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CHAPTER 1. Abstract theory.

1. The general set-up.

2. Inequalities in the selfadjoint set-up.

3. Inequalities in the non-selfadjoint set-up.
4. The negative spectrum.

CuarTER II. Applications to elliptic systems.

5. Preliminaries.

6. Realizations of normal boundary conditions.
7. Semiboundedness and coerciveness.

8. Perturbation theory; the negative spectrum.

REFERENCES.

In this paper we present a «reduction to the boundary» for normal
boundary value problems for elliptic systems A, that is used to reduce the
study of coerciveness inequalities

(1) Re (Au, u)>c|u|z—Aluly, ueD(4,),

for realizations A, of A, to related coerciveness inequalites for the pseudo-
differential operators acting in certain vector bundles over the boundary.
The reduction is also used to establish a perturbation formula, from which
we deduce a new asymptotic estimate for the negative eigenvalues of sel-
fadjoint elliptic realizations of strongly elliptic systems. (The study of (1)
requires a more delicate reduction than those given in [18], [25].)

(*) Universitetets Matematiske Institut - K¢benhavn, Danmark.
Pervenuto alla Redazione il 31 Maggio 1973.
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The paper has two chapters. In Chapter I (Sections 1-4), we study
the coerciveness problem from an abstract viewpoint and work out a theory,
that would be applicable also to other boundary problems than those for
elliptic operators (e.g. the parabolic and hyperbolic cases treated in Lions-
Magenes [21, vol. 2], and certain degenerate elliptic operators). (The
difficulty in such applications of course resides in the interpretation of the
more or less abstract statements.) Let 4,, 4, and 4, be linear, closed, den-
sely defined operators in a Hilbert space H, such that 4, C A,C A5 A, being
bijective. Then the closed linear operators A lying between A, and A, are
in a 1-1 correspondence with the closed, densely defined operators 7': V — W,
where V resp. W run through all closed subspaces of the null-spaces Z(4,)
resp. Z(A:), cf. [11]. Under further hypotheses on 4,, 4, and 4, (in parti-
cular, that A, is regularly accretive and has a compact inverse), we now
show that when K is any Hilbert space between H and H, (H,= the closure
of D(4,) under the norm Re (4, %, u) + const. [4|}), and U is any linear
set between D(4,) and K, then A satisfies

2) Re (du, w)>eluy—Alu]y, VYueDA)NT,
for some ¢ > 0, A€ R, if and only if T has the properties

8) VcwW, and Re(Tzz)>c|z]2—A]|2|%, VYeeDT)NT,

for some ¢’ > 0, '’ € R. This is the statement for the case where 4;,= A:
and 4, = A’; (cf. Theorem 2.13 below); in the case where Ay;éA;, the
condition (3) must be replaced by a more complicated version (cf. Theorem 3.6).
The result was proved earlier for quite special choices of K in [12] and [13];
the difficulty for the general case lies in concluding from (3) to (2) when — A’
is large negative. This is overcome in the present paper by a technique that
uses compactness of .A;l, and involves a study of how the set-up changes
when A4,, A4, (etc.) are replaced by 4, —pu, 4; — u (ete.) for real u outside
the spectrum of 4,.

Chapter I ends with Section 4, where the negative spectra of 4 and T
are set in relation, in preparation for Section 8.

The methods of Chapter I are elementary Hilbert space techniques,
whereas the application to specific boundary problems in Chapter II (Sec-
tions 5-8) involves the use of more extensive theories. We consider a 2m
order elliptic differential operator A in a ¢-dimensional vector bundle E over
an n-dimensional compact O manifold £ with boundary I'. Section 5 con-
sists of background material. In Section 6 the normal boundary conditions
Bou = 0 are introduced; here ou denotes the Cauchy data of %, and B is a
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triangular matrix of differential operators, with surjective zero order ope-
rators in the diagonal (and possibly pseudo-differential operators below it);
such conditions were studied in detail in [17]. Let A, denote the realization
of A with domain D(4,) = {uec L*E)|Awe L*E), Bou = 0}; then A4,C
CA,CA,, where 4, and 4, are the minimal, resp. the maximal, operators
for A. Denoting by A, the realization of the Dirichlet condition yu = 0,
and assuming A, bijective, we have that A, corresponds by Chapter I to
an operator T': V— W. It is now shown, by use of [17], that

m—1 2m=-1
(4) yW=oT[HE*YZ), yW=¥][[H*"¥F),

k=0 j=m

where @ and ¥ are injective (pseudo-) differential operators, and the Z,
and F, are certain vector bundles over I. Moreover, T' is by use of y, @

and ¥ carried into a pseudo-differential operator £ (a representation of T)
m—1 m—1

going from @ Z, to 2@ F,; and the dimension of Z(4,), the codimension
k=0 J

=m

of R(4,) and the regularity of A, correspond to analogous features of L.

Section 7 takes up the coerciveness problem (for which the assumption
of normality is justified, as observed by Seeley [27]). In [17], there was gi-
ven a necessary and sufficient condition (on B and A near I') for the weak
semiboundedness estimate

(8) Re(Au, w)> —Aluls,, VYueDA,) N H™E).

With the present notations, that condition is also equivalent with the property
yV CyW (and with yV = y W if the range space for B has total dimension mg);
in such cases, £ is replaced by more convenient representations. Assuming
that A is strongly elliptic, we construet (from £ and A) a pseudo-differential

m—1 m—1
operator ¢: [[ H™*%Z,) -] H*™*"*Z,), with which we have:
k=0 k=0

THEOREM. Let K be a Hilbert space satisfying
(6) H}(E)CKCLXE) (continwous injections)

and containing D(Ay) N H*™E), and let U= KN {uecl*(E)|Au+ A'ue
m—1

e L} E)}. K, and U, denote certain subspaces of T[] H™*¥(Z,), derived from K
k=0

and U by use of y and D. There exist ¢ >0, A€ R such that

(7 Re(4u, u)>olulz—2Auls, VYueDA,)NT,
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if and only if (i) and (ii) hold:
(i) A, satisfies the condition for (5).
(ii) There exist ¢’ >0, A'€ R such that

(8) RelTp, > > '@k, — A |9 la-+-1(z0

m—1
for all p € U, with Spe ] H*(Z,).
k=0
This is Corcllary 7.8; cases of more general K and U are included in the

more complicated Theorem 7.7. When K = H*E) for some s e [0, m], (8)
takes the more familiar form

(9) Re{Tg, > >c'|g Hgm'-"'hz,‘) — Vg “fm—‘"}(zk) .

For s = m, (9) holds if and only if Re ¢°(T) > 0 on T*(I")\0; this charac-
terizes the realizations satisfying Garding’s inequality, completing the suf-
ficient conditions of Agmon [1] and de Figueiredo [8]. For s = 0, the theo-
rem characterizes lower boundedness of A, by the analogous property of §
(See Theorem 7.10 and Corollary 7.11). The results generalize (and improve)
those given for scalar A in [13].

Finally, we consider in Section 8 the selfadjoint realizations A4, of a for-
mally selfadjoint elliptic operator A, and derive an isometri¢c representa-
tion G of T, that allows for sharper correlations of properties; in particular
we set up a perturbation formula (8.19). This is applied to a study of the
negative spectrum of A, in the case where A is strongly elliptic. 'We show
that when A, is elliptic and unbounded below, then the number of eigen-
values in ]—¢, O[ satisfies the asymptotic estimate for { - + oo

(10) z 1<e (_A. tnDizm | o (fin—Dizm)

Ajze1—t.00

improving previously known estimates (Theorem 8.11.19). This is derived
from a more general theorem (Theorem 8.7), that also describes the number
of negative eigenvalues in the lower bounded (finite) case, and allows for
a discussion of the sharpness of (10), and of non-elliptic cases.

Some of the above results were announced in [14]. Moreover, we presented
a sketch of part of the theory in Séminaire C. Goulaouic- L. Schwartz (and
in Séminaire J. L. Lions-H. Brézis) [15], and a further developed version
at « Colloque sur les équations aux dérivées partielles, Orsay 1972 » [16],
which also includes a direct proof of the characterization of Garding’s inequa-
lity. The author would like to thank the organizers of these meetings for
the inspiring occasions.
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CHAPTER 1

ABSTRACT THEORY

1. — The general set-up.

The study of extensions of linear operators in Hilbert space is a well
known tool in the theory of boundary value problems. The basic notions
for the framework used here were developed in [11], additional studies were
made in [12] and [13]. In the present chapter we obtain a complete discus-
sion of abstract coerciveness inequalities (under the assumption that a cer-
tain fixed operator is compact); moreover, we derive a result on comparison
of eigenvalues.

For an operator P from a topological vector space X to a topological
vector space Y, we denote the domain, range and kernel by D(P), R(P)
and Z(P), respectively (*). I denotes the identity opertor in various contexts.

AssuMPTION 1.1. There is given a Hilbert space H with norm |- | and
inner product (-, -), and a closed, densely defined, unbounded operator A,
in H, bijective from D(A,) onto H. There are given two closed, densely
defined operators A, and 4, in H, satisfying 4,C.4,C 4,: Denote A}=
=4, AT=A.

Clearly, A; c A: c A'1 and A: maps D(A;) bjiectively onto H. A, and A,
are injective with closed ranges, 4, and A'1 are surjective. Thus

(1.1) H = R(4) ® Z(4,) = R(4,) ® Z(4,),
orthogonal direct sums. Define
(1.2) pr,= A'4,, pr,=I—pr,

they are continuous operators in ID{(A4,), and they project D(A4,) onto its two
components D(4,) resp. Z(4,)

D(4,)= D(4,) + Z(4,) (direct topological sum).
We also denote pr, = u,, pr, %= u,. Similarly,
4

pr;, = (A;',‘)—IA1 , pré = I—~pr;

(*) D(P) is provided with the graph-topology.
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decompose D(A;) = D(A}) + Z(Ay); we write pr,u=wu,, pr,u= ;. The
orthogonal projection of % onto a closed subspace X of H is denoted by pryu
Or Uy.

A (resp. A') denotes the class of linear operators A (resp. 4') satisfying
A, CACA, (resp. A; cd'c A;). When % € D(A) for some 4 € A, we usually
simplify Au to Aw; similarly 4’ is usually written A4'u.

The closed 4 e.# were characterized in [11, Section IL.1] as follows:

ProposITION 1.2. Let A closede #. Let
V = clpr, D), W=ecl pr'c D(d*),
closures in H. Then the set GCV X W defined by
& = {[u;, (Au),]jue D(A)}

is the graph of a closed, densely defined operator T from V into W, with D(T) =
=7pr, D(A). Conversely, let V and W be any closed subspaces of Z(A,) resp. Z (A'l),
and let T be any closed, densely defined operator from V into W. Then

D(A) = {uc D(4,)|u; € D(T), (Au),= Tu}

is the domain of a closed operator Ac.#. Hereby is established a 1-1 cor-
respondence between all closed A c M and all such triples V, W, T.

When A corresponds to T: V — W in this way, A* corresponds to T*: W —
—V in the analogous way (relative to A').

The proof is based on the identity, valid for all uwe D(A), ve DA¥),
0= (Au, v) — (u, A'v) = (Au, v;) — (uy, A'v) = ((A)y,, ;) — (%, (4'0),),

which shows that #,= 0 implies (Au), =0, so that ¢ is a graph. Simi-
larly, there is a mapping 7: ”Ic > (4'v),. One then shows that T and T,
are adjoints, that all triples are attained, and that 4 corresponds 1-1 to 7,
V, W. We recall from [11. IT.1] the properties:

ProposITION 1.3. Let A correspond to T:V — W as in Proposition 1.2.
Then

(1.3) D)= {u=w+ 4Tz + ) + 2|[z, 2 fl€
e D(A) XD(T) X (Z(A) © W)},

in this decomposition w,= &+ A Tz +f) and u,=z.
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PrOPOSITION 1.4. Let A correspond to T: V — W as in Proposition 1.2.
Then

(1.4) Z(4)= Z(T),
and
(1.5) R A)=R(T)+ (HO W) (orthogonal direct sum).

When Z(A)= 0,
(1.6) A= A47'+ Tv  (on R(4)),
where TVf= T-1pr,f for fe R(4).
(1.5) corrects a wrongly presented formula in [11, Theorem II 1.3] (the
proof is an immediate consequence of (1.3)).

‘We shall now use Proposition 1.3 to discuss lower bounds. When P
is an operator in H, its lower bound m(P) is defined by

m(P) = inf {Re (Pu, u)lu € D(P), |u| =1},

and P is called positive, nonnegative, lower bounded or unbounded below,
according to whether m(P) is >0, >0, >— oo or =—o0.

2. — Inequalities in the selfadjoint set-up.

In addition to Assumption 1.1 we assume in this section

ASSUMPTION 2.1. A, is selfadjoint with m(4,) > 0. 4, = 4, and D(4,)
is dense in D(A‘:,).

