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Existence of Optimal Controls for Control Systems
Governed by Nonlinear Partial Differential Equations (*).

MARSHALL SLEMROD (**)

Introduction.

In the theory of optimal control one of the main problems is to show
the existence of optimal controllers for the system being considered. Con-

sider for example the finite dimensional control system

where and We restrict h to lie

in some admissible set of controls V. We may then pose two standard

problems:

(1) Time optimal problem. Given a closed set does there exist

a control such that the solution x*(t) to (E) with h = h* is such

that x*(zo) E .K and To is the minimal time that can be achieved with a

control h E 

(2) Cost optimal problem. Let KeRn be a closed set and F be a cost

functional, F : C([07 T]; ~Rn) --~..1~. Does there exist a control h* E V such

that the solution x*(t) to (E) with h = h* is such that X*(T) E K for some

-r &#x3E; 0 and F is minimized by this choice of h in V?

Since we are in general dealing with nonlinear problems where results
on controllability are sparse we usually make the assumption in both the
time optimal and cost optimal problems that there exists some controller
h E V so that the solution x(t) of (E) for this h is such that X(T) E K for some
i &#x3E; 0. Given this controllability assumption it is then possible to proceed

(*) This work was supported in part by grant NONR-N300014-67-A-0191-0009
to the Center for Dynamical Systems, Div. of Applied Mathematics, Brown Univ.,
Providence, R.I. 02912.
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forward and obtain results on existence of optimal controls. See for ex-

ample [12].
In this paper we should like to consider both the time optimal and cost

optimal control problems under a similar controllability hypothesis for

control systems governed by nonlinear partial differential equation. Such

problems have already been considered by Lions in [2, 3, 4] for special classes
of equations. We attempt here to provide a unified theory based on the
theory of nonlinear evolution equations in Banach space. Our main technique
is to imbed the control problems into theory of nonlinear evolution equations
as given in [1] and make use of certain approximation results presented
there. While our results are in some sense more unified than those of Lions

they do not at present include all the examples presented in [2, 3, 4]. They
do, however, include certain results for control systems in nonreflexive
state spaces which seem inaccessible via the techniques of [2, 3, 4].

The paper contains seven sections. Section 1 contains preliminaries
on evolution operators in Banach spaces and the relationship between non-
linear evolution equations and control systems governed by nonlinear partial
differential equations. Section 2 and Section 3 give results on existence of
optimal controls for the time optimal problem and cost optimal problem, y
respectively. Section 4 discusses the problem of existence of solutions to
nonlinear evolution equations and Section 5 presents results which show
when the hypothesis of Sections 2 and 3 are fulfilled. Section 6 is devoted

to a nonlinear wave equation with control in the damping coefficient. Sec-

tion 7 applies our theory to control of a nonlinear conservation law used
as a model for control of traffic on an infinite highway.

1. - Preliminaries.

Let X be a real Banach space with norm 11.11. An operator A(t), pos-
sibly multivalued, 0  t  T with t-independent domain D c X will be said
to be a generator of an evolution operator U(t, s) if we can associate with A(t)
an operator U(t, s) : X -~. X satisfying the relations

(i) U(s, s) = I (the identity),

(ii) U(t, s) U(s, r) = U(t, r) for T,

(iii) U(t, s) x is continuous in the pair (t, s) on the triangle 

(iv) real.

If U(t, s) is generated by A(t) we would like to think of tt(t) = U(t, s) x
as being in some sense a generalized solution to the Cauchy problem
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An important question is what classes of operators A(t) actually do generate
evolution operators and in what sense is U(t, s) x a solution to the initial
value problem (1.1). We will return to this point later and for now we only
use the initial value problem as motivation for our definitions of generator
and evolution operator.

Let C be a set of possibly unbounded single valued nonlinear operators
on X with common domain D. We shall say C is sequentially compact if for
any sequence fA,61 c C, 0 ~ ~3  1, there exists a subsequence so that

for some all x E D, as ~0.
We shall say a set C of generators is strongly compact if for every sequence

IA,6(t)l of generators in C, 0  p  1, there exists a subsequence and

A(t) E e such that the evolution s)l associated with 
and U(t, s) associated with A(t) have the property that s)x --&#x3E; U(t, s) x
as fJ’-}O for all and the limit is uniform in T].

