
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

K. RAMACHANDRA
A simple proof of the mean fourth power estimate for
ζ(1

2 + it) and L(1
2 + it,χ)

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 1,
no 1-2 (1974), p. 81-97
<http://www.numdam.org/item?id=ASNSP_1974_4_1_1-2_81_0>

© Scuola Normale Superiore, Pisa, 1974, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1974_4_1_1-2_81_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


A Simple Proof of the Mean Fourth Power Estimate
for 03B6(1/2 + it) and L(1/2 + it, ~).

K. RAMACHANDRA (*)

To the memory of Professor ALBERT EDWARD INGHAM

1. - Introduction.

The main object of this paper is to prove the following four well-known
theorems by a simple method.

andTHEOREM 1. then

THEOREM 2. If T ~ 3, R&#x3E;2 and Ti and also
1, then

THEOREM 3. Let y be a character mod q (q fixed), T ~ 3, - 
 tx,2 ...  T, (.Rx &#x3E; 2), and tx.i+,- 1. If with each y we associate such
points then,

where * denotes the sum over primitive character mod q.

(*) Tata Institute of Fundamental Research - Bombay - 5, India.
Pervenuto alla Redazione il 16 Gennaio 1974.
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THEOREM 4. Let a be a positive constant satisfying 0  a  4. Then with
the notation of theorem 3, we have

where A is a constant depending only on a.

REMARK 1. The constants implied by « in all these theorems are

absolute except in Theorem 4 where it may depend on a.

REMARK 2. Our method allows us to work out the generalization, of
Theorem 2 to L-series, corresponding to Theorems 3 and 4.

REMARK 3. In these Theorems we have not tried to get the best powers
of log T or log (qT).

For other remarks and Theorems see § 4 and § 5, and also the appendix.

2. - Notation.

The letters a, A, B, k denote positive constant,%, 6 and e denote arbitrary
but small positive constants. All the 0 and the « constants and also Ci, 1021 ...
depend if at all only on these constants. Finally dk(n) is the coefficient of n-$
in (~(s))k, and d(n) = d2(n). The other symbols will be explained in the

body of the paper.

3. - Proof of the Theorems.

I should begin by saying that an expert in the field who looks at the
special case q =1 of Lemma 3 (below) will certainly be able to imagine at
once my proof of all these Theorems (1 to 4 above). However, we prove
Theorem 3, which is a generalization of Theorem 1. The method of proof
enables one to work out a proof of Theorem 2. From Theorem 3 we deduce
Theorem 4.

The crucial lemma for the proof is the following simple

LEMMA 1. Let s = be a complex variable, q ~ 1 a natural number

and a f (j = 1 to N) be complex numbers. For each character x mod q put
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where To is any real number T&#x3E; 3 and the constant implied by «is absolute.
We also need the sharper estimate

PROOF. Lemma is trivially true for N = 1. So we assume that N ~ 2.
The sum in question is

where in m = n and ~2 is the remaining sum. We have easily
Using the ir zero ac-

x

cording as m = n (mod q) and (m, q) = 1 or not, and

we have, by symmetry,

and this leads to the lemma.

From Lemma 1 we deduce the following corollary.

LEMMA 2. Let q be a natural number. With each character X mod q suppose
we associate I~x( ~ 2 ) distinct complex numbers sx.,== O"x.r+ itx.r (r== 1,2, ..., 

, As before, let
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yVe also need the sharper estimate

PROOF. The lemma is trivial if N =1 and for this reason we can assume

N ~ 2 and al = 0. Now

where the integral is over a disc of radius 6 and with centre sx.~ . We can
then sum up over r (observing that for fixed the respective discs are
disjoint) and then over all characters X mod q. The lemma now follows

on applying Lemma 1.

LEMMA 3. We have firstly

and so we can suppose that i f X is principal. Next define
1p(s, X) by L(s, X) = X). Let s = 2 -~- it and Iti &#x3E; (log (qT))2 if
X is principal. Also, let 2  X  (qT) 10". Then if w = u + iv and c a con-

stant satisfying 0  c  -1~, we have

PROOF. We start with

and move the line of integration first to u = - c - 2 , use the functional

equation for .L(s, x), retain the portion n&#x3E; X of the series for (L(I- s - w, X))2
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and move the line of integration in the integral containing the portion n  X
of the series to u = - (log (qT))-l. These two integrals are precisely 
and I2(s). However, y when we move the line of integration to ~c = - c - 2
we encounter the pole at w = 0 of 1~(w), where the contribution from the
residue is (L(s, X) ) 2. We have also the possible pole at w = 1 - g (in case x
is principal) in which case the contribution is

which is easily estimated to be 0( (qT )-2) .