Note that A, is the Friedrichs extension of 4,, we do not here consider
a more general extension Ay as in [11].

In the following, let A correspond to T: V — W by Proposition 1.2.
(A will of course in general not be self-adjoint.) When V C W, we have a
simple identity:

(2.1) (Au, v) = (4w, vy) + ((A“)W7 'vc)
= (4w, v,) + (Tu,,v;) for w, ve D(4).
((2.1) holds whenever v, € W.) We shall also need the inequality

alo]* +bly|_ _ab
lo -yl " a+b’

(2.2) when a +b6>0, ¢ +y+#0,
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« and y belonging to H; it is proved as follows:

alo]*+ bly]* —ab(a + by o+ y]*=
— (@+ b)[(@ + bala]* + (a+b)bly]* —aba]* — ab]y|*—2ab Re (2, 9)]
= (@+ by az—by[*>0.

The following results were proved in [11, Section IIL.2].
PROPOSITION 2.2,
(i) If m(d) >— oo, then VCW and m(T)>m(d).
(i) If VS W and m(T) >—m(4,), then

m(4y) m(T)

mA)> ) @)

(iii) A is symmetric if and only if VC W and T is symmetric as an
operator in W.

(iv) 4 is selfadjoint if and only if V=W and T is selfadjoint.

The proofs are based on (2.1); (i) furthermore uses the denseness of D(4,)
in D(A:) (like in the proof of Theorem 2.13 below), and (ii) uses (2.2).

In order to include the cases where m(T)<— m(4,), we shall study how
the set-up changes when 4,, 4, and A, are replaced by A, —u, 4,—u
and A;—pu.

DErINITION 2.3. For meo(4,) (the resolvent set for A,), define the
operators

Et= A4, —p) ' =1+ pd,—p™,
o= (4 —p) A =T —pd".

Clearly, E* and F* are bounded operators in H, selfadjoint when u is
real; moreover

(2.3) FtE¢—= ErFE=1T,
since A;‘Alv =v=(4,—p) (4 —p)v for » belonging to

(2.4) A'H=D(A,)= DA, —p) = (4,—pw)H.
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LEMMA 2.4. Let K be a linear space satisfying

(2.5) DA4,)CKECH.

Then

(2.6) E*K=K=F'K,

and

@2.7) EM[Z(A) NK]= Z(A,—p)N K,
(2.8) FHZ(A,—p)NK]=Z(A)N K.

If K is provided with a norm |- |y for which the injections in (2.5) are contin-
uous, one has for all ue K

(2.9) lul g <ol B*ulg<o'|u],

with positive constants ¢ and c'.

ProOF. When u€ K, Ffu=u—uA 'uc K since D(4,)CK. So F*KC
CK, and similarly (cf. (2.4)) E¥ KCK. Applying E* resp. F* to these
inclusions, we find K C E* K, KC F* K, which completes the proof of (2.6).

When the inclusions in (2.5) are continuous, we furthermore have for
uCK
lule= IF*B*u] o < | B*u| g + A  E*u] x

< B ] g+ 0y AT B U gy < | B ] g + 0, | B u
< 6B uly,

and similarly |E*u|.<ec,|F*E*u|,= ¢,|u],, proving (2.9).
Finally, let 2€ Z(4,) N K. Then Efze K, and

(A1 —p) Bre= (A, —p)e + p(dy —p)(A, —p) o= 4,2=0,
so B*2e€Z(A,—p). This proves E¥(Z(4,) NK)CZ(A, — pu)N K. One

shows in a similar way that F¥(Z(4,— ) N K)C Z(4,) N K, and applies
(2.3) to conclude (2.7) and (2.8).

Introduce the projections, for % e D(4,),

(2.10) priu= (4, —p)* (4 —p)w=1uy, Priu= (I—prh)u=ug,
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they decompose D(A,) = D(A;—p) into the topological direct sum
D(Ay—p)= DA, —u) + Z(41—p) .
The relation to the usual decompositiqn of D(4,) is found by observing that
%= w, + %, = [4, + (I — E*)w,] + E*u, ,
where E*u,€ Z(4,—p) by (2.7), and
(I—E*" uy=—p(d,—p) ' u e D4, —pn),
so that
(2.11) wh = w,— (A, —py e 5 up=Elu.
We now introduce an operator in Z(4,).
DEerFINITION 2.5. Let uepo(4,). The operator G* in Z(4,) is defined by
(2.12) G2 = —pr,, ,uB'2, for 2€Z(4,);
in other words,
(2.13; (G¥2y, 2,) = — (uB*2,,2,), for 2,2,€Z(4,).

Denote by .#* the class of linear operators between 4, — u and A4, — u;
clearly Ae# < A— e’

PROPOSITION 2.6. Let A be a closed operator € M, corresponding to T: V —
— W by Proposition 1.2. Let pepo(d,)NR. Then A —u corresponds to
T#. V& — W* (by Proposition 1.2 applied to M*), determined by

(2.14) D(T*) = E*D(T), V*=E‘V, W=EW;

(2.15) (T* E*v, BFw) = (Tv, w) + (G*v,w), for veDT), weW.

Proor. By (2.11), D(T*)=prtD(A—p)= E*pr, D(A)= E*D(T).
Moreover,

V¥ = cl pr¥ D(A — ) = cl B* pr, D(A) = E* clpr, D(A) = B*V ,
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since E* is an isomorphism in H. Similarly, W#*= E*W. Now we have
for all we W, all e D(A) (cf. Proposition 1.2):
(T, w) = (Au, w) = (Au, F* B*w) = (F* Au, E*w)
= (4 —p) A Au, B*w) = (A —p)w,, B w)
= ((4 — p)w, B*w) — ((4 — p) %, B*w)
= (T"u}, B*w) + (pu,, B w)
= (T* E* w,, B*w) + (uE* u,, w)

which shows (2.15), where we set v = u,.

Now, as long as m(4,— u) >0, Proposition 2.2 applies to the correspondence
between 4 — u and T" The treatment of large negative bounds for 7' then
hinges on whether 7" can be brought into the range of applicability of Pro-
position 2.2 (ii) for — pu large. Indeed, we shall show that m(G*) — + oo
for g —— co. This is obtained by use of a lemma of Rellich [24] (see Dun-
ford-Schwartz [7, XIIL. 7.22]):

LeEMMA 2.7. Let 8, and S, be symmetric operators, and assume that S, C S,,
and D(8,) = D(8,) + N, where N is finite dimensional. If m(S,) > — oo
then m(8,) > — oo.

This will applied to a very special case:

PROPOSITION 2.8. Assume that A' is compact. Let A€ R, and denote
by T(A) the operator AI with domain Z(AI) Let A(2) be the opemtor correspond-
ing to T(A): Z(A,) — Z(4,) by Proposition 1.2. Then m(A(A)) > — oco.

Proor. In view of Proposition 2.2 (ii), we may assume A<—m(4,) < 0.
By Proposition 2.2 (iv), A(A) is self-adjoint, and by Proposition 1.3,

D(A() = {u= o + 4, 2z + 2|[2, 2] € D(Ao) X Z(41)} ;
here u,= & + 4,2, u,= 2. In particular,
Au,= Au= Ax + A2 € R(4,) ® Z(4,),
S0 Up=2z=A"1pr

say A%, . Introduce the operator

O = 27 pry 4y,
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it maps D(4,) continuously onto Z(4,), and clearly
D(A()<c(I+0)D(4,).
Conversely, if ve D(4,), we put 2= Ov and & =v— 14,2, then
Ap= Av— ALAT A1 pr,, \Av = (I —pr,,,) Av=pr,,,Ave R(4,),
80 z € D(4,). Thus
(I+0O)v=a+ A4;2+2eD(4(2),

and we have shown
D(A(%) = (I+6)D(4,).
Since R(@)= Z(4,),

pr,(I+0O)v=v for wveD4,),

S0 pr, serves as a left inverse to I + 6.

Now let v > |1| and let X, and N, denote the eigenspaces belonging to
the eigenvalues of A, that are >7, resp. < 7v; N, is finite dimensional.
Let A (%) be the restriction of A (A) with domain

D(4(h) = (I +6)(D(4,) N X,) ;
it is closed, and

D(4A(1) = DA, A) + I+6O)N
For u e D(4,(4))\{0}, we have u, € X_, so (Au,,u,)>7|u,]? and, by (2.1)
and (2.2),

(Au, u) _ (Atey ty) + 4w |*  wluy]? + A 72
Ju]® [y Fult 7 Ty gl T4’

since 7 + 4 >0. Thus m(4,(1)) >— oo, and Lemma 2.7 applies to show
that m(A(4)) > — oo.

DEFINITION 2.9. When A7* is compact, we define the function ¢: R—>R
according to Proposition 2.8 by

(2.16) @A) = m(A(2)) .
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It follows from Proposition 2.2 (i) that ¢(1) <A for all 1 € R, s0 ¢(4) > — o
for 1 —>—oo. Since A(A)2 A,, we also have

(2.17) P(A) <m(4,) =m(4,) for all AeR;

moreover, Proposition 2.2 (ii) shows that qa(}.)>m(Ay)(1 + m( A_y)/l)—l for
A>—m(4,), so that in fact ¢(d) >m(4,) for A — + co. Define ac RU
U {+ oo} by

(2.18) a = sup {Alp(1) < m(4,)} .

THEOREM 2.10. Assume that A;‘ 18 compact, and consider G* for
u€l—oo,m(4,)[. On this interval,

(2.19) m(@) 1+ oo for uN—oo.
In fact, the function y:uv>—m(G*), defined for pel— oo, m(4,)[, is the
inverse of the function ¢ defined on J— oo, a[ (cf. (2.16), (2.18)); both functions

are strictly increasing and continuous. In particular, y(]— oo, 0]) = ]— oo, 0].

Proor. For u< p'<m(4,), —pB*+ w' E* is a positive operator on H,
since it equals f(4,), where the function f satisfies

- 1 ) v\ (W=t
fz) = ”(l+t—u)+” (1+T—u')_(r—ﬂ)(r—ﬂ')>c>0

for all 7>m(4,). Thus, by restriction to Z(4,),
m(G*) >m(G*) for p< p' < m(4,),
so the function y:u +—>—m(G¥) is strictly increasing on J— oo, m(4,)[.
Now let A€]— oo, a[ and consider A(A) defined from T(A) = AI on Z(4,),

as in Proposition 2.8. For u € ]— oo, m(4,)[, let T#(1) denote the operator
in Z(A,—p) corresponding to A — ueMA*. Then by Proposition 2.6

(T*(A) E*z, B*2) = A|2|* + (G#z,2), for all z€Z(4,) .
Since E* maps Z(A,)isomorphically onto Z(A4, — x) for each y, it follows that

(2.20) m(G* 4+ )= 0
holds if and only if
(2.21) m(T*2))=0.
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Since we have assumed u < m(4,), Proposition 2.2 applies to the correspon-
dence between T*#(1) and A(A)— 1, showing that (2.21) holds if and only if

(2.22) m(A(A)—p) = 0.

Now the equivalence of (2.20) and (2.22) gives: When A € ]— oo, a[ and we
put u = m(A(2)) = p(4) (< m(A4,) by the definition of a), then 1= —m(G*) =
= y(u). Conversely, when u e ]— oo, m(4,)[ and we put 1 = —m(G*) = y(u),
then u= m(A(4)) = ¢(A); here by (2.17), y(u)<a. By the monotonicity
of y, u< pu'< m(4,) implies (u) < y(u')<a, which shows that in fact
¥(1— o0, m(4,)[) € ]— oo, a[. Altogether, we have found that ¢: ]— oo, a[ -
~> J— oo, m(4,)[ and y: ]— oo, m(4,)[ - ]— oo, a[ are inverses of each other.
Since g is strictly increasing, both functions are continuous and strictly
increasing. Finally, y(]— oo, 0]) = ]— oo, 0], since

9(0) = —m(G°) = —m(0) = 0.

REMARK 2.11. It should be noted that — uE¥, considered as an operator
on all of H, does mot have a property like (2.19). In fact, if v is a normalized
eigenvector for 4, belonging to the eigenvalue 7, then

T

(—yE"v,v):——,u(l+Tf”)=1_m_l—>t, for y—>— oo.

However, the eigenvectors for A, do not lie in Z(4,). In earlier, futile attempts
to prove (2.19), we tried to measure and utilize the positive angle
between Z(A,) and the finite dimensional eigenspaces for 4,. In our applica-
tions to realizations of an elliptic differential operator of order 2m, G# takes
the form of a certain elliptic pseudo-differential operator over the boundary
(cf. Remark 8.2 below). In special cases (of constant coefficient operators
on R?) one finds here that m(G#)>c|u|'*"; this is also our conjecture for
the general 2m-order elliptic operators.
We can now complete Proposition 2.2.

