2~ and

Also, by (5.2), (5.3),

if ~20136i.r~-}-~ Y &#x3E; Yl, w-(x, y) &#x3E; 0, where c is a positive constant;
here we take 6 to be sufficiently small.

We can now compare we with a function

where C12 = Cy2 =A 6. We conclude that

constant) .

This completes the proof of the lemma.
Using Lemma 4.1 we conclude (by a variant of Lemma 3.3 with [a, b]

replaced by r1 S, for a sequence of s’s) that there is a sequence such
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that if E = then

also

for any Clearly, y Let

Since we(x, = 0 we deduce that = 0 a.e., i.e.,

We shall now prove that

If (5.5) is false then the set where cp  g° has positive measure. Conse-

quently there is a 6 &#x3E; 0 such that

Since, by Egoroff’s theorem, g~~ --~ g~° almost uniformly, 8ntO, there
is a subset ~o of K of positive measure such that

provided s = sn is sufficiently small.
We now apply the variational inequality for w~ (8 = 8n small) in the

region (which, by (5.7), lies below 

and cf. the proof of (4.15). We find that

for almost all (x, y), x E Ko,  y  ggo(x) - ð. It follows that
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In view of (1.13) we must therefore have gg(x) &#x3E; G(x, ~(x)), if x E Ko. Hence

thus contradicting (5.8).
We have proved that a.e. form a solution of the

Q.V.I. (1.1 ) - ( 1. 8 ) . Next we prove:

LEMMA then

PROOF. We shall take 0  the cases ro = 0, ro = a can be handled
in the same way with trivial changes. Suppose first that

Then there exists a point ’0 such that

Since ’0 G(xo , ’0)’  0 by (1.13 ) . It follows that in a neighbor-
hood of x = ro there is a unique continuous curve y = ~(x) such that

For any 8 &#x3E; 0 there is a 6 &#x3E; 0 sufficiently small so that the rectangle

lies under y = ’(x).
The function y - G(x, y) increases in y and is negative on y = ~(x).

Hence y  G(x, y) in RèJ. By (1.13) it follows that

From the variational inequality for w we have



73

so that a.e. Therefore, a.e. in But then also 

a. e. in 1~~ .
Next, taking as a distribution derivative and using (5.10), we find

that

Hence (cf. the argument in the proof of Lemma 3.1) in It fol-

lows that w &#x3E; 0 in .Ra and, consequently, - s. Since s is arbi-

trary, (5.9) follows.
So far we made the assumptions (i), (ii). Now, if (i) does not hold then

(5.9) is trivially true. On the other hand, (ii) is always satisfied; indeed,
if (ii) does not hold then the previous proof remains valid with ~(x) ~= H*,
thus leading to g(ro) = H*, which is impossible.

LEMMA 5.3. is continuous for 0 z a.

PROOF. We shall first prove that 0) exists if Sup-
pose this is not true. Then there exists a 6 &#x3E; 0 such that for any s’ &#x3E; 0

there are points xo  x’  x  x" - xo  E’ for which

For definiteness we take

From Lemma 5.2

Hence, for any 6 &#x3E; 0,

Set YI = yo + 30 and let I = x; x - 31  z  ili + 6,1 be the interval such
that w(x, YI) is positive in I and vanishes at the endpoints. Clearly ð1 +
-~- x2  ~’. Since w is Lipschitz continuous,

From (5.13) we also have
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We now compare w with

where

By a comparison theorem for variational inequalities we conclude that
if Consequently, y

if 8’ is sufficiently small; this contradicts (5.11), (5.12).
We have proved that q(ro+ 0) exists. We shall now show that lp(xo+ 0) =

= We suppose that

and derive a contradiction. 0), (5.14) implies that 
 

Let be a rec-

tangle lying in the region where w &#x3E; 0, and denote by .h the segment x = xo,
Then

The function wy is smooth in R u .h. By the strong maximum principle it
follows that on 7~ i. e., 0 along r. But this is impossible
since w,, vanishes at both endpoints of 1°. We have thus proved that

+ 0) = T(xo) -
Similarly one can prove that q?(xo- 0) exists and equals q?(xo), if 0 C

 xo C CL.
We have proved that cp(x) is continuous in [0, a]. In order to complete

the existence part of Theorem 1.1 it remains to show that &#x3E; 0 for

Suppose this is not true. Since g(0) &#x3E; 0, &#x3E; 0, and q? is con-
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tinuous, there exists a point xo, 0  such that &#x3E; 0 if 0  x C xo,
p(xo) = 0. But then

for some small 6 (since aG(x, 0)-~-- 1(r) &#x3E; 0). Since also w = wx = 0 at (xo, 0),
we conclude that w(x, 0 ) c 0 if sufficiently small; this is of
course impossible.