REMARK. The method of proof also leads to an asymptotic formula
T

+ it) I I dt and this will be published elsewhere.
1

LEMMA 4. We have

PROOF. Follows by an easy application of Lemma 2. (Note that we may
break off the series for S(s) at n = with a small error).

We next state two easy lemmas and indicate their proof

LEMMA 5. W e have

LEBMMA 6. We have

PROOFS OF LEMMAS 5 AND 6. We may break off the portion Ivl ~ (log (qT)) 2
of the integrals I1 and I2 with a small error. In series for (Z(l 2013 s - w, x)~ 2
in fi we may break off for instance, the portion with

a small error. Observe that for primitive characters X mod q, y(w, X) ==

- 0((q( ~v~ -E- 2)~~-u~ uniformly for u in any fixed strip provided 
(n =1, 2, 3, ...). We next break up the portion (log (qT)) 3 into
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at most intervals of the form (U, U + V) with V U
and apply Holders inequality and then Lemma 2. We have also to use
I n-l(d(n)) 2 (log X)4. This proves Lemma 5 and the proof of Lemma 6 is
n-X

similar.

Combining Lemmas 3 to 6 and putting X = qT we see that Theorem 3
is proved. Theorem 1 is a special case of Theorem 3. The proof of Theorem 2
follows that of Theorem 3 with obvious changes. We now deduce Theorem 4
from Theorem 3. If X* denotes the primitive character which induces x,
then we see that

However, . and so

Hence it suffices to prove that the quantity in the second bracket is

« qt(log (qT))B where B depends only on a. Let 2m be the least even integer
greater than 4a(4 - a)-’. Let d be a divisor of q. We now estimate

we have a character mod d)

Let

where obviously
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Hence the sum under question is by Lemma 2,

Summing over all divisors d of q we are led to the estimate

This proves theorem 4 with A = 56.

4. - An asymptotic formula.

Just as we proved in [9] Theorems of the type

in the notation of [9], we can prove the following theorems as a corollary
to Theorems 3 and 4.

THEOREM 5. In the notation o f Lemma 3 and further with !O’Xt’ 1 and
i f y is principal the following results hold

It must be remarked that there is not much difference between Theorems 1
to 4 and the corresponding theorems where the sum over r is replaced by
integrals. In fact one can pass from one to the other by a slight loss e.g. a
power of log (qT). We next record here a Theorem which will be of use in
the proof of Theorem 7.
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THEOREM 6. Let k&#x3E;2 be a natural number, q as before and T&#x3E;3. Then

uniformly in G, lor - 2 ~ ~ (100 log (qT))-l we have

PROOF. We have only to note the relation

and the result

where d/q, (uniformly for a as in Theorem 6) which can be proved in much
the same way as Theorem 3. This completes the proof of Theorem 6.
We next state

LEMMA 7. In the notation o f Lemma 1, and we have uni-

formly,

PROOF. Left hand side is

Plainly we can impose the condition (mn, q) =1 and we shall adopt this con-
vention in the reminder of this proof. In this sum the terms with m = n

contribute the main term. The other terms are
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Here we treat the terms with and the rest separately. De-

noting then by 27i and ~2 we have

(The second term is present only if N &#x3E; q)

Next letting U run over non-negative integral powers of 2, we have (using
Ilog m/nl» I (m + n) /(m - n) 

Using -E- lanl2 we see that this is

since we can always restrict to in the last sum. This proves Lemma 7.

We next confine to 1/2 +03B4 c 1 and fix a small constant b (possibly
depending on k and only on k ) once for all. (of course we can get our final
result in a slightly more general form valid uniformly for (1 &#x3E; t + ð; but
to avoid some complications of a trivial nature we have done this). We
now modify Lemma 3 as follows.