With above definitions we can immediately consider some problems
dealing with existence of optimal controls. First let us make some preli-
minary remarks to make the above definitions more clear. In applications
a set C of generators will be determined by a differential equation for the
state of a system in X and a set of admissible controls. For example the
state of a system at time t may be determined by an equation of the form

where A(t)x = A1x + B(t)x where Al will be some known, possibly un-

bounded, multivalued, nonlinear operator on D(A,) c X and B(t) (the con-
trol) an operator X --&#x3E; X lying in a set of admissible controls V. This type
of equation represents a system in which the control is the coefficient of the
zero order term of the operator A(t). Another possibility is that the state of
the system is again determined by (1.2) where now A(t)x = A1x - h(t).
Here again A1 is some known, possibly unbounded, multivalued, nonlinear
operator on D(A1) c X and h(t) (the control) 8X, 0  t  T, and h(t) lies in

some set of admissible controls V. In egamples, this type of equation
would represent a system with distributed forcing controls.

2. - Time optimal control problem.

Let K be a closed set in our real Banach Space X. Let C be a set of

generators with common domain D, Assume for some T E[O, T]
and some A(t) c- C the evolution operator U(t, s) associated with A(t) is such
that for x E X. Set To (the optimal We would
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like to show the existence of an «optimal generator)) A*(t) e C such that

A*(t) generates an «optimal evolution operator » U*(t, s) so that U*(ío, 0) x E K.
In this case we will say that the time optimal control problem has a solution.

THEOREM 2.1. If C is strongly compact the time optimal control possesses
a solution.

PROOF. Let {-r.1, 0#l be a minimizing sequence of times so that
Tp 2013~ To as fl§0. Let be the associated sequence of generators. Since C
is strongly compact there exists a subsequence of and A*(t),
a generator in C, generating evolution and U*(t, s),
respectively, where we know that for the associated sequence of evolution
operators lim U*(t, 0)z uniformly So we have

P’+O

Since lim U~~ ( t, 0 ) x = uniformly in T], the first term in
O’~o

the right-hand side of the above inequality goes to zero as Also, since
U*(t, 0) x is continuous in t, the second term in the inequality goes to zero
as so that 

3. - The cost optimization problem.

Again let .K be a closed set in our real Banach space X. Let C be a

set of generators with common domain D. Assume for some r E [0, Z’] and
some A(t) e C the evolution operator U(t, s) associated with A(t) satisfies

for Let .~ be a «cost functional » such that F:

C([o, i] ; X ~ -~. I~ so that if Wn -7-W as n -7- 00 in C([O, X) we have
F(w)  lim inf I’(wn). We would like to show the existence of an « optimal
generator » A*(t) e C such that A*(t) generates an «optimal evolution oper-
actor » U*(t, s) so that

I for all other evolution operators

If we can find such A*(t) and U*(t, s) we shall say the cost optimization
problem has a solution.
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THEOREM 3.1. If C is strongly compact the cost optimization problem
possesses a solution.

PROOF. Let IAO(t)l be a minimizing sequence of generators where the
corresponding evolution operators satisfy 0) x E K, 0 ~ ~  1, and

Fo = inf .I’( 0) x). For convenience we order the minimizing sequence
fl

so that

Since C is strongly compact there exists a subsequence of 

and A*(t), a generator in C, generating evolution and

U*(t, s), respectively, where we know

in TE[O,TJ. Thus as ~’~,0 so 
Furthermore I’( U* ( ’ , 0 ) x) _ Po by the assumption on
the cost functional F. Thus F(U*(-, O)x) = I’o and the proof is complete.

4. - Evolution operators, generators, and generalized solutions.

In section 1 we motivated the concept of generator and evolution operator.
In this section we propose to give a partial answer to the question when
does an operator generate an evolution operator and in what sense does
the evolution operator provide a solution to (1.1). Our results are taken

from [1] and the reader should consult [1] for further explanation and
references.