REMARK. Let yo be a positive number such that

and let Since

is bounded above by a constant depending only on H, h, a, and
sup [,xG(x, 0) -i- 1(x)]. Since w(x, yo) ,w(x, 0), N can be chosen to depend
only on H, h, a, We claim that

Indeed, in the region y &#x3E; yo,

Companing 2u with

we find that w w, from which (5.16) follows.

6. - Uniqueness.

In this section we shall prove the general comparison theorem:

THEORE&#x3E;1 6.1. Let (w, g) be a solution of the Q. Y.I. (1.1)-(1.8) with

g~ E 0[0, a], cp &#x3E; 0, and let (w, Ø) be a solution of the Q. V.I. (1.1)-(1.8) with
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6~ ~ H, h replaced by G, l, Î1, 1¿, and e C[0, &#x3E; 0. If G, G, Z, 7

are continuous for 0 c y c H’~ 

then

The uniqueness part of Theorem 1.1 is a consequence of Theorem 6.1.
Indeed, if G = G, Z = G, then (6.3) becomes an equality.
Taking y = H* we conclude that w(x, y) = iv(x, y). Hence also qJ(x) = 

To prove Theorem 6.1, let

We have to show that q &#x3E; 0. Since 

Suppose takes a negative minimum in B. In view of (6.4), the nega-
tive minimum is attained at a point (xo, yo) satisfying

Since we must have we must

also have 0. Next,

if so that, by the maximum principle,

Thus, we must have one of the possibilities :
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We shall derive a contradiction in all cases.

Suppose first that (6.5) holds. Then yo)  0, i.e.,

But this is impossible since

Consider next a subcase of (6.6) where

Let I = (b, c) be the

largest interval containing ro such that  0. Then

Hence, the strict minimum of w(x, 0) - w(x, 0) in 1 occurs at the bound-
ary, say at x = b. Since (p(b) = p(b),

which is impossible since q takes its minimum at (xo, yo). Similarly one
derives a contradiction in case w(x, 0) - w(x, 0) takes its strict minimum

at the other endpoint x = c of I.
We have proved that (6.8) cannot occur. We shall now prove that, if

Yo = p(xo), the following possibility cannot occur:

in an interval containing xo .

The proof proceeds as in the case of (6.8). We now denote by I = (b, c)
the largest interval containing ro such that T(x) - g~(x)  0 if x E I. 
in I then the strong maximum principle can be applied, as before, to the
function w (x, 0) -w(x, 0), and we get a contradiction (using (6.9)).

If g - §3 in an interval containing wo , = w(x, 0 ) - w(x, 0)
in this interval. Consequently, 0) - w(x, 0) takes a negative minimum
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at ~=~0. But this is impossible since

We shall now prove that, when yo = p(xo), the following situation cannot
occur:

in an interval (x*, a

Indeed, suppose (6.11) holds. Since (6.10) cannot occur, we must then have

for a sequence

If g~ ~ g~ in (x*, xo ) then the minimum of ~(~0)2013~(~y0) in 
can occur only at the endpoints. Since

the minimum is attained at xo, and the strong maximum principle yields

Consequently,

if n is sufficiently large, which is impossible.
If (6.11 ) holds and in (x*,xo), then Q takes its negative minimum

also at where I in an interval con-

taining xl. Thus we are back in the case (6.14), which was already ruled out.
We have proved that (6.11) cannot occur. Similarly, one can show that

when yo = the following possibility cannot hold :
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We return to the case (6.6). We have already ruled out the subcase (6.8).
Thus it remains to show that the subcase

cannot happen. Since we have already ruled out (6.11), (6.13), we must
have ,(in the event that (6.14) holds)

for a sequence

Now,

Since rn - ro from both sides of xo, I we conclude that

Also,

Hence 0) - w(x, 0) takes a local strict maximum at ro. But this is

impossible since, by (6.16),

We have ruled out the case (6.6).
We shall now rule out the case (6.7). Suppose (6.7) holds. Since y),

for is strictly decreasing in y, we must have 
Let 7==(&#x26;.c) be the largest interval containing ro in which 
The argument following (6.8) shows that w(x, 0)2013~(~y 0) can take its min-
imum in I only at the endpoints; suppose it takes it at x = b. Then, since
9~(b) = 

which is impossible. Similarly w (x, 0 ) - iv (x, 0 ) cannot take its minimum

in I at x = c.
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We have proved that if q is not ~ 0 in B then one of the conditions
(6.5)-(6.7) must hold. Since we have now established that each of these

conditions leads to a contradiction, the proof of Theorem 6.1 is complete.