LEMMA 8. Let 2 -f- c~ c ~ ~ 1 (~ is a small positive constant which may

depend on k). We denote the principal character mod q by xo . We have firstly
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Let x be any character mod q and (log (qT))2 if x = xo . Then we have

(this time we 8uppose 

where 8(X) and hence B. are zero if X =1= xo and 8(Xo) =1.

PROOF. We leave the proof of this as an exercise to the reader.

Next it is not hard to see that

LEMMA 9. We have uni f ormty in -

and so

Also

PROOF. Trivial.
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LEMMA 10. W e have uni f ormly in 2 -f - 6 c o~ c 1,

PROOF. Let denote the sum nX(log X)2 in the series

for S x. Then it is easy to see that

By Lemma 7, (with To = - T), we have

The 0-term is 0(99(q) + X2(1-a)(log (qT))""+ 4). In the main term we can re-

place egp ( - 2 (n jX ) 2 ) by 1 with an error

in the main term. Next we can replace by n &#x3E; 1 with an error

(Here 03= C3(a) is a small positive constant)
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Thus

This proves Lemma 10.

LEMMA 11. We hacve uni f ormty in

PROOF. In the integral for Ix we can break off the portion 11m w~ ~
&#x3E; (log (qT ) ) 2 with a small error. We then apply Holders inequality and use
Theorem 6. This completes the proof of Lemma 11.

Putting X = (qT)k/2 and combining the result stated just before Lemma 9,
Lemma 9, 10 and 11 we arrive at the following theorem

THEOREM 7. We have 

REMARK. To prove Theorem 7 it is not essential to prove Theorem 6.

Something like Theorem 5 which is a consequence of Theorem 3 is sufficient.
It (Theorem 5) gives a mean ( 2 k) th power on the line a = 1 - llk. We can
instead of Lemma 8 make a slight change and move the line of integration
to to obtain an asymptotic formula for (2k)th powers of L
series in -f- 6. So what is really important for the results of § 4
is a mean fourth power estimate on the critical line, which is a consequence
of the functional equation. For some Dirichlet series we may not have a

functional equation but still it may have for instance a mean square or a
mean fourth power estimate.

For example we state the following Theorems which are not difficult

to prove

THEOREM 8. Let monotonic sequence of real numbers with

an = for 0..Let do(n) denote the coefficient of n-s in
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((1 - 21-8) C(s) )2. Then the function

can be continued as an analytic function in a &#x3E; I and we have

THEOREM 9. Let be a sequence of complex numbers with I an = 
00 "-x

Then the function F(s) = Y- &#x3E;1) can be continued as an analytic function
n=1

0 and we have

REMARK. We can get an asymptotic formula in

~ ~ 1-1 ~2k --~- ~ by the method of this Section. Here .F’(s) can be either
the function of Theorem 8 or 9 and 

THEOREM 10. Let b(n) be a periodic sequence of complex numbers

« 1, an a sequence of complex numbers with and
n-x

I Ian - a,_, then G(s) = I anbn/n8 is convergent 0 and
nz

5. - Concluding remarks.

As is well known an important application of Theorems 1, 3 and 4 is
to the study of the zeros of ~(s) and L(s, x). Ingham studied (see The-
orem 9.19(B), page 203 of [10]) the zeros of = ((s) and Montgomery

*

studied ([7], [8]) the zeros of I’2(s) and F3(s) = fl fl .L(s, X)
x mod a aQ xmoda

(~ denotes the omission of improper characters). Let !0153l. Denote by
the rectangle and Let (j= 1, 2, 3)

denote the number of zeros of in T). (In the results to be stated
below the implied constants are independent of «, q, and T). Ingham proved
that Nl(«, T) « T 3(1-a)/(2-a)(log T)10’ and Montgomery proved the theorem

T) (qT))100 and T) « 
Montgomery also proved the theorems N2(«, T) « (qT))loo

T) Huxley [3] proved that N.,(a, T) «
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« T)100. All these results depended (besides other things) on
Theorems 1, 3 and 4 of ours, which in turn depended on " the approximate
functional equation for (.L(s, X))2 ".