THEOREM 2.12. (Assumptions 1.1 and 2.1). Let AJ* be compact, and let
A e correspond to T: V — W by Proposition 1.2. Then m(A) > — oo if
and only if VCWand m(T)>— co. (In particular, m(d) >0<>VCW
and m(T) > 0; and m(A)>0<>VC W and m(T)>0.)

PRoOF. The implications from 4 to T, and from T to A for m(T) >
>—m(4,), are contained in Proposition 2.2. So let V< W and m(T)=
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= A<—m(4,). Let u= ¢(4), then m(G*)= —A. Now, with the notations
of Proposition 2.6, V¥C W¥, and T* satisfies

(T#E*z, E¥2) = (T2, 2) + (G*2, 2) > A|2]* — A[2[*= 0

for all z e D(T), whence m(T#)>0. Thus m(zf—-,u)>0, i.e., m(ff)>,u. Q.e.d.

We shall finally apply Theorem 2.10 to treat some more general inequa-
lities.
Define the Hilbert space

(2.23)  H,=D(4}), with norm |v], = (|o]*+ |4do|2)},

it is dense in H. As is common, we identify

(2.24) HcH=HCH,,

the dualitj between H, and its dual space H ; denoted <, ), extending the

inner product (,) in H. Considered as an operator from H, to H, A, has

an adjoint from H to H;, that we denote A, ,; it clearly extends A4,, so we

abbreviate A, ,4 to Au as usual. We denote D(4,,) by JX,, so altogether

(2.25) D(4,, = ¥,= {uec H||(», Av)|<const. [|'v||,y , all veD4,)}
(Au,v) = (u, Av) for wueX,, veD(4,).

Let A,, be the restriction of 4,, to H,; it is an isomorphism of H,
onto H;,, extending 4,: It is easily seen that

(2.26) ¥,=H,+ Z(A,) (direct topological sum),
where the decomposition is defined by the projections
(2.27) pr,= AGAL,, Dprp=1I— pr, ,
extending the original projections (1.2).

THEOREM 2.13. (Assumptions 1.1 and 2.1.) Assume that A} is compact,
and let A correspond to T: V — W by Proposition 1.2. Let K be a Hilbert
space with norm |- |z and satisfying

(2.28) H,CKCH (continuous injections). -
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Let U be a linear subspace of K containing D(A,). There exist ¢ >0, A€ R
such that

(2.29) Re (Au, u)>c|u|i—A|u|2, for all ue DA)NT,
if and only if (i) and (ii) hold:

(i) DITYNUCW.
(ii) There exist ¢' >0, A'€ R such that
Re (Tz,2)>c'|2|5— A |2]2, for all ze D(T)N U.
ProoF. Assume first that (2.29) holds. Let ze D(T)N U, fe Z(4,) ©
© W, zrne D(A,), and set
ur=g"++ A HTz+f) + 2,
it lies in D(A) by Proposition 1.3, and in U, since D(4,) € U. Now, using
that R(4,) L Z(4,),
Re (4du", u) = Re (4", u}) + Re (4u", 2)
= (-A“;7 %) + Re (f, 2) + Re (Tz, 2)

> ofu|2—A|u"|* Dby assumption.

Let #"—— AJYTz+ f) in H,; then u,— 0 in H, and thus in K and in H,
so that the inequality implies

Re (f, 2) + Re (T2, 2) > ¢ 2|y — Al2]* .

This holds for f multiplied by any complex number; thus (f, 2) = 0, which
shows (i). When this is inserted, we find the inequality (ii) with ¢'= ¢, A'= A.
Conversely assume that (i) and (ii) hold. If — A’>0, we find for € D(4) N
N U, using (2.1),
Re (A, ) = (4w, w,) + (Tu;, %)
>3 min (1, m(4,)) [u, I3, + o [
>0"|ulz,

with ¢” > 0, which shows (2.29). Now assume — A'< 0. Let u= ¢(—4').
By Lemma 2.4; E# maps Z(4,) N K isomorphically onto Z(4;— u) N K.
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Let T* be the operator corresponding to 4 — p (cf. Proposition 2.6), then
we have for 2e D(T)N U

Re (T*E*z, E*z) = Re (T, 2) + (G*2, 2)

> ¢'|olx — Az]*+ A

=¢'|z|z> 0" | B* 2],
where the constant ¢’ > 0. Moreover, by Lemma 2.4, E*(D(T)N U)=
= E¢D(TYN U= D(T*) N U. Then the previous argument may be applied

to the correspondence between 4 — w and T#, showing that there exists ¢ > 0
so that

Re (4 —p)u, u)>cu|: for all ue DA)N T,
ie.,
Re (Au, w)>c|u|%t — |u||u]* for all ue DA)N U.

REMARK 2.14. Previously (cf. [12, Proposition 2.7]), we only had a com-
plete result for H, = Hy(Q2), K= H*(Q) with sem—}, m], A, being the
Dirichlet realization in H = L*(2) of a 2m order elliptic operator A in a
bounded open set 2 c R*; the proof was based on trace theorems and compact

injections H*(2) c L*(£2). Note that above we do not assume compactness
of KCH.

REMARK 2.15. When H CKCH, K,= KN X, satisfies
(2.30) K,=H,+ (KN Z4)),
and for e K,,
Julz, = lul+ lulle, <alle, |z, + lu o) <olulk,,

with positive constants. The proof of Theorem 2.13 shows that (2.29) is
also equivalent with

(2.31) Re (Au, w)>c"|u|2, —2"|u|?, all ueDA)NT.

In particular, 4 is lower bounded if and only if (2.31) holds with K, equal to J¢ R
(or any space between J¢, and H).

REMARK 2.16. It follows from Theorem 2.12 that we can also complete
the results of [12] (Théorémes 1.1, 1.2) on variational A (i.e., those that are

2 - Annali della Scuola Norm. Sup. di Pisa
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associated with coercive sesquilinear forms by the Lax-Milgram lemma):
4 is variational if and only if V=W and T is variational; and then
the associated sesquilinear forms @ and ¢ are connected by

(2.32) D(@) = H,+ D(t) (direct topological sum),

(2.33) a(u, v) = a,(w,,v,) + t(u;, v;) for u,ve D(@);

here a,(u,,v,) = (A;‘,uy, Af,vy).

3. — Inequalities in the nonselfadjoint set-up.

In this section, we assame, in addition to Assumption 1.1,

AssuMPTION 3.1. The operator 4, is positive and variational with D(4,) =
= D(A;). Moreover, D(A4,) equals D(A(',) and is dense in H, , where H, denotes
the domain D(a,) of the sesquilinear form a, associated with 4 :

For details on variational operators, cf. e.g. [12, Section 1.2]; some
authors call such operators regularly accretive. Let us just mention that H,
is a Hilbert space, continuously and densely injected in H, and a,(u, v) is
a continuous sesquilinear form on H, X H, satisfying for all ve H,

(3'1) cy “'vllzﬂy < Re a’y(”’ ’U) < la/y(,v’ ’U)I < C'y "’U ”1273,

with positive constants ¢, and C,; 4, is associated with a, by the Lax-Milgram
lemma. We use the identification (2.24) and the there mentioned notations
for the duality.

Define also the «real parts »:

4;=1(4,+ 4, DA)=D4,)),

it is the selfadjoint positive operator associated with the sesquilinear form
%[ay(u, v) + a,(v, )] defined on H,; and

A=} (4o+ 4,), DA =DA4,), and A= (4])*

The class of linear operators between A; and A] will be denoted .#”.
The three operators A, A'1 and A7 are extended to operators from H

to H, by
A,,:H-—>H, is the adjoint of A:H, —H ;

1}

A;'O:H—>HY

Af,:H-—>H, is the adjoint of AJ:H,—H ;

is the adjoint of A,: H,—H ;
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their domains are denoted
'D(Al.o) = JeA ’ D('A;.-a) = JeA.' ’ D(A;‘.) = Je,d.' ’

and we as usual abreviate notations by writing 4, ,u as Au, A, uas A'u,
and A7 ,u as A"w. (See the analogous construction (2.25).) The restrictions
of these three operators with domains H, are isomorphisms 4, ,, A;,.‘ resp. 47,
of H, onto H,, and they clearly satisfy (cf. (3.1))

(3.2) Red4, ,v,v) = Re <A;,,,v, vy = {4} v, >c,[v ";,, for all ve H,.

Defining the projections

pr,= A4, Dr,=(4,)4;,, prj= (45 )'4],,

V.6

pr,=I—pr,, pr=I—pr,, pry=I—pr]

(extending definitions of Section 1), we have the decompositicns into topo-
logical direct sums

3.3) J,=H,+ Z(4,), ¥,=H,+24), *,=H,+ 744,
just like in (2.26)-(2.27). We shall often write pr) « as u;, and pr; % as u;:
Clearly, the results of Sections 2 apply to the operators in ..

The fact that D(4,) = D(4,) = D(A!) with A5 = }4,+ } A, implies easily,
by use of the definitions:

LEMMA 3.2. One has

(3.4) D(4,) N D(4;) = D(4,) N D(4]) = D(4,) N D(A) ;
(3.5) JeAﬂJel=J€AﬂJ€1=JeA,ﬁJ€Ar,

and

(3.6) D4,)N¥k,=DA,)N%k,.

For u in any of these sets,
(3.7) A"u=}(Au+ A'w).

Moreover, the projections fit together as follows:
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LeMMA 3.3. For ueX,NXK,, one has

(3.8) Pr; 4 = pr; prz % = DI, PI; %,
(3.9) DT, % = DT, P, % = DI, DIj %,
(3.10) PI; % = Pry Pry % = Pry pré % .

Proor. For weJ, N3, , we have three unique decompositions accord-
ing to (3.3) (cf. (3.5))

(3.11) u=pryu+pr¢u=pr;u+préu=pr;u+pr§u.
Rewriting the third member of (3.11) we find
u= pr;,u + prypréu + prtpréu ,

where pr; % -+ pr, pré uweH, and pr, prz w€ Z(4,), so that by comparison
with the second member,

(3.12) pr, %= pr;,'u + pr, préu y DI, u=Dpr, pr'cu.
This shows the first identity in (3.8); the remaining identities follow similarly.
LemMA 3.4. Let ue D(A,)NK,: Then
Re (Au, u,',) = {A"uy, u;> + Re {Aug, pr; wp) .

Proor. By (3.6), we can define # = prj %, y = pr; %, and then 4=+ y,

where v€ H,, and y€ Z(4;) N¥K,. Thus

%, = Pr, & + pr,y==a +pr,Y,

14 U ! !

%,= Ppr,& + pr,y =2+ Ppr,y;
and we find by insertion
Re (4w, u;) = Re (4u,, u;) = Re (4(x + pr, ), v + pr;y)

— Re [(4a, 2> + (4w, pr,y> + (A pr, ¥, 2> + {4 pr, ¥, pr, 3)]

= (A7, @) + Re [z, A'y> + <Ay, 2]+ Re (4 pr, 9, pr, %>
= (4", @) + Re (A pr, y, pr,y)> = (A", z) + Re (Ay, pr, 9>,
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where Re [{w, A'y) + (Ay,2>]=Re (4 + 4")y, ) = 0 because ye Z(4)).
This shows the lemma.

We shall apply the techniques of Section 2 to the operators in 4", so
we define, for ue o(4,),

Bt=1+4 pd,—p)™, F'=I—pud)™
G = — pu proup B*: Z(4%) — Z(47) .

The class of operators between A7 — u and A]— u is denoted ™#; and we
have the projections denoted pr}* « = wy* and pry* % = uz¥, decomposing I,
into the direct topological sum

Xe=H,+ Z(A]—p).
LeEMMA 3.5. Let uc¥,. Then for pepo(d]) N R
CATup, wly — gl = (AT — p)ut, uly + (GPu, uf) .
Proor. The identities (2.11) extend immediately to weJC,:
prytu = u) —u(A,—p)tug 5 pry¥u= Eup.
Denote v =w,eH,, y= u;€ Z(4]). Then

(A7 — p)ugh, wyty = (AT —p) o — py, € — p(dy — p)7'y)
= (Arz, m) — p(@, ®) — u(y, ) — p@, y) + p3y, (45— p)y)
= (Arw, ©) — p(u, w) + p(y, y) + p*((A, —p)"1y, ¥)
= (4w, @) —plu]*— Gy, y) ,
since p + p*(d;,— u)™t= uB*
THEOREM 3.6. (Assumptions 1.1 and 3.1.) Assume that A,' is compact,

and let A correspond to T:V — W by Proposition 1.2. Let K be a Hilbert
space with norm |- |, and satisfying

(3.14) H,CKECH (continuous injections),

and let U be a linear subspace of &, N K containing D{A,). There exist ¢ > 0,
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A€ R such that
(3.15) Re (Aw, w)>c|u|2—A|w|?, for all ueDA)NT,

if and only if (i) and (i) hold:
(i) pr, (D(T)N T)C W.