Let X be a real Banach space with norm II. II. A subset A of X~ X X
is in the class A(co) if for ~, &#x3E; 0 such that Âw  1 and each pair [xi, yi] E A,
i = 1, 2 we have + - (~2 -E- ÂY2) ~~ ~ (1- 11 x, - x2 ~~ . We define for
subsets A and B of X X X and any real number oc the following:

16 - Annali della Scuola Norm. Sup. di Pisa
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A is called accretive if A E ~( o ) . If A is real, Jg will denote the set

(I + and Di = = R(I + 2A). It is not hard to see that for

~ie~(~), ~&#x3E;0~ J~ is actually a function (even though A viewed
as an operator may be multivalued) and for x, y e D,,

Now let T, oi denote real numbers, T &#x3E; 0, and assume A (t) satisfies:

Let The t-dependence of A(t) will be restricted

by the condition:

(C.1) There is a continuous function f : [0, T] 2013~ Y and a monotone increasing
function L : [0, oo] -.[0, oo] such that ~~ ~ .

for 0 C ~ C Âo, 0  t, T  T, and Y any Banach space ( 1 ) .

It follows from conditions (A.1) to (A.3) that for each fixed T, 0  r  T,
there is a semigroup on x associated with A(í). See [5]. The con-

dition (C.1) assumes only the continuity of f and corresponds roughly to the
case when A(t) has the form A(O) + B(t), where B(t) is well-behaved in x.

As mentioned in Section 1 one would hope that the evolution operator
U(t, s) x will provide in some sense a generalized solution to the Cauchy
problem (1.1). This is indeed the case when A(t) satisfies (A.1 ) to (A.3)
and ( C.1 ) . Since A(t) may in general be multivalued, we will again write
our Cauchy problem in the form

This representation of the equation while seemingly at first a bit unusual
has become an inherent concept in the theory of nonlinear semigroups and
evolution equations. (See for example [5] and the references given there.)
The main justification for needing to consider multivalued operators A(t)

(1) In [1] condition (C.1) was given with Y = X. It has been noted in [131
that an arbitrary Banach space Y will also work.
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is that condition (A.3) may not be satisfied for single valued but only
for its multivalued extension.

We now make the following definition. A function u : [s, is called

a strong solution of (4.1 ) if :

(i) ~c is continuous on [s, T] and u(s) = x,

is absolutely continuous on compact subsets of (s, T),

is differentiable a.e. on (s, T) and satisfies (1.1) a.e.

We can now state the following fundamental theorem.

THEOREM. 4.1. [1] Let A(t) satisfy (A.1 ), (A.2), (A.3), (C.1 ) . Then there
exists an evolution operator U(t, s) on X. Furthermore if there exists a strong
solution of (4.1 ) then u(t) = U(t, s) x for 

Theorem 4.1 provides us with an answer to our questions on existence
of generators and evolution operators and yields explicitly in what sense
we take U(t, s) x to be a generalized solution of (4.1).

There is a class of equations to which Theorem 4.1 may easily be applied.
This is the class of equations where A(t) = A - h(t). More specifically we
call an initial value problem of the form

q2casi-autonomous if A is t-independent and h : [0, T] -~. ~~’ is single-valued.
For quasi-autonomous equations, Theorem 4.1 has been applied in [1] to
yield the following result which we state here in a more restricted and sim-
plified form.

THEOREM. 4.2. 0  ~  ~o~ .D(JL) == ~
and h : [0, Z’] -~ X be continuous. Then there exists an evolution operator
U(t, s) on X. Furthermore if u is a strong solution of (~-.J), then u(t) = U(t, s) x.

5. - Strong compactness of sets of generators.

As was shown in Section 2 and 3 strong compactness of a set of generators
is a sufficient condition for existence of solutions to the time optimal and
cost optimal control problems. It is apparent that we must now pose the

question: When is a set of generators strongly compact? Let us make the

following definition. A set C of, possibly unbounded, nonlinear operators
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on X with common domain D is said to be a uniform set of generators if the

hypothesis of Theorem 4.1 are satisfied uniformly for 

(By this we mean the same f, L, m work for each 

We can now state our basic result on strong compactness of sets of

generators.