Next Jutila proved [5] that T ) « (qT))o where ~, = 8 +
+ max ((6a - 3)~(6a - 4), 2) and p = provided + 6. It is clear that

Jutila’s method gives T) (QT ) )~‘. Jutila’s method also

gives N2(a, T) « (qT))JJ and T) « (Q2T)((3+8)(1- a))/(2 - a)
(log(QT))JJ and also T) (the last result still
depends on the method of [3]). One important feature of Jutila’s method
is a device which helps us to dispense with the use of Theorems like 1, 3 and 4
at the cost of obtaining a slightly weaker result than what would otherwise
have been possible. While these results of Jutila are good enough for appli-
cation to difference between consecutive primes and such other problems,
it is desirable to have a more precise result in the neighbourhood of a = 2 :
These will be of some use in Bombieri (E)-Vinogradov (A.I) mean-value
theorem (Theorem 15.2, page 136 of [8]) and Vinogradov (I.M)-Montgo-
mery (H.L) theorem (Theorem 16.1, page 141 of [8]). We may note that
Bombieri-Vinogradov mean value theorem has been proved in a simpler
way by P.X. Gallagher [2]. Theorem 4 together with Lemma 2 could be
used to prove, for instance, that T ) « (~)~’~’~(log (qT))" where
g- h=! and g - 2 h = (3 -~-- E )-l. However, to prove something like T ) «

we also require the Theorem 2 of [6]. But

we have dispensed with the use of approximate functional equations in
the proofs of Theorems 1, 2, 3 and 4 stated in § 1 and theorems of § 4 are
easy consequences of these theorems.

It must be mentioned that I got the start for this paper by trying to
simplify the approach given in chapters 19 to 22 of Huxley’s book [4].
Huxley proves an approximate functional equation to prove something like
Theorem 3 of ours.

Next a few words about the work of K. Chandrasekharan and R. Nara-

simhan [1] on approximate functional equations. Our method is certainly
applicable to almost all the problems of mean values considered there.

For instance consider an algebraic number field K of degree n ~ 2 and let
CK(s) denote the Dedekind zeta function of K. We can prove their result

that if (but B may be a

little larger than their value). Also we can prove the asymptotic formula for
the mean value with an error of the type 
where B may as before be larger than their value. (If we have to

2+ioo

start with the integral lf2ni j CK(s -E- where 1~o is
2-ioo
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T

some large positive constant). We can handle fICK(a+ by dealing
1

first with and then applying functional equation to deal with 11

In his letter dated 9.9.73, Professor P. X. Gallagher asked me whether it
is possible to get by my method, Barban’s 8-th power mean estimate

( « constant depending on t) .

It is not hard to see that my method gives a slightly stronger result

This gives (*) Ns(a., 
However, to prove these results one has also to use Theorem 2 of [6].

I take this opportunity to express my indebtedness to Professor P. X. Gal-
lagher for his interest in my work and encouragement. My thanks are also
due to Dr. M. K. V. Murthy for some help.

Appendix.

By slight variations in the method of the paper it is possible to prove
in a simple way, the following theorem due to H. L. Montgomery (The-
orem 10.1 of [8])

THEOREM. We have uniformly in a, q,.

In this appendix we indicate the alterations necessary. This can be

done best by stating three lemmas (which can be used at appropriate places)
and indicating their proofs. ~

Let ~an~ be a sequence of complex numbers such that I con-

n=1

verges for d &#x3E; 0 and is « d-4 ad d tends to zero. Then we have the fol-

lowing three lemmas.

(*) We can also prove in x &#x3E; t + 6, that T)  with

~=max(2,(10oc20135)/(12x20138)), if following the method of [5].
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LEMMA 1..Let and Then we have

PROOF. Consider

We can estimate this by the usual method. Also this is

LEMMA 2. Let s = 1 + it, k(&#x3E; 2) an integer and 2  X  ( qT ) Then we

have

PROOF. First break off the series at n = [X(logX)3]. Then consider a

k-ple integral of the type

with suitable upper and lower limits. This leads to the lemma.

LEMMA 3. Let s = l -~-- it where l is a real number satisfying 2Z ~ 6. Then,
if we have
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PROOF. Consider

and this completes the proof of the lemma.
Next in Lemma 3 of the paper we move the line of integration to u = I

instead of u - (log (qT))-l. We estimate separately the sums

This leads to the theorem of Montgomery.
Further details of proof will appear elsewhere.
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