(ii) There exist ¢' >0, A’ € R such that
(3.16) Re [(Tz, 2;) + <Az, pr, 21> ¢ |2f ] — 222

for all ze D(T)N U. Here, if —1 >0(>0),— 1" may be taken >0 (>0),
and vice versa.

PROOF. 1° Assume (3.15). When % € D(A) N U, we have the three decom-
positions (recall (3.6) and Proposition 1.3)
u=a+4;%Te+1)+2, [92fleDA)XD(T)X(Z(4)© W),
U= u,',—i— ué , Where ué: préuc= z:. , u,',: %, + pr;z ,

= u,+ u;, Wwhere up==2}, u,=u,+ pryz.
Then we find by use of Lemma 3.4

(317) Re(Awu, w) = Re (Au, u,) + Re (Ao + Tz + f, up)
= (Aruj, ) + Re (Aug, pryup) + Re (T2 + f, up)
= {(Aru}, u)) + Re {4z, pr;, 20> + Re (T2, z'c) + Re (f, zé)
> c¢|u|2—AJu|? Dby assumption.
For given ze D(T)N U and er(A;) © W, we can choose a sequence
of elements a"e D(4,) converging to — A Tz +f)—pr,z in H,. Then
u"= a4 ATz + f) + » belongs to DA)N U, and pryu"= "+ AN (Tz +

+f) +pr,2—0 in H,, so that %"= pr,«"+ pr;z—pr;z in K, in view
of (3.14). Inserting " in (3.17) and passing to the limit, we find that

(3.18) Re {4z}, pr; #> + Re(f, zé) + Re (T2, zé) >cleply — Al#)®

for all ze D(T) N U, all fe Z(A,) © W. Since f may here be multiplied by
any complex number, this implies that (f, zé) = 0 for all f, 2, which shows (i).
‘When this is inserted in (3.18), we find (3.16).
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20 Assume conversely that (i) and (ii) hold. We first take the case
where — A'>0. Here, by the above decomposition, we have for ue

eDA)YNT
Re (Au, u)> (A uy, upy + o' |ug]x
>0, luyly, + o' lugly  (cf. (3.2))

>c"uy

with ¢’ > 0, in view of (3.14); this shows (3.15). Next, let — A’ < 0. We

then have for ue D(A)NTU

Re (Aw, u)> CAu), ul) + o |lup|z— A’ |ug]? .

v Ty

Now let u= ¢(— A') so that m(G#)= A’ (cf. Theorem 2.10); note that u < 0.
Then by use of Lemma 3.5,
Re (Au, u) — u|w)2>

> CAruy, wy)> — plul* + o ugl g — A'fug|?

= (A7 — p) up*, > + (G*ug, u) + o |ug ]z — ' |ug|®

> o Jug Iy, + o'fuls  (since u< 0)

> o, fup® Ilf;,y—{— o |ugt |y (cf. Lemma 2.4)

> 6|ulg,

with ¢, >0, since H,C K. This proves (3.15). The last statement in the
theorem is evident.

REMARK 3.7. Note that the proof of Theorem 3.6 hinges on the decomposi-
tion, valid for we D(4,;) N ¥K,. with uée w,

Re (Au, w) = (A uj, wy) + t(ug, ) ,

where t7 (y, y) = Re [(Ty,, yé) + <4y, pr; y>], cf. (3.17). Here, Re (Au, u)
might be regarded as the sum of the two « quadratic » forms (AT uy, u)) =
= ay(u;, ;) and t"(uz, u7), like in (2.33); and the study of coerciveness ine-
qualities (3.15) becomes part of a study of such sums of forms on subsets
of ¥,.

In view of Remark 2.15, Theorem 2.13 in a special case of the above
theorem. Observe also the following consequence of the proof of Theorem 3.6,
which extends Theorem 2.12:
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COROLLARY 3.8. (Assumptions of Theorem 3.6, with K= H.) There
exists p€ R so that

(3.19) Re (Au, w)>u|w|* for all ue DA)NT,
if and only if pr,(D(T)N U)C W and there exists u' so that

(3.20) Re [(T%, 2;) + (A%, pr, 2D 1> p' |42

for all ze D(T)NU. If p>O0(u=>0) then u' may be taken >0 (=>0) and
vice versa.

4. — The negative speetrum.

As noted in [11], Proposition 1.4 leads to methods for estimating the spec-
trum of 4 by applying perturbation theorems to the spectrum of Ay (or of
T). Similar ideas have been used previously by Krein and by Birman (loc.
cit.) and others in the study of lower semibounded operators. We shall here
give a few estimates concerning the negative spectrum of selfadjoint, not
necessarily lower bounded operators. The methods are quite elementary,
but do however provide the basis for a new result for elliptic boundary
value problems in Section 8. The application of the same techniques to
the positive spectrum does not improve the very delicate estimates already
known (cf. (8.22)) so we shall not here discuss the positive spectrum.

Some notations: When P is a selfadjoint operator in a Hilbert space X
with discrete spectrum with finite multiplicities, the nonzero eigenvalues
are arranged in the two sequences (counting multiplicities)

(4.1) 0< HP)<H(P)<...<2H(P)<...,

(4.2) 0> (P)>A(P)>..> 4 (P)>....
For t€]0, -+ oo], we denote

(4.3) N*P;t)= > 1= no. of eigenvalues =0 in ]—¢,1[.

145 ()] <t
When N—(P; oo)< oo, We also arrange the eigenvalues in one sequence

(4.4) M(P) <A(P)<...<M(P)<...
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so that, when 0 € o(P), A;(P) = Ay_,,,(P) for j<N = N~(P; o), and 4;(P)=
= A} 5(P) for j>N.
When @ is a compact selfadjoint operator in X, the nonzero eigenvalues

are arranged in the two sequences

(4.5) Q) > Q) > >uf@)>... >0,

(4.6) w@)<p; (@) <..<p;(@<..<0,

and we denote by N*(Q) the total number of positive, resp. negative, eigen-
values. When @ is injective, uf(Q)= AF(Q ).

We assume in the following, that Assumptions 1.1 and 2.1 hold, and
that 47" is compact. Moreover, A will denote a selfadjoint operator in .,
with 0 € o(4) and A-! compact, and corresponding to T: V — V by Pro-
position 1.2; so 0 € o(T) and T is a compact selfadjoint operator in V, by
Proposition 1.4.

LEMMA 4.1. N—(4; 0o) = co<>N—(T; 00) = oo.

Proor. Follows from Theorem 2.12, since the statements mean that A
resp. T is unbounded below.

LeMmA 4.2. For any te]0, oo,

(4.7) N-(4d; t) <N~(T, 1);
and
(4.8) SA)<;(T)  for all j<N~(4; 00).

Proor. We apply the maximum-minimum principle to the identity (cf.
Proposition 1.4)

(4.9) A1= AT T,

where A is nonnegative, so that (41, 2) > (T w, x). For j<N~(4; c0) =
= N—-(4-1) we have

0> ,u,‘(/f—l) = max min {(A'-lw, x) [l[m[l =1, v1 X}

X3S0

> max min {(TY2, z)||z|=1, » L X}
x,_,SB

= p; (T0) = p; (T7) 4
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here X;_, runs through all subspaces of H of dimension <j— 1. This shows
I A) < x(D).
LEMMA 4.3. N-(4; oo) = N—~(T; o).

Proor. This was shown in Lemma 4.1 for the infinite case, so we may
assume N—(d; oo) < co. Then A is lower bounded, and the associated sesqui-
linear forms constitute a direct sum

(4.10) a(u, v) = a,(u,,v,) + H(u;, v;)

Yy

for all w, veD(@ = D(a,) + D(t), cf. Remark 2.16 (or [12]). Let o > — m(4),
then in particular a > —m(T), cf. Proposition 2.2 (i). Then A + « >0,
D(@) = D(@ 4+ ) = D( (ff + oc)*) Now another wellknown version of the
maximum-mlmmum principle gives (in the notation (4.4))
MA+a) =24 +ap):=
_ma.xmm{[l A 4 a)tu|? lueD (4 +a¥, |u]|=1, vl X}

Xj_.SH

= max min {§(u, ») +«|u|?|ueD(@), |u]=1, u L X},
X,.,SH

where X;_; runs through all subspaces of H of dimension <j—1. Now
D(t) C D(@) and for ze D(t) we have d(z,2) =1t(2,2) by (4.10). Thus, for
each X;_,,

(4.11)  min {@(u, %) + «||?|lueD@), 4| =1,4_| X, .}
< min {t(z, 2) + alz]2le€ D), o] = 1,21 X;2)
= min {|(T + o)*z|?lee D((T + a)}), |o] = 1,21 X,:}.

When X,_; runs through the subspaces of H of dimension <j—1, then
pr, X;_; runs through the subspaces of V of dimension <j—1. Taking
the maximum in (4.11) over all X, ;, we then get

A + 0) <M(T + )
for j<dim V, and thus

(4.12) M(A)<A/(T) for j<dim V.
In particular we see that

N—~(4; 00)> N-(T'; o)
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which, combined with (4.7), proves the lemma. Then for the negative eigen-
values, (4.12) is just a restatement of (4.8).

Finally, we shall determine an inequality going in the opposite direc-
tion of (4.8).

DEFINITION 4.4. For any closed subspace V of Z(4,), we define the ope-
rator 8, in V by

S,o=pr, 4 'v, weV.

The compactness of 47! implies the compactness of each operator S,
moreover they are injective and nonnegative.

LEMMA 4.5. One has for all § <N—(S,+ T?)
(4.13) X (A) > p; (8, + T3
Proor. For veV, we have

(A 10,0) = (450, 0) + (T720,0) = ((8,+ T, v) .

Thus
#5 (A7) = max min {(4-'a, 2)|we H, |o|=1, 2 L X}
X5 ,CH
< max min {(4-1v, ) |v eV, |v|=1, v1 X, .}
Xy, CH

= uz(Sy +177),
when j<N—(8,+ T (like in the proof of Lemma 4.3).
Let us collect the results in a theorem.

THEOREM 4.6. (Assumptions 1.1 and 2.1). Assume that A7 is compact.
Let Ac be selfadjoint with 0 o(A) and A compact; A corresponds to
T:V —V by Proposition 1.2, where T is selfadjoint with 0 € o(T) and T
compact. Then

10 N~(4; co) = N—(T; o).

20 For any jeN with j<N—(4; oo), A;(A)<2;(T).

30 N-(4d;t)<N—(T;t) for all t>0.

40 For any jeN with j<N—(8,+ T1),
AA)> 7 (8, + T,

where 8, is defined in Definition 4.4.
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CHAPTER II.

APPLICATIONS TO ELLIPTIC SYSTEMS

5. — Preliminaries.

The abstract results of Chapter I will now be applied to normal boundary
value problems for elliptic systems. A treatment of scalar elliptic operators
was given in [13], and much of the background material presented there
carries over to the case of systems (or rather operators between vector bundles)
without any trouble; such results will just be stated without details here.

For scalar operators, a normal boundary condition consists of a finite
set of boundary conditions of distinet orders, where in each condition the
order equals the normal order and the coefficient of the highest normal deri-
vative is an invertible function (Aronszajn-Milgram [5]). For operators on
vector-valued functions, one groups together the boundary conditions of the
same normal order, and normality means (following Seeley [27]) that in
each of those sets, the coefficient matrix of the highest normal derivatives is
surjective (a precise statement is given below in Section 6). This more general
concept requires the introduction of new techniques; the resulting theo-
rems contain and in a sense simplify the statements in [13].

Normal boundary conditions for systems of differential operators were
studied extensively in [17], which we shall build on here. We recall that
the requirement of normality, which is unnecessary for existence and regu-
larity studies (cf. [4], [18]) is justified in the study of semiboundedness ine-
qualities (cf. e.g. [17, Remark 2.2]).

Let A be a 2m order properly elliptic differential operator in a hermitian C*
vector bundle E of fiber dimension ¢ over a compact n-dimensional rieman-
nian manifold @ with boundary I” (and interior 2\ I" denoted £2); m, gand n
are positive integers (). On F and E|, one defines the usual Sobolev spaces,
the norm on H*(E) or H*(E|;) being denoted [-|,. In particular, HE)=
= L*E), H(EB|;) = L*E|;), and L*-inner products will be denoted (-, *);
their extensions to (sesquilinear) dualities will be denoted (-, -> (these will
mostly oceur over I'). Cp (E) shall denote the space of C® sections in F with
support in Q, and HJ(E) its closure in H*(E) for s>0. All differential ope-
rators will be assumed to have O coefficients (when expressed in local coor-
dinates).