THM. 5.1. Let C be a uniform set of generators. Assume that for

0  t  T, we have

(i) A(t) are single valued and closed, y

Then if C is compact it is strongly compact.

PROOF. The proof is a direct combination of Theorem 4.1 of [1] and
Theorem 4.1 of [6] where we have made some additional simplifying assump-
tions to reduce the complexity of presentation.

In the quasi-autonomous case a much simpler condition for strong
compactness may be given.

THEOREM 5.2. Let C be a set of generators of the form A(t) = A - h(t)
where A is fixed, all h belong to a compact subset of C([O, T]; X), and A
and all h satisfy the conditions of Theorem 4.2. Then C is strongly compact.

PROOF. The proof follows directly from Lemma 5.2 of [1].
Having stated sufficient conditions for strong compactness of a set C

of generators we may now proceed to some examples.

6. - A nonlinear wave equation with control in the damping coefhcient.

Let ~2 be a bounded domain in with smooth boundary. Let H~(Q),
H’(D), denote the usual Sobolev spaces [2]. We will consider the
nonlinear hyperbolic control system by

where 4 is the Laplacian, y: R ---&#x3E;- R is monotone non-decreasing, y(O) = 0,
and y viewed as a map on into is continuous. For example
y(g) = p &#x3E; 1, is a possible choice; see [2, p. 344].

The controls b(t) lie in the admissible control set

V _ (a set of nonnegative equi-bounded and equi-lipschitzian functions on
[0, T~ --.~.1-~, i.e. ~b(t) - b(i) ~ ~ l!1 ~t - i ~ (if independent of b), N -&#x3E;- b(t) &#x3E; 01.
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By the Ascoli-Arzela Theorem V is compact. We write (6.1) as a system

Let X (the state space) be given by H1(S~) @Ho(Q) which is endowed

with the « energy » inner product

Let us introduce the operators

where D(A,,) - .g2(,S~) n 8J and D(A2(t}~ = X. In this case it

is well known that A1 is the infinitesimal generator of a Co contraction semi-

group on X (the generalized solution to the wave equation with homogeneous
boundary conditions). A1 is closed on D(A,,) and satisfies (A.1), (A.2), (A.3)
where co = 0 (say by the Hille-Yosida-Phillips Theorem).

Define A(t) _ - A1-~- A2(t). ~ will denote the set of operators A(t) of

this form where b E V.

We now see that our original control system (6.1) can be written as

We now wish to show C is a uniform set of generators. Clearly for

A(t) E C9 D(A(t)) = D(A1) so all members of C possess common domain D(A1).
For integration by parts shows so A(t)
is monotone and it follows that Thus c~ = 0 works for all

A(t) E e and (A.1) is satisfied. D(A(t)) = (BHo(Q) = X so
condition (A.2) is satisfied. To check the range condition (A.3) we will
employ the following theorem of Webb [7].

THM. 6.1. [7] Let A be a closed, densely defined, linear accretive oper-
ator from a Banach space X to itself, for some A&#x3E; 0.
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Let B be a continuous everywhere defined nonlinear accretive operator
from to itself. Then A + B is accretive and R(I + IA(t)) = X for
some I&#x3E; 0.

Using the above theorem with A = - A1 and B = A2(t) we see

R(I + = X for some ~, &#x3E; 0. (Any 2 &#x3E; 0 is sufficient for our purposes
since c~ &#x3E; 0. ) Thus (A.3) is uniformly satisfied.