7. - A non-stationary problem in hydraulics.

Let

where a, H*, T are given positive numbers. Consider the following problem:
Find a function u(x, y, t) and a surface 9 such that

Here 4 = a2laX2 + the functions g, H, h, l, y are given, and
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This problem represents a physical model which arises when compres-
sible fluid is moving across an underground dam which separates two reses-
voirs of the fluid. The levels of the reservoirs are H(t) and h(t) and the walls
of the dam are vertical. The bottom of the dam is generally not impervious;
the fluid is moving across the bottom at rate II(x, t) I (l(x, t) &#x3E; 0 when the

fluid is moving upward and l(x, t)  0 when the fluid is moving downward).
The function u represents the piezometric head uy) is the veloc-

ity of the fluid. The problem is formulated, for instance, in [1].
The system (7.1) (7.11) is a free boundary problem. The surface y = p(x, t)

is called the free boundary.
The condition g(x, y) &#x3E; y reflects the physical condition that the internal

pressure in the fluid (at time t = 0) is positive. The condition ?&#x3E;20131 is

needed to assure that the free boundary does not arise to infinity.

LEMMA 7.1. Zet (u, ~p) satisfy (7.1)-(7.8), (7.~ 0)-(7.11). Then

If (p E C2 then also

I f 99 is only assumed to belong to C’, then (7.17) holds on a dense set of the
free boundary.

PROOF. Consider the function v = u - y in Q. It satisfies

We claim than v ~ 0 in S~. Indeed, otherwise (by the maximum principle)
v attains a negative minimum on the parabolic boundary of S~, say at P =
- t). By the conditions (7.3), (7.4) and (7.2), (7.13), the point P must
lie on y = 0. But then wy &#x3E; 0 at P, i. e. , 7 - 1 (.T7 1) - 1 &#x3E; 0, which contra-

dicts (7.15).

6 - Annali della Scuola Norm. Sup. di Pisa
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Having proved that in Q, the strong maximum principle now im-
plies that v &#x3E; 0 in D, i.e., 9 (7.16) holds. The strict minimum of v in D is
thus obtained on the free boundary. If 99 E C2 then the inside strong
sphere property holds and therefore (see [2])

i. e., (7.17) holds. If q is only assumed to be in C1, then the inside strong
sphere property holds for a dense set of the free boundary. Hence (7.17)
holds in this set.

LEMMA 7.2. Let (u, cp) satisfy (7.1)-(7.8), (7.10)-(7.11), and let 99 E 01.
Then (7.9) holds if and onty if

PROOF. Differentiating the relation

we get

Using (7.17) we can solve for qz, qi (on a dense subset of y = cp(x, t)) :

If we substitute this into

for a dense set on the free boundary; by continuity this relation then holds
everywhere on the free boundary.

Conversely, substituting from (7.19) into (7.18), the relation (7.9)
readily follows, at a dense subset of the free boundary; by continuity,
(7.9) holds everywhere.
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We shall now transform the problem (7.1)-(7.11) into a quasi-variational
inequality. Let

The following formulas are easily derived:

so that, by (7.8),

It follows that, if I



84

Using (7.1) and (7.18), we obtain

We claim that

Indeed, by (7.18),

and by (7.17), whereas

by (7.19); thus (7.28) follows.
The relations (7.27), (7.28) can be recast in the form:

we use here the fact that

The notation (, ) in (7.29) indicates the scalar product in L2(Q).
The initial and boundary conditions for ware :
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Finally, to calculate 0, t), we use (7.25), (7.5) :

Making use also of (7.27), we get

We have proved:

THEOREM 7.3. Let (u, cp) be a solution of (7.1 )-(7.11 ) with g~ E Cl. Then

(w, 99) is a solution of (7.29)(-(7.35).
A solution (w, T) of (7.29)-(7.35) is called classical if wx, w,, w, are

continuous in Q; wxx, Wyy are uniformly continuous in Q, and g~ is con-

tinuously differentiable.

THEOREM 7.4. Let (w, cp) be a classical solution of (7.29)-(7.35) and let
Then (u, 99) is a solution of (7.1)-(7.9).

The proof is direct. The only condition that requires a proof is (7.18),
and this is proved in the same way as in the case of one space dimension [4].

From now on we concentrate on the problem (7.29)-(7.35).

REMARK. A. Torelli [6] has considered a variant of (7.1)-(7.9) whereby
1 = 0, (7.1) is replaced by L1 u = 0, and the initial data u(x, y, 0) is the sta-
tionary solution of the problem when R=R(0), ~==~(0)~ Z = 0. He re-
duced the problem in (u, cp) into a problem of the form Dt U + A(t) U = f,
U(O) = Uo where A(t) is a nonlinear pseudo-differential operator and an-
nounced a proof of existence and uniqueness for the latter problem.
Torelli [7] also derived results similar to Lemmas 7.1, 7.2.

The system (7.29)-(7.35) is a Q,V.I. The analogous Q.V.I. in the case

of one space dimension was studied in [4] by using a finite difference scheme
with respect to the t variable. In the following section we shall introduce
such a scheme for the problem (7.29)-(7.35), and then apply Theorem 1.1
in order to solve this scheme in a unique way. The problem of proving
and uniqueness for (7.29)-(7.35) is still open.

8. - The finite difference approximations.
0

For any positive integer n, divide (0, T) into n intervals of equal length
T/n and let
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The free boundary y = cp(x, t) will be replaced by portions, piecewise linear
in t, connecting ti) to ti+,). Writing

the quasi-variational problem (7.29)-(7.35) leads to the following finite dif-
ference scheme of elliptic quasi-variational inequalities :

for any

where ( , ) is the scalar product in L 2(B),

where i

where

The system (8.1)-(8.6) is to hold for in addition,

We add the regularity condition:

and also require that
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The (8.1)-(8.9) for a fixed i coincides with the Q.V.I. (1.1)-(1.8)
provided H = Hi, h = hi, 1 = li and

If 991-1(x) &#x3E; 0 then G(x, 0) &#x3E; 0. If then If

then

Thus (1.13) follows; in fact,

Notice that G(x, y) is not known to be differentiable in x. However

the proof of Theorem 1.1 remains valid (with minor changes) when Gx is
not assumed to exist, but G, G 11 are continuous; instead of using the rela-
tion G(x, y)-G(x, y) = (in Sections 3-5) one uses the relation
G(x, y) - G(x, y) = a( lx-xl), where a(t) --~ 0 if t§0. The condition (1.11)
follows from (7.15). The condition follows from (7.31), (7.13).
We can therefore proceed to apply Theorem 1.1 (with G(x, y), G,(x, y) con-
tinuous) inductively for i = 1, 2, .... We obtain:

THEOREM 8.1 Let (7.12)-(7.14) hold, and let t E C[o, a] X [o, T] , 
Then there exists a unique solutions 0  i  n} of the system of elliptic
.Y.I. 8.1 -(8.9) with pi E 0[0, a].

It is easy to show that

where M is a constant independent of i, n. Indeed, from the CI.v.I. for wi
we get a(qi-i(r) - q’(r))  C, C a constant independent of i, n, so that

with a different C, where By comparison we
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then get

consequently and (8.10) follows.

Using a comparison argument one can also show that w:(x, y) &#x3E; - N
where N is a constant independent of i, N.

If the condition 1&#x3E;0 (in Theorem 8.1) is replaced by the condition
Z &#x3E; -1 ~ then the assertions of Theorem 8.1 remain valid expect that (8.9)
is replaced by 

REFERENCES

[1] J. BEAR, Dynamics of Fluids in Porous Media, American Elsevier Publishing
Company, New York, 1972.

[2] A. FRIEDMAN, Partial Differential Equations of Parabolic Type, Prentice-Hall,
Englewood Cliffs, N. J., 1964.

[3] A. FRIEDMAN, The shape and smoothness of the free boundary for some elliptic
variational inequalities, Indiana Univ. Math. J., to appear.

[4] A. FRIEDMAN - R. JENSEN, A parabolic quasi-variational inequality arising in
hydraulics, Ann. Scuola Norm. Sup. Pisa, to appear.

[5] L. TARTAR, Inequalities quasi variationelles abstraite, C. R. Acad. Sci. Paris,
278 (1974), pp. 1193-1196.

[6] A. TORELLI, Un probleme à frontiere libre d’evolution en hydraulique, C. R. Acad.
Sci. Paris, 280 (1975), pp. 353-356.

[7] A. TORELLI, Su un problema a frontiera libera di evoluzione, Boll. U.M.I., to
appear.