(%) Some results in the following are only interesting (or meaningful) for
n>1; this should be clear from the context.
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Define for s and teR
(5.1) X'(EB)= {uc H(E)|Auc H'(E)} ,

it is a Hilbert space with the graph norm [u|sy¢m= (|%]2 + |A4u|?)}. Define
also

(5.2) Z%(B) = {uc H'(E)|Au= 0},

it is a closed subspace of H*(E) and of any J5*(E). Analogous spaces are
defined for the formal adjoint A’ of A. Introduce the index sets

M={0,..,2m—1}, My={0,..,m—1}, M,={m,...,2m—1};

and, with y, denoting the k-th normal derivative y,: % > (D*u)|, for ue
€ C* (K), define

0% = {VUhens YU=1{1 “}keu. y = {y, u'}ke)l, ’

the Cauchy data, Dirichlet data, resp. Neumann data of 4. By an easy gene-
ralization of [21], y and » extend to continuous mappings

(5.3) y: %e™™E) -] B>} E|)
keEM,
(5.4) »: J°(E) -1 B+ ¥(B|,)

for all se€R. For the norms in the latter spaces we shall use the notation

(5.5) le kIe;{x't(x,)= lo . 2em -

One has the following Green’s formula (cf. [17], or [25], [13]): For s € [0, 2m],
u ey (H) and ve X (E),

(5.6) (Aw, v) — (u, A'v) = {fou, 0v)
= {Apu, yv) + {Avu, pv> + (A yu, 0>
= {yu, yvy — {yu, 7’0y ,

where &= (#,,), e IS @ certain invertible skew-triangular matrix of diffe-
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rential operators A, in E|. of orders 2m —1—j—Fk;

(6.7 Al (%) scupnen, TOr 0,6=0,1;
and
(5.8) qh= AVyu + FAOpu, o= — A*p— ] Ay

Define now 4,, A, and 4, as the operators in L*(E) sending % into Au
and with domains

(5.9) D(4,)=H™E), DA,)=H}E)NnH™E), D4,=3¥K;E).
We shall assume

Assumption 5.1. A maps D(4,) bijectively onto L*(E).

Define the analogous operators for A', then we have from well known
theorems on elliptic operators
’ * 4 * ! *
A=A, A, =4,, A =A4,

so that the introduced operators altogether satisfy the hypotheses of Sec-
tion 1. The graph-norms on D(4,) and D(4,) are equivalent with the H?*-
norms, and since £ is compact, A;‘ is a compact operator. The operators A
in . (i.e. satisfying 4, C A C A4,) are now called the realizations of A. Clearly,

we have
(5.10) Z(A,) = Z5(B), Z(4,)=Z%(E).

In particular, when A is strongly elliptic, we may assume that a constant
has added to A so that, with ¢, >0,

(5.11) Re (Au, w)>o,|ul®,, all ueCY(E);
then Assumption 3.1 is satisfied, and
(5.12) H,=HXE), ®,=¥;™E), X,=Xi;™H);

moreover, the operators Ag, A}, A] etc. are the analogous realizations of
the formally selfadjoint strongly elliptic operator

(5.13) AT=131(A+ 4.
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Proposition 1.2 is turned into a correspondence between realizations and
boundary conditions by means of the following theorems:

ProrosiTION 5.2. For t>—m, t#~—%,—%,...,—m+ %, and for
— oo < 8Kt + 2m, the mapping {4, y} defines an isomorphism

{4, y}: 4B) - H(E)x [T E 4 E|,) .

xEM,

Here, {A, y}—(H'(E) X {0}) = H(E) N Ht+*™(E), and {4, y}_l({o} X
XTI H*¥E|,)) = Z(E). With y, defined as the isomorphism

reM,

(5.14) y: Z4B) 3 T H*Y(B|p) ,
keM,
the operators

(5.15) pr,=I—~pr,, Dr,=y; oy

coincide with the projections pr, and pr, defined in Sections 1 and 3, and they
decompose X5 (E) into the direct topological sum

(5.16) ¥yt(B) = (HME) N Htm™(E)) + Z4(E) .
ProPOSITION 5.3. The composed operator

(5.17) P, ,=voy;: I1 B YA ) - TT H™4(B|,)

kEM, jeMy

is an M, X My-matriz of pseudo-differential operators in E|n, it is of type
(— &y — 9)sea, ke, M4 188 principal symbol is at each point in T*(I")\0 obtained
by the analogous construction for a related ordinary differential operator.

Proposition 5.2 follows from well known theorems on the well-posedness
of the Dirichlet problem, extended to general spaces by Lions and Mage-
nes [21], see [13, Theorem 2.1] for a detailed account. Proposition 5.3 fol-
lows from Boutet de Monvel [6]; the related ordinary differential operator
is obtained from the principal part of A by freezing the coefficients at a point
of I'and Fourier transforming in the tangential variables. A matrix (P)ey, rer,
of pseudo-differential operators P, from E, to F, (vector bundles over a mani-

fold X) is said to be of type (i, 8;)sep, xew, if it is continuous from [T H*(E,)
=
to T] H*(F;). (For the case where A is scalar, we showed in [13] how the
JEN,

result follows from [18], [25], and calculated the principal symbol of y.,.)
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The analogous concepts are introduced for A’ (and A" in the strongly
elliptic case), with notations y;, P;, (and yz, P} ). Define furthermore

(5.18) Pr-x = go y;lz A-'OIP%V + 3 Aw

and the analogous operators relative to A’ and A"; we note that for the ope-
rators A’ and A" entering in the Green’s formula,

(5.19) Al=—A*, A=3}(AF+A)=131(A—A.
Finally, define the pseudo-differential boundary operator u by
pu=yu—P, yu for weXyE)= D(4,);

' and p" are defined analogously relative to A’ and A". It has the properties
(ef. [11], [13]):

ProrosiTION 5.4. For we D(4,),

(5.20) pu= yu—P,  yu= A"(vu—P, yu)= A" vA  Au,

and u maps D(A,) continuously onto T[ H**}(E|.); moreover,
keM,

(5.21) (Aw, 2) = {uw, yz>  for all z€ Z(4A,) .

The mapping {y, u} is surjective from D(4,) onto T H*¥(B|,) x TI H*(E|,),
with kernel H :’”(E). keM, JEM,

Now, when 4 is a closed realization of A and corresponds to T: V — W
by Proposition 1.2, we can use the isomorphisms in Proposition 5.2 to carry T
into an operator L: X — Y', where

(5.22) X=9V, Y=9yW, and L= (@) Ty;*,

¥, and vy, denoting the restrictions of ¥ to isomorphisms from V to X resp.
from W to Y. Here

(T'uc; w) = <L7’yu;’ Ve W) = {Lyu, yw ,
(5.23) (T, 0) = (At, ) = (s, yuod

for all we D(A), we W; so we find that 4 corresponds to L: X — ¥’ by
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the formula
D(4) = {ue D(4,)|lyue D(L), Lyw = iyuu} ,

where 4y is the adjoint of the injection i,: ¥ — ] H™* ¥ B|,).
*eM,
We refrain from further details (see [11], [13]), since we shall now restrict

the attention to normal boundary conditions, for which one may construct
other representations of 7, where X and Y are replaced by whole Sobolev-
spaces over I" and L is replaced by a pseudo-differential operator.

6. — Realizations of normal boundary conditions.

Recall the set-up of [17]: There are given 2m hermitian C® vector bund-
les F; over I, of fiber dimensions p;>0; j=10,1,...,2m—1. There is given
a matrix B = (B,,), c, of differential operators B, from E|, to F; of orders
j —k, respectively (differential operators of negative order being zero),
i.e., B is of type (— &, — j), .ex+ In the present paper, we also permit the B,
with j—Fk >0 to be pseudo-differental operators (cf. Remarks 1.14 and
2.7 of [17]); pseudo-differential operators occurring below will be called
(pseudo-) differential operators if they are differential operators when the B,,
are so.

B is lower triangular, and is split into four blocks (compare (5.7))

B 0
(6'1) B = (Blo Bu) ’ Bd‘ = (Bik)!eug. kEMg
B defines the boundary condition Bou = 0, i.e.
(6.2) BYyu=0, BYyu-+ Bilyu=0.

The diagonal part of B

(6.3) B,= (6jkBjk)i.k€ll ’

consisting of zero order differential operators, may be viewed as a vector
bundle morphism from @ E|.to @ F;, an identification we shall use through-

keM jeM

out. We denote B— B, = B,, the subtriangular part of B.
We assume from now on that the following definition holds:

3 - Annali della Scuola Norm. Sup. di Pisa
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DEFINITION 6.1. B (or the boundary condition Bgu = 0) is said to be
normal, when B, is a surjective vector bundle morphism (i.e., B;; is a surjec-
tive morphism from E|. to F; for each j € M; in particular p;<gq for all j).

Under this assumption, B itself is surjective from [T H**(E|;) to
keM

TIH*"(F;) for all seR, and it has a right inverse €= (C,,), ey COD-
jEM
sisting of (pseudo-) differential operators C, from F, to E| of orders j — k;

C is lower triangular and injective; cf. [17, Section 1.3]. Let 0% = (C,) ey, 1,
(6, e = 0,1), then C* is the analogous right inverse of B, and (! is the
right inverse of B,

With the notation (for s e R)

(6.4 28) = {p e TT B*H(B|,) By = 0]

and analogous notations for Z*(B®) and Z*BY), we showed in [17,
Lemma 1.11]:

(6.5) z'(B)= (I—CB) [[ H~*¥(&|,) ;
(6.6) ZB*)=(I—C*B*)[[H"*¥B|;), e=0,1.

Note the easy consequence

LEMMA 6.2. For t< s, Z'(B) (resp. Z*(B*), ¢=0,1) is dense in Z'B)
("031’~ Z'(B*), ¢ =0, 1) in the norm |g "{t—k—}}.keﬂ ("931’- "(p"(t—-k—}).keue)'

We shall now study the realization A, of A defined by
(6.7) D(A,) = {ueD(4,)|Byu=0, BYyu-+ Blyy=0}.

Clearly, A4, is a closed operator in L*¥). (Because of the extended defini-
tions (5.3), (5.4); we do not need to restrict the domain to H*™(E) as in [17].)
Let

(6.8) V=clpr, D(4,), W=-clpr,D(4}),
closures in L2(H) (as in Proposition 1.2), and let
(6.9) X=9yV=0clyD(4,), Y=yW=clyD(4}),

closures in T H™*¥(E|,) (as in (5.22)); the restrictions of y to isomorphisms
keM,

from V to X, resp. W to XY, are denoted y, resp. y,: X and Y are analyzed
as follows:
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PRrOPOSITION 6.3.

(i) For each ke M, let Z, denote the (¢ — p,)-dimensional subbundle
of E|, defined as the kernel of the morphism B,,; let i, denote the injection of
® Z, into @ E[p; and denote by D the injective (pseudo-) differential operator

keM, keEM,
from @ Z, to @ E|p

keM, keM,

(6.10) & = (I — (®B")i,,,
it is of type (—ky,—1J),zen,: Then one has

(6.11) X=2'B"=d[[H™*¥2Z,).

keM,

(ii) Let ¥ denote the injective (pseudo-) differential operator from @ F;
to @E| jei

'Ex.
(6.12) Y = (AOF)-1 Bk,
it is of type (—2m + k + 1, —j)icy, ren,- Then one has

(6.13) Y=YI[H™YF,).

jeM,

Proor. (i) By (6.2), yD(4,) CZ°(B"). On the other hand, Z>(B%)C
CyD(4,), since, for given ¢ € Z2»(B"), we can always find « e H2™(E) with

yu=¢ vu=—C1Blgp;

such functions % satisfy (6.2). Since Z2»(B) is dense in Z°(B®), it follows
that X = Z°B,,). The second identity in (6.11) was proved in [17, (1.34)].

(ii) For the determination of Y, we have by Green’s formula (5.6)

(6.14) D(4}) 2 {ve Hm(E)|{Agu, 0v) = 0 for ue D(4,)} ;
(6.15) D(A}) C {ve D(A,)|{#ou, ov> = 0 for ue D(4,) N H*(E)} .

This implies, by use of (6.5), that (I — CB)*#A*gv=0 for ve D(A}) or
more precisely

Zw((I — CB)* 4*) C oD(A}) € Z°((I — COB)* £*) .
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The range space @ E|,for the (pseudo-) differential operator (I — CB)* A*
keM
has so large fiber dimension that this operator will usually not be surjective.

However, we showed in [17, Section 2.4] how the operator can be replaced
by a surjective (pseudo-) differential operator B’ with smaller range space
(B’ defining a normal boundary condition adjoint to the given one); and this
we can treat as in (i). The calculations of [17] imply in particular (cf. [17,
(2.48)])

(A0¥)—1 Bk 1‘1’ H’H(Fj) c 'y_D(A:) C (Aork)—1Bu1* H H"“"“H(Fj) ,

JEM, JEM,

from which (6.13) follows, since [T H**¥(F,) is densein T H*""+}(F,). Q.e.d.
JEMy jeM,

By [17, Lemma 1.12], @ has the left inverse

(6.16) DV = pr, (I + CBY),

where pr,. is the orthogonal projection of @ E|, onto @ Z,; so we have
keM, keM,

(6.17) PVPp=1I, and PP Vp=¢ for peX.

¥ has the left inverse

(6.18) W1 — 11k 401%

so that

(6.19) YeoW—=71, and PY¥Pvyp=9y for ye¥.

In particular, we have now found isomorphisms

(6.20) 7 1@: T[TE*¥Z,)~V, with inverse -0y ;
KkeM,
(6.21) v ¥ TTH™F,)x W, with inverse ¥y ;
jeM,

the operator in (6.21) has the adjoint

(6.22) Py Wz [TH™HTF)).

J€EMy

We use these to represent 7' by an operator from HH""‘*(Z,) to
H H am—j—% ( F,- ). kEM,

jEM,
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THEOREM 6.4. (Assumption 5.1.) Let A, defined by (6.7), correspond to
T:V — W by Proposition 1.2. Denote by £, the operator from T[ H*¥Z,)

kEM,
to T H*™ " ¥F,) induced from T:V — W by the isomorphisms (6.20) and
jeM,
(6.22), i.e.,

D(L,)= &~y D(T),
L= Py Ty; D,

or in other words
(6.23) (Tv, w) = <L, DVpv, P-Vypw)  for ve D(T), we W.

Denote by L the pseudo-differential operator (continuous from [[ H*¥Z,)
to TTH7H(F,)) defined by ke,

jeM,

(6.24) £=—(B+ BuP,)d.

Then L, is exactly the restriction of £ with domain
(6.25) D(e) = {pc [T E*HZ)cpe TT B HF).
kEM, JEM,
Proor. Let weD(4,) and we W. Let ¢ = @ Vyyu and y= P Vyw
Then (cf. Proposition 5.4)
(T, w) = (Au, w) = {uu, yw)
= (AHpu— P, ,yu), (A% B1i*y)

(duality between T[] H**(E|,) and ] H**(E|,)

kEM, keM,

= (Bllyy — B“Py,,yu, L")

(duality between [T H* " ¥F,) and T[H "+ (F))

jeM, jeM,

= {(—BYyu—B1P, yu,y) (using (6.2))
=<{— (B + BuP,,) Dy, y)
= <Ly 9> .

This shows that £, acts like £, and that, when @ € D(L,), Lo € T[ H*™*¥(F,),
80 C holds in (6.25). jeu,
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Conversely, let pe ] H™* 2, with Cpe ] H*™*¥F,. Then 5=
kEM, jEM,
= A 01 Lp belongs to [T H"**(E’]r), in view of the types of the operators
keM,

involved; and ®¢ belongs to [ H™*}E|,). By Proposition 5.4, there ex-
ists weD(4,) satisfying kex,

yu=90p, pu=n.

Here yu e X, so B®yu = 0. Moreover, since uu = A"(vu — P, ,yu), we have
that

vu— P, yu= (A")"1n= C1fp
= (1(—B"—BUP, )yu
= — (11 B10 YU — 0113111)7"7,“ ,
and thus

Bll YU — _Bll 011 Blﬂyu_ Bll CllBlle.v;yu + Blle.vyu —_ BlOy/u .

Then % e D(4,), which shows the inclusion 2 in (6.25). Q.e.d.

Any operator obtained from 7': V — W by replacing ¥V and W by spaces
isomorphic to them, will be called a representation of T. In special cases,
e.g. when X = Y, it will be convenient to use other representations of T
than €,.

COROLLARY 6.5. When X = Y, define the representation M, of T by

(6.26) M= L, oY [T H (R, - T B 4T, .

jeu, je—1

It is the restriction of the pseudo-differential operator in @ F; of type (— 2m +

+ k + %’ - f’ - %)Mceu, el

(6.27) M= — (B + Bllem)(AOI*)—lBll*

with domain

(6.28) -D(‘ll) — {¢P e H H_z'”““(F;)[J(p e H Hzm—i—i(Fj)}
jeMy JeM,

and it satisfies

(6.29) (Tv, w) = { M, P Vy0, VV90y . all veD(T), we W.



PROPERTIES OF NORMAL BOUNDARY PROBLEMS ETC. 39

Proor. Compose £, to the right with the isomorphism @-VY,
For the case where X C Y, we shall make do with

COROLLARY 6.6. Assume that X CY. Then for ze D(T)N X,, one has
(6.30) (T2, pry2) = (— P* £ C*(B® + B1P, ) Dp, ¢>

(duality between ] H*}(Z,) and T[] H*¥(Z,)), where p = ®-Vyze D(L,).
reM, xeM,

ProOF. When ze D(T) N J,., pryz= (y,) 'yz€ (y) ¥ = W (cf. (5.15)).

By Theorem 6.4 we have that D(£,) = ®~VyD(T), and that, since X C Y,

(T=, pré 2) = (£, P Vyz, Py pr; 2>
= (£, P Vyz, Py
= (@ P, P-n Y2, @(—1)yz>
= (P*¥*,9, )

where Q*Y*f, = — Q* A" C1Y(B* + B P, ) D, by (6.18) and (6.24).

Concerning the generality of £, we have the following important observa-
tion

PROPOSITION 6.7. Given a system {F},, of 2m vector bundles over I" of
dimensions p;<q, and given two mormal (pseudo-) differential operators B
and B of types (— Ky —§),xen,s from @ El|p to @ F; (e=0,1). When BY

keMg jEMg
runs through all pseudo-differential operators from @ E|p to @ F; of type
kEM, I5'A
(— &y — §)sesyxen,» then L (derived as above from A, defined by the boundary

condition (6.7)) runs through all pseudo-differential operators from @ Z, to
@ F; of type (—k, —j)jeu,.keu,' kelts
jEMy

Proor. € is derived from B1° by (6.24). Conversely, when £ is given (of
the above mentioned type), a solution B1° of (6.24) is

B — — BuPy ,— 7)ot VI

Note however that the £ obtained when B! runs through strictly diffe-
rential operators, form a special subclass of the pseudo-differential operators
of the mentioned type.

We shall now prove a general theorem concerning existence, uniqueness
and regularity.
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THEOREM 6.8. (Assumption 5.1). Let A, be the realization defined by (6.7)
and let £ and £, be the operators defined in Theorem 6.4, cf. (6.24), (6.25). Then

10 dim Z(4,) = dim Z(£,) .
20 The ranges of A, and £, in L¥(E), resp. in T] H*XF,), are simul-

jeMy
taneously closed, and they have the same codimension.

30 Let t>0, 0<s<t—+ 2m. A, satisfies
(6.31) ueDA,), AucH!E)=>ucH'(E),
if and only if L satisfies

6.32) pe[TH™*%Z,), CLopellH"™ " 4F,)=>9ec][l]H*¥Z,.

kEM, jEM, kEM,

ProOOF. 10 and 2° are immediate consequences of Proposition 1.4, since £,

is a representation of T'.
To prove 3°, let us first assume that (6.31) holds. Let ¢ € [ H*%Z,)

keM,
with g e H**™#¥F,). We shall construct » e D(4,) so that (6.31) can
jeMy

be applied. To do this, let v be the solution of
(6.33) A'Av=0, ypyv=0, rw=Cltyp,

it is a Dirichlet problem for the strongly elliptic operator A’A, clearly the

solution is unique.

o1 Lpe[[ H*** ¥ E|,) implies v e H*2m(E), by an application of Propo-
jeM,

sition 5.2. Furthermore, let 2= 9,;*@Pp. Now u = v 4 z satisfies

yu=yz= Ppec X = Z°(B"),
and
Bilyy = Bli(pp + yz) = B11 (1L + BuP, yz
= —BYyu—B“P, yu+ B'P, yu
= —BYu,
so we D(A,;). Moreover, Au= Ave HYE). Then by (6.31), € H*(E) and,

since v € H***»(H) and s <t + 2m, 2 = 4 —ve Z}(E). Thusfinally p= D" Vyze
e[TH*%Z,). This shows (6.32).

kex,
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Conversely, assume that (6.32) holds. Let we D(A4,) with Aue HYE).
Then pr,u = AJ'Aue H***»(E) by Proposition 5.2, so furthermore uu=
A%y pr,we [ H+*¥(EB|,) by (5.4) and (5.20). Let ¢ = @Vyu, so yu=

keM,

= ¢¢. Then
fp=—B'yu—B"P, yu= B (u—P, yu)

= BU (A" yy € H Ht2m—i—¥(F,) ,

JEM,

in view of the types of the operators involved. By (6.32) it follows that
pe] H*+%Z,), and hence yu= Ppec] H*}E|;) and pr,u=y;'yuc

kEM, keM,

€ Z,(E). Since s<t+ 2m, = wu,+ u, € H'(E), which shows (6.31).

REMARK 6.9. We have not bothered to give an « abstract » version of
the result in 3°. Let us just mention that the argument from (6.31) to (6.32)
generalizes to all closed 4, where as the other direction only holds under
certain assumptions on 7.

COROLLARY 6.10. A, is the realization of an elliptic boundary value pro-
blem (3) if and only if L is elliptic (as a pseudo-differential operator of type
(—k — Dsenyxen,). Then dim @ Z,= dim @ F;, i.e.,

kEM, jeM,
2P, =mg;
jEM
and
(6.35) DL, =[[H™+42Z,) .
kEM,

The «reduction to the boundary » in the above theorem is different from
those introduced in Hérmander [18] or Seeley [25], where the involved vector
bundles over I" have dimension 2mg or more. An advantage of our theorem
is that it keeps track of the dimensions of the kernel and the cokernel indivi-
dually (cf. 1° and 2°), not just of the index. Otherwise, our statement 3°
resembles Hormander’s characterization of regularity in [18, Theorem 2.2.3],
which treats more general (non-normal) boundary conditions. The strength
of the present theory rather lies in its ability to treat semiboundedness and
spectral problems, as will be shown in the following sections.

() i.e., A5 is a Fredholm operator satisfying (6.31) with s =t + 2m, all ¢ >0.



42 GERD GRUBB

7. — Semiboundedness and coerciveness.

‘We shall now characterize various inequalities. The weakest one is defined
as follows:

DEFINITION 7.1. A realization 4 of A is called weakly semibounded if
there exist ¢ > 0, § € R such that

Re ¢“(Au, w)<c|u|?, for all ue D(A)N H*™E).

Note that 4, is always weakly semibounded, simply because A is of
order 2m. Furthermore, a realization must be weakly semibounded in order
to be symmetric (i.e., Rei(4du,w)=0) or selfadjoint, or satisfy any of
the usual coerciveness inequalities (for an s € [0, m])

(7.1) Re(du, ) >ec|ull—Alul, we D).

Weakly semibounded A, were characterized in [17], from which we quote
some results:

THEOREM 7.1. Let A, be the realization of A defined by (6.7). The fol-
lowing statements are equivalent:

(@) A, is weakly semibounded.
(B) (I —C®B®)* AN — C11B1Y)=0.
(¢) XCY
[i.e., Z°(B%) C (An%)71 Bux [] H-smisHi(F)]

jeM,

(d) There exists ¢ > 0 such that |(Au, v)| <c|%|m|v|n for all w € D(A4,) N
N H*(E), all ve H™E) with B*yv=0.

For the proofs, see [17], Theorem 2.4, Remarks 2.5 and 2.7, and, for (¢),
Lemma 2.8, (2.18). A further analysis of (b) and (¢) leads to

THEOREM 7.2. 1° When A, is weakly semibounded, then > p;>myq.

jeM

20 When A, is weakly semibounded, then > p;= mq holds if and only
jeM

if X= Y, and if and only if A} is weakly semibounded.

30 Let > p,= mq. Then weak semiboundedness of A, is equivalent
jeyM
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with
() X=Y

[i.e., Z°(B%)= (A"*)~1B11* H H—2m+.’i+*(F’.)] .

jeM,
(f) X2 [i.e., BO(AM)-1B1x= 0],

40 For any given B (or B) there exists B (resp. B®) so that (e) holds;
such B (resp. B®) are determined up to a (pseudo-)differential isomorphism.

For proofs and further details, see [17], Theorems 2.11, 2.13 and 2.15,
and Corollaries 2.14 and 2.20.

The condition  p,= mgq is usually assumed in the study of boundary
jeM
problems. It assures us that dim @ Z,= > (¢—p,) = D> p;= dim @ F},
keM, kEM, €M, jea,
which gives the best chance of having both existence and uniqueness for

the boundary problem (cf. Theorem 6.8). When X = Y, we shall of course
use the répresentation M, of T introduced in Corollary 6.5.

Selfadjoint A, clearly satisfy > p;= mg, since for those, both 4,and A3
are weakly semibounded. The proof of [13, Corollary 4.3] easily generalizes
to give

THEOREM 7.3. Let A, be the realization of A defined by (6.7). Then A, is
selfadjoint if and only if (i) - (iv) hold:

(i) A is formally selfadjoins.
(i) > p,= mq.
jEM
(ili) BOO(JeOI*)-—lBll*___ 0 .

(iv) #, defined by (6.27), is formally selfadjoint, and T] O° (F,) is dense
in D(A,) (cf. (6.28)) in the graphtopology. jeiy

In particular, the density requirement in (iv) is satisfied if 4 is elliptic
or subelliptic.

We shall now restrict the attention to strongly elliptic 4, to which we
shall apply the results of Section 3, in the same manner as done for the scalar
case in [13]. We assume

ASSUMPTION 7.4. A is strongly elliptic, and a constant has been added
so that, with ¢, >0,

(7.2) Re(Au, u)>cn|u|2 for all ueD(A4,).
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Then A"= }(4 4 A’) is selfadjoint elliptic, and the operators 4,, 4,
A, A:,, A:, A;, Ag, A7 and A7 satisfy the assumptions of Sections 1 and 3.

The following two statements are immediate generalizations of [13,
p. 60-61]

DEFINITION 7.5. The quadratic form g(g, ¢) on y[J, N K] is defined by

(9, 9) = ReCA(y)) ™' , DT, (y)) ') -

Recall from [13] that g(¢, ¢) <0 for all ¢. Recall from Lemma 3.3 that
k,Nnk,=3k,N¥kK,, and D(4,) N DA = D(4,) N D(4)).

PROPOSITION 7.6. Denote by Q the pseudo-differential operator (cf. (5.18)-
(5.19))

(7’3) Q = _P;,x' + % ['Py,z + P;,z']
= }[— (A — Jk“’*)P;', + _feolpy.' _ AIO*P;”] ,

it is of type (—ky —2m + 1+ ) 4ew,r For @ep[D(A) N DA]], Qpe
eI HHY(E|;) and

jeM,

(7.4) q(p, ) = {Qop, 9>,

duality between T[] H#*¥(E|p) and T] H-Y(E|y).
Now we find /e fexts

THEOREM 7.7. (Assumption 7.4) Let A, be the realization of A defined
by (6.7). Let K be a Hilbert space and U a linear set, satisfying:

(7.5) H}E)CKCLXE) (algebraically and topologically)
(7.6a) DA,)CUCKENX, (algebraically)
(7.6D) yDA,) NyU  is dense in X. (%)

Lot Kug= O Vy(ENK,NTV) (cf. (6.8)-(6.11) and (6.16)-(6.17)), and pro-
vide K with the norm

(7.7) lplep= (v Pple for peKy.

(*) Equations (7.6a-b) ensure that K and U do not impose extra boundary
conditions.
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Then there exist ¢ >0, AeR so that
(7.8) Re(Au, u)>cl|u|t—A|uly for all ue DA)NT,

if and only if (i) and (ii) hold:
(i) 2p5>mq and (I — C®B®)* A — C11B1) =,

jEeM

(ii) There exist ¢’ > 0, A’ €R, so that for all p € D(L,) N D V(yU N X)

(7.9) Re(Xg, @) + 0(Pp, Pp)>0' |9 ze— At [t rew,;
here 3. is the pseudo-differential operator

(7.10) K= —@* A (1B + BuP, ),

and D(L,), defined in Theorem 6.4, satisfies

(7.11) D(t) = {pe [T E-HZ) Ky [] B2} .

keM, kM,

When —A1>0 (resp. >0) in (7.8), — A’ may be taken > 0 (resp. >0)
in (7.9), and vice versa.

Proor. We shall apply Theorem 3.6. Recall that pr,= (y,)~'y and

pr,= y;'y, so that ypr,u=yppr,u=yu for uek,N¥k, (cf. Proposi-
tion 5.2), and note that D(4,)C U implies (U N Z(4,)) =yU. So

¥ o1 (D(T) N U) = ¢(D(T) N U) = yD(T) N y(U N Z(4y))
=yD(T) NyU=yD(4,) NyU
which is a dense subset of X (cf. Proposition 6.3) by (7.6b). Thus

prp (D(T) N U)S W<>yD(A) NyUC Y <>XCY.

By use of Theorems 7.1 and 7.2, condition (i) of Theorem 3.6 then takes the
form of the present condition (i).
Concerning (ii), we note that
& (yD(T) N yU) = -y D(T) N P-(yTU N X) =
=DE,)N PV (yUNX),
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by Theorem 6.4 and (6.17). Then, using Corollary 6.6 and Definition 7.5,
we have for 2ze D(T)N U, o = O Vyz,
Re[(Tz, pré 2) + {4 pr; 2, pr; pr; 2]
= Re{— §* A" 0*}(BY + B1P, ) Dy, p> + q(Dp, Dp) ;
moreover, by (7.7),
lolee= 1D Pole= 1)) v2lx= lpri 2|y .

We also have, with positive constants ¢;,

[prizlo<er]yz| a4 = G 199 2a- =z )

<6y "mr"‘}(z;) <o, | Py "mr*"}u] Te)
<04"prz'z"0 ’
using various isomorphisms accounted for in the preceding sections. Thus

condition (ii) in Theorem 3.6 may be formulated as the present condition (ii).
The statement of Theorem 3.6 then implies the statement of Theorem 7.7.

When UCD(A]), (7.4) yields more explicit statements, for example:

COROLLARY 7.8. Let A, be as in Theorem 7.7; let Hy(E)C K C L*E)
(alg. and top.) with D(A,) N H*™(E)C K (alg.), and le¢ U= K N D(A}).
Then (7.8) is valid for some ¢ >0, A€ R, if and only if (i) and (ii) hold:

(i) X pi>mq and (I — C®BO* A (] — C1B1)=0.

e

(ii) There exist ¢’ >0, A'€R such that

K+ D*QD) g, @) >¢' |l llszqs - ”¢"?—k—ﬂ.bﬂ{°

for all p € D(£,) N\ PV (yU N X) (ef. (7.3), (7.7), (7.10-11)).
In the case where > p,= mq, we may use ¥ instead of @, and # enters
jeM
in the formulae instead of £, which gives simpler calculations (cf. (6.12),

(6.18) and Corollary 6.5).

COROLLARY 7.9. Let A,, K and U be as in Corollary 7.8, and assume in
addition that > p;= mq. Then (7.8) holds if and only if:

jeM
(i) Boo<£o1*)—1Bn* =0.
(ii) There exist ¢’ >0, A’ €R such that

Re{(A + V*QF) v, v) >0 |9 5o — X ¥ cambsriven,
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for all ye [ H2~+(F,) NP (pUN X) for which My ] H™¥F,);

JEM, JeM,

here [9le,= 105 Ppl 5, and

v/ g (A01¥)~1 B11¥ M= — (B B“Py.,) .,

Consider the special case where K = H*(E), s € [0, m]. (Welet U= H?*"(E)
for simplicity; more general choices are covered above.)

THEOREM 7.10. (Assumption 7.4). Let A, be defined by (6.7) and let
K = H*E) for some s € [0, m]. Then there exist ¢ >0, A€ R such that

(7.12)  Re(dw, u)>c|u|>—A|u]; for all ue DA, N H*™E),

if and only if: Theorem 7.7 (i) holds, and there exist ¢' >0, A'€R so that
for all p e T] H*»*¥Z,)

ked,
(7.13)  Re((K + @*QP) @, @) > ' |9 ps-pberr, — A |9l ia-y.ren, -
In particular, (7.13) holds with s = m if and only if

(7.14) *(K) 4 *(F)* + 26%(D*QD) >0 on S(I"

(the cotangent sphere bundle); in that case, D(A,) C H*™E). (If 3 p;= mg,
A, is then elliptic in the sense of Corollary 6.10.) jex

PROOF. Ky= @-Vy(H'B)NK,NTV)= D Vp(X™E)NV) with the
norm ]|¢|]K¢= 122 P, = |9 lt-t—3.1er,- When s=m, (7.13) means that
5 + D*QD is strongly elliptic (both terms are of type (m —k — %, —m +
+ 3§+ %), 4ex,)» Which is equivalent with (7.14) by a well known result of
Hoérmander, Lax and Nirenberg. Since ¢ is nonpositive, (7.14) implies ellip-
ticity of Jo = @*We1*E, so that Lo e [] Ht+*m—+¥(F,) = Ko e [ H**¥(Z,) =

M, keMy

=>g@e[[ Ht2m+¥Z,) for all teR. Theorem 6.8.3° then shows that
keM,

D(A,) S H*E); in fact (6.31) holds with s=1%-+ 2mforall¢>0. If > p,=

= myg, L itself is elliptic. Q.e.d. el

The inequality (7.12) with s=m is often called Garding’s inequality.
In [17], we showed how Theorem 7.7 (i) complements the sufficient conditions
of Agmon [1] and de Figueiredo [8] for (7.12) (formulated by sesquilinear
forms) for the case of differential boundary conditions. For s= m—},
Fujiwara treated (7.12) for a special class of boundary conditions in [9];
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and Melin gave a complete discussion of (7.13) in [22] for the scalar case,

i.e.,, > p,=1. Results seem lacking for s< m —} and for systems.
jeM,

In each of the above results, — A may be taken > 0 (>0) if and only if — A’
may be taken >0 (>0), cf. Theorem 7.7. For s= 0, Theorem 7.10 gives
a statement on lower semiboundedness; however, Corollary 3.8 leads to the
sharper result:

COROLLARY 7.11. (Notations of Theorem 7.7.) Let D(A,)C UCX,, with
yD(A,) N yU dense in X. There ewists p€R so that

(7.15) Re(Au, w)>ulu|; for all ue DAYV U,

if and only if: Theorem 7.7 (i) holds and there exists u' e R so that for all
peDE,)N PV (pUN X)

(7.16) Re<Kp, 9> + q(DPp, Pp)>p’ l[']’“z—k—}).keu. .

Here . may be taken > 0 (>0) if and only if u’ may be taken > 0 (>0). (Simpli-
fications as in Corollaries 7.8-9.)

REMARK 7.12. When n=1, D(4,) = H*(E), and Z(4,) is finite dimen-
stonal. Then Theorem 7.7 (i) alone is necessary and sufficient for lower semi-
boundedness (7.15), and when it holds, A4, satisfies Garding’s inequality
(7.12) (without requiring (7.14)).

8. — Perturbation theory; the negative spectrum.

The results in Section 7 were qualitative, in that only the signs of the
constants ¢, A, ¢/, I’ were discussed, not their values. More precise evalua-
tions require, among other things, that one fixes the norms in the various
Sobolev spaces and keeps track of the various isomorphisms in an exact
way. Similar efforts have to be made if one wants to use the formula
A1= A;‘ + T¢V in Proposition 1.4. For this, it is important to choose a
representation G of T that is derived from T by isometries. We shall show
how to do that, and thereby give a key to the application of perturbation
theorems, for selfadjoint A, (with a remark on the non-selfadjoint case).
We give one application, namely to the study of the negative spectrum, by
use of the results in Section 4. (In the construction of G, the compactness
of the manifold £ plays no essential role, and could be replaced by uniform
bounds on the symbols; the calculations are local. However, our application
to spectral theory is concerned with the compact case.)
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Assume in the following that A is formally selfadjoint satisfying Assump-
tion 5.1, and that A, is a selfadjoint realization defined by a boundary con-
dition (6.7); such realizations are characterized in Theorem 7.3. We shall
need two auxiliary pseudo-differential operators R and 8 in I' (R was de-
scribed for general elliptic A in [13, Example 6.3]).

PrOPOSITION 8.1. For all 2, 2,€ Z(4,),
(8.1) (2 21) = {Ryz, 21
(8.2) (4512 1) = {Syz, yz)

(dualities between T H+H(EB|y) and T H-**(E|y)), where, for € T] H*¥(B|p),
kEM, keM, keM,

R and S are defined as follows:
(8.3) Rep= A,

where v is the solution in J:°(E) of

(8.4) Aw=0, =0, yAv=9;
and
(8.5) S = Ayw,

where w is the solution in JCN°(E) of
(8.6) Aw=0, yw=yAdw=0, yA*w=9¢p.

Here, R is a strongly elliptic selfadjoint pseudo-differential operator in
@ Bl of type (—k— 3%, j + 3),.1en, POSItIVE With respect to the norm 9 ]l (—k=ty.xe ¥}

keM,
and 8 is, when A satisfies Assumption 7.4, a strongly elliptic selfadjoint pseudo-

differential operator in @ E|p of type (—k—3, 2m + j + }),4cn,, DOSItIVE

kEM,
with respect to the norm |@ | sy ren, «

Proor. Note first, that for any n e N, the boundary value problem
(8.7) Aru=1Ff, yu=q,, YAu=@., ...,y A" U=, ;

is elliptic and uniquely solvable, since the solution % is determined by solving
a succession of Dirichlet problems for A.:

(8.8) Atyy=Up y YPUn1= Qu_yj e ; AUg= U, PU= @y,

4 - Annali della Scuola Norm. Sup. di Pisa
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where f= u,, 4= u,. Denote by y" the Dirichlet boundary operator for A",
then the pseudo-differential operator over I' defined as follows (compare
Proposition 5.3)

P;:'{y,y pyan-yt VPO {0, L pAnI0} for ve Zia(E)

is elliptic and invertible. In particular, we may define

L] 3 0
(8.9 Ro= 2 P o (Pl ) )
and
0
(8'10) 8= A °P;:.v ° (P;". {y, v4. yA’))_l o0
1

which are pseudo-differential operators in @ E| of types (—k— %, j + 1), 4cn,

keM,

resp. (—k—13%,2m +j + §),1en,; Now let ¢ eI H*4EB|), and let z=

xeM,
=y @. The solution of (8.4) is exactly v= 4.2, and we find for any

2, € Z(4,), by use of Green’s formula
(2) 21) = (4o, 2,) = (4v, 21) — (v, Az)
= (A", y2;) = (R, y21)
= (Ryz, y21) .
Then R satisfies (8.1); and since (Ryz, y2)> = [2[§ = | V2] (—x-ty.rew,» We see

that R is selfadjoint strongly elliptic and positive as indicated.
The solution of (8.6) is exactly w= A 'v= A4 %%, and we find for any

2 €Z(4,)

(A;lzy ) = (Aw, 2,) = (Aw, 2,) — (w, 42,)
= (A", p2,) = (S, y21> = {Syz, yz) .

Thus 8 satisfies (8.2); and when A furthermore satisfies Assumption 7.4,
we have (Syz, yz) = (4%, ) = [ A ¥2]} = |2]2,, = |2 m-s—is.nem,» SO that the
selfadjoint pseudo-differential operator § is strongly elliptic and positive as
indicated.
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REMARK 8.2. By related considerations, one finds that G* (Definition 2.5)
satisfies

(8.11) (G#2y 2) = (AP}, — PyY)yz, y2)

for all ze Z(4,); here A‘"(P;.,—P;;") is an elliptic positive selfadjoint
pesudo-differential operator in @ E|p of type (—k—13,j + 4),1ew,- (See
also Remark 2.11.) keMo

The symbols of R and 8 are found by use of (8.9) and (8.10), cf. Propo-
sition 5.3 and the remarks there.
Introduce the notation for the bundle @ F,

jeM,

(8.12) @F,=Hm

jeu,

and choose a pseudo-differential isomorphism A of T[] HYF;)= L*F*)
onto T] H—2m++¥(F,). Recall the definition of ¥ from P;i;?)osition 6.3; ¥is
contikrelfll;ous and injective (with a continuous left inverse) from [ H—2m+i+}¥(F,)
into J[J H*}E|;). The composed operator A*¥*R¥A is j:;:en a selfad-
jointﬁggeudo-diﬁerential operator of order 0 in L2(F1). Moreover, for all

ye L} (F),

(A*¥P* RV Ay, y) = (R Ay, VAY) >0 [PAY |y rew,> | ¥ [ 22 »
so A*P* RW¥A is strongly elliptic and positive, and we may define
(8.13) E = (A*P*R¥PA)H

a selfadjoint positive elliptic pseudo-differential operator in F! of order 0
with ¢%(8) = o*(A*¥P* KR¥PA)~}, by the calculus of Seeley [26].

ProrosiTiON 8.3. The mapping
(8.14) J = y;WAE: L¥F) >V

i8 an isometry, with inverse J 1= E 1A 1Py = J*
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PrROOF. Let veV and let p= E-1A4-1¥Vyp. Then, since V CZ(4,),

[0 22w = (v, ©) = {Ryv, yv) = (R¥AEy, YAEy)
= (EAN*P* RYNEy, v)

= 55_25'/}, ‘w> = "'/’”i'(r‘) ’

which shows the proposition.

THEOREM 8.4. Let A be formally selfadjoint satisfying Assumption 5.1,
and let A, be a selfadjoint realization defined by a boundary condition (6.7).
Let T: V —V be the operator corresponding to A, by Proposition 1.2, and
let G, be the representation of T

(8.15) GCi=J*TJ .
Then G, is the restriction of the pseudo-differential operator in F* of order 2m

(8.16) C=EA* HAE,
with domain

(8.17) D(6,) = {p € L*(F")[Bp € LHF1)} .

Moreover, G, has the same spectrum as T, and its eigenvectors are mapped into
the corresponding eigenvectors of T by the isometry J.

Proor. By the isomorphism AZ from L2(F1) to [[ H2~++¥(F;), the

jex,
representation #,: [[ H-m+#+¥(F,) - [ H*¥F,;) (cf. Corollary 6.5) is
JEM, feM,
carried into the representation

‘Gl = EA* V”IAE

acting in L2(F); it clearly satisfies (8.15) and is the restriction of (8.16) with
domain (8.17). The involved operators have the following continuity pro-

perties
H (B ST Berriirb(,) 2> T H-4(F,) 225 goem(i)

jeM, JeH,

80 G is of order 2m. The last statement is evident in view of Proposition 8.3.
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Note that when G is a given selfadjoint pseudo-differential operator in F*
of order <2m, then the «realization » G, in L*(F*) defined by (8.17) is a sel-
fadjoint operator in L2(F!) when B has a certain regularity; in particular
if G is elliptic of order se ]0, 2m].

Let us collect some facts about the correspondence between A, and T.
(In 20 and 4°, cf. Remark 7.12 for n=1.)

THEOREM 8.5. Let A,, G and G, be defined as in Theorem 8.4.
10 For all w, ve D(4,)

(8.18) (Au, v) = (Au,, v,) + (CJ Uy, J71v;) .

20 D(A,) C H2(E) if and only if G is elliptic of order 2m. If G is elliptic
of order s€]0,2m], then D(A,)CH’(E).

30 dim Z(4,) = dim Z(G,) and codim E(4,) = codim E(G,).
In case dim Z(G,) = 0,

(8.19) AZl'=AJ' 4+ JB'J* pr,, .

40 When A satisfies Assumption 7.4, then m(4,;) >0, >0 or > — oo
if and only if m(G,) >0, >0 or > — oo, respectively. Here, when T is el-
liptic of order s € 10, 2m], m(G,) > — oo if and only if ¢°(B) > 0 on S(I).

Proor. 1° follows from (2.1). 20 follows from Theorem 6.8, carried over
from £, to the representation G,. 3° is an immediate consequence of Propo-
sition 1.4, in view of (8.15). 4° similarly follows from Theorem 2.12, together
with a wellknown result on elliptic pseudo-differential operators (described
e.g. in [12, Appendix]).

THEOREM 8.6. Let {F},, be any system of vector bundles over I' with
dim F;<q, and let B be any normal (pseudo-)differential operator from
@ Elpto ®F, (as in Section 6). Then {F},, and B": @ E,— @ F,;
keM, jeM, keM, feM,
may be chosen, uniquely up to isomorphisms, so that X = Y. (Similar state-
ment with B and B® interchanged.) Let G be any pseudo-differential operator
in F1= @ F, of order <2m, for which G, defined by (8.17) is selfadjoint

jeM,

in L2*(F1). Then one may choose B so that A, defined by (6.7) is selfadjoint
and corresponds to G as in Theorem 8.4.

Proor. Follows from Proposition 6.7 and Theorem 7.2.4°. (More details
may be found in [17, Section 2.3].)
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Concerning the negative spectrum, we have as a direct consequence of
Theorem 4.6:

THEOREM 8.7. Let A be formally selfadjoint satisfying Assumption 7.4.
Let A, be selfadjoint with 0 € o(4,) and A;* compact, and let G and G, be as
in Theorem 8.4. Then

10 N—(4,; oo) = N—(B;; o).
20 For any jeN with j<N—(G,; o0),

(8.20) A (A, <45 (By) .

30 N—(4,;t)<N—(Gy;t) for all t>0.

40 Let 8y= EA*P*SPAE; it is a strongly elliptic selfadjoint pseudo-
differential operator in F* of order — 2m, positive with respect to the norm |@|_:

For any jeN with j<N—(Sg+ B;Y),
(8.21) K5 (A4,)> 1 (8 + B2

Proor. Only 4° requires comments; it is shown by observing that for
veV,p=dJ 1

(8, v) = (470, ) = (Syv, yv)  (cf. Proposition 8.1)
= (SVYAEp, VAEp) = (Sypo, ),

80 8+ B is the operator in L2(F?) derived from the operator S, T-!
in ¥V by the isometry J—L.

‘We shall now prove a consequence of these theorems, that improves
the previously known asymptotic estimates on N—(4,; t). Let us first recall
the known results.

Let A be strongly elliptic and formally selfadjoint. When A4, is a lower
bounded selfadjoint elliptic realization of A, then the eigenvalues satisfy

(8.22) N+(A,; t) — o(A)tr/zm = Q(t—0im)  for ¢— oo,

with any 6 < } (Agmon [3]), and with any 6 < 1 if the eigenvalues of ¢°(4)-
*(#, £) are simple (consequence of Hormander [19] by standard arguments);
here ¢(4) is a constant derived from A like in (8.25) below. When A4, is not
lower bounded, the negative spectrum is also infinite and, according to a
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statement in Agmon [3], (8.22) holds and
(8.23) N“(AB; t) = O(t‘"‘“’“’") for t - oo

with 6 < %; it seems plausible that Hérmander [19] implies the validity for
0 < 1 when the eigenvalues of ¢°(4) are simple.
‘We shall show (independently of these assertions) that in fact

(8.24) N—(4,; t) <c(A,) tn=vizm | o(tn—D/2m)

for ¢t — oo, see the precise statements below. For this we shall use an estimate
like (8.22) pertaining to pseudo-differential operators on the compact mani-
fold without boundary I'; recall that it is of dimension n — 1 (which we assume
positive in the following). Hormander and Seeley proved

ProPOSITION 8.8. Let P be a strongly elliptic, selfadjoint pseudo-differen-
tial operator of order r > 0 in a vector bundle F over I'. Let

(8.25) o) = @[ dy [ Z4{o"(P)(y, )" dn,

r Ingl=1

where the sum is over the eigenvalues of o*(P)(y,n) at each (y,n)e S(I), the
cotangent sphere bundle. Then

(8.26) N+(P;t)— o(P)t=Dir= R(t) for t— oo,

where R(t) = O(t2Ir) if the eigenvalues of o*(P)(y,n) are simple (Hor-
mander [19]) and R(t) = o(t=") in general (Seeley [26]).
This is extended to the indefinite case as follows:

PROPOSITION 8.9. Let P be an elliptic selfajoint invertible pseudo-differen-
tial operator of order r > 0 in a vectorbundle F over I'. Let

.27 () = @y~ [y [ D35 (P)y, m)lordn,

I Inl=1

where the sum is over the positive, resp. over the negative, eigenvalues of a®(P)(y, n).
Then

(8.28) N*(P; t) — ¢*(P)t»Vr= R(t), for t— oo,

where R(t) = O(t"=2/r) if the eigenvalues of o°(P)(y,n) are simple and n > 2,
and R(t) = ot Vi) in general (v >1).
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ProOF. We use the calculus established in Seeley [26]. Let |P|= (P2,
it is a positive, selfadjoint, elliptic pseudo-differential operator in F' of order 7.
Let

(8.29) Pr=4}(P+|P|), P =4(P—|P|);
80 in particular

(8.30)  o*(P+) = }(o°(P) + o*(|P])), o°(P)=}(0°(P)—a%(P))).

Then P+ acts like P on the positive eigenspace of P, and is zero on the negative
eigenspace, whereas P~ acts like P on the negative eigenspace of P and is zero
on the positive eigenspace; similar statements hold for o°(P+)(y, %) and
o°(P-)(y, 7). Now choose 0 < a< 1 so that

P,=|P|+aP and P_,=|P|—aP

(which are positive elliptic) have simple eigenvalues in the principal symbol
if P has; this may be done since I" is compact. Then in fact

831) P,=(14+aPr—1—a)P~, P =@1—a)P*—(1+a)P,
and it follows from (8.25), (8.27) and (8.30) that

o(P,) = (1 + @)= GH(P) + (1 — @)= o~(P),
(8.32)

0_,(P) = (1 —a)a="/r g+(P) + (1 + a)3—" ¢~(P) .
Now (8.31) implies that for all ¢> 0,

(8.33) NH((1+ a)P,;t) = N¥((1 4 a)*P*; 1) + N((1 + a)(1 —a) P~; 1),
' NH(1—a)P_;1) = N¥((1—a)*P*;t) + N~((1 —a)(1 + a) P~; 1),

from which we obtain for P+:

(8.34) N+((1 +a)2Pt; t) — _N+((1_ a)*P+; t)
= N+((1 4a)Pa; ) — N+((1— @) P_,; 1)

i (n—=1)/¢ i (