We must now check to see if (C.1) is uniformly satisfied for A(t) E C.
Let us define, as usual, J,,(t) - (I -~-- ~,A(t))-1. Thcn for x E X, ~. &#x3E; 0, and
z(t) = Ji(t)z we have

Taking the inner product in 1 we get

since A1 is skew self-adjoint on D(A1) c X. From the monotonicity of y
on we get
/

Since b(t) &#x3E;0 we have

Since J~()0==0 we have and because [
for all b c- V we have from the Schwarz inequality that 

for all x E X, h &#x3E; 0, and for all Thus condition (C.1)
is satisfied and we have proven

LEMMA 6.1. C is a uniform set of generators.
Now let

be a sequence in C, 0 c (3 C 1. Since c V is compact there exists a sub-

sequence ~b~~ of lbl so that b~(t) - b*(t) E V uniformly for 0  t ~ T as 
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Denoting

we see A*(t) c- C and it is obvious that AP’ (t)x -+ A*(t) x for all x E D(A1).
Thus we have proven

LEMMA 6.2. C is a compact set of generators.
Finally we must check the hypothesis of Theorem 5.1. Clearly, since A1

is closed and single valued and A2(t) is continuous and single-valued, A(t)
is closed and single-valued. Also D(A(t)) = D(A1). Thus the hypothesis of
Theorem 5.1 are satisfied and we have proven

LEMMA 6.3. C is a strongly compact set of generators.
Applying Lemma 6.3 to Theorem 2.1 and 3.1 we obtain

THM. 6.2. For system (6.1) with the set of admissible controls V the
time optimal and cost optimal control problems possess solutions.

REMARK. We may also consider other admissible sets of controls. Fol-

lowing a suggestion of J. L. Lions we take

Tr = ~b; b in a bounded set of H1[0, T], b(t) &#x3E; 0, 

As before conditions (A.1), (A.2) are satisfied and condition (A.3) is

satisfied uniformly. We will check condition (C.1 ) later. To see that C is

a uniform set of generators we note that for a sequence c V there exists

a subsequence c V so that b~, ~ b* E Y weakly in H1[0, T] and strongly
in C[0, T]. Thus as before for all and C is a

uniform set of generators. Lemmas 6.1 and 6.2 follow as before and Thm. 6.2
will be proven for our new V if we can verify ( C.1 ) .

In an attempt to check (C.1 ) we note that for b E V,

Hence following the argument for condition (C.1) as given before we will
obtain the inequality

At this point one might attempt to find a continuous function f : [0, T] 
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so that

Such a function f would fulfill the hypotheses of (C.1) where Y = It has
been noted in [13] that a search for such a function f will prove fruitless
for it is corollary of the Denjoy-Young-Saks Theorem that no such function
exists. However following a trick given in [13] we note that for Y = C[0, T]
and

we obtain the inequality

and f is continuous. Thus for this f we conclude

and condition (C.1) is verified. Thus Thm. 6.2 follows for our new set of

admissible controls as well.

7. - A continuum approach to highway trafhc control.

Lighthill and Whitham [8] have formulated a continuum model of traffic
flow which is presented here in a form given by Dafermos [9]. Consider an

infinitely long highway - oo, time t, and adopt the fol-

lowing notation:

v(x, t) = vehicle speed at point x at time t (e.g. ydsjsec.)

k(x, t) = vehicle concentration at point x at time t (e.g. vehicles/yd)

q(x, t) = rate of traffic flow at point x at time t (e.g. vehicles/see.)

h(x, t) = traffic influx rate from side roads at point x at time t (e.g. vehi-
cles /yd sec. ) .

We note that h(x, t) maybe greater or less than zero depending on whether
there is vehicle influx or outflux, respectively.

We now note the compatibility condition that the rate of traffic flow
equals the vehicle speed times vehicle concentration or
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Also we make the hypothesis that the vehicle speed depends on vehicle
concentration so v = v(k) and hence

i.e. the rate of traffic flow depends on vehicle concentration.
We assume that when there is a maximum concentration of vehicles no

vehicle is moving, i.e. = 0. Similarly when there is a minimum con-
centration of vehicles (say k = 0 approximately) the vehicles (of which there
will be almost none) will move at the maximum velocity allowed by law.

Also we assume that the vehicles can move only forward (~&#x3E;0) and
vehicles take up a positive amount of space (k &#x3E; 0).

A

Since q(k) - v(k) k we see q(O) = 0, = 0 and therefore we have

Fig. 2.

Figure 2
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We assume q(k) is continuous in k and set

so

Now let us derive our state equation for the vehicle concentration t).
Let 

The number of vehicles in (x,, X2) at time

The number of vehicles in (x,, X2) at time

The number of vehicles entering from side roads during (ti , t2)

The number of vehicles entering through x, in

The number of vehicles exiting through

The number of vehicles must then satisfy a conservation law, i.e. number

of vehicles in (x,, X2) at time t2 - number of vehicles in (x1, x2) at time

t1 = number of vehicles entering through x, during (tl, t2)-number of vehicles

exiting through x, during (t1, t2) + number of vehicles entering through side
roads during (t1, t2). This law may be written as
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or

Thus it makes sense to consider as our conservation law the differential

equation

where our state is the vehicle concentration k and our control is the traffic influx
(or possibly outf lux) rate h side roads.

It is not apparent that (7.3) possesses solutions in its present form so we
will generalize (7.4) to make use of the results of Crandall [10] and

Benilan [11].

DEFINITION 7.1. Ao is the operator in defined by: y E D(Ao) and
W E Ao(y) if y, q(y) and

for every and every Here

To show the relation between Ao and our original equation (7.3) we note

LEMMA 7.1. [10] Let q E C1 and Ao be given by Definition 7.1. If

then Y E D(Ao) and 
Thus we see that is in some sense a generalization of ~q(y)x~. We

will need to generalize ~q(y)~~ one step further. Let A be the closure of Ao,
i.e. and if there are sequences and such

that and 2/A;-~~y in 

We now may write out state equation ( 7.1 ) in the generalized form

where A is as given above.
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LEMMA 7.2. For X = L1(.R), A is accretive, and R(I + = X for

N .

PROOF. The proof is an immediate consequence of Theorem 1.1 of [10].
We are almost at the point where we may apply Theorem 4.2 to gain

existence and uniqueness of generalized solutions to our generalized model

equation (7.4). The only point lacking is to show D(A) = This is

done in the following lemma.

LEMMA 7.3.

PROOF. We will follow an argument used by Benilan [11, Chap. II].
Let continuous and where Q is open in R. We

say y is a solution in the sense of Kruskov on Q of = ~ if there exists

a function such that for all such that f &#x3E; 0 and all

Again let g : l~ -~.1~ continuous and define D~ _ fy e La) (R) ;
there exists so that y is a solution in the sense of Kruskov

on R of cp(y)x = 
Assume 99(0) = 0 and again that R -&#x3E; R is continuous, then Benilan

has shown in [11, Corollary 2.8] that D~ = Now choosing q - 99
we see by our definition of D(Ao) that Dq c D(Ao). Thus Dq c D(Ao) c D(A) c

c Li(R) and since Dq = L’(R) we have D(A) = 
We may now apply Thm. 4.2 to conclude

THEOREM. 7.1. For X = Ll(R) and h : [0, continuous there exists

an evolution operator U(t, s) on X for (7.4). Furthermore, if k is a strong
solution of (7.4) then 7~(x, t) = U(t, s) for ko E X.

Having resolved the question of existence and uniqueness of generalized
solution to our model (7.4) we are now in the position to take up some opti-
mization problems. First let us consider the time optimization problem.
Let us assume there is a desired set of traffic concentrations which we may
desire to reach in minimum time. We may have our particular traffic con-
centration as our objective but we allow a set as our goal to permit certain
tolerances. Let us call the desired set of traffic concentrations .K~ and

assuming K to be a closed subset of we may apply Theorems 5.2
and 2.1 to conclude
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THEOREM. 7.2. If the set of allowable trafhc influxes and outfluxes V

is a compact subset of C([0y T], then the time optimal control pro-
blem has a solution.

Similarly we can also consider a cost optimization problem. Let us assume
there is a traffic concentration E .L1(.R), which we can reach in

some time r &#x3E; 0. We may desire that the error between t) and k1(x),
measured in the appropriate norm, be minimized uniformly in 
That is we wish to minimize the cost functional

where T) = k1(x). Since F: 0([0, T J; ~ R is continuous, we may
immediately apply Theorems 5.2 and 3.1 to conclude

THEOREM. 7.3. If the set of allowable traffic influxed and outfluxes V

is a compact subset of C([0, T]; then the above cost optimization
problem has a solution.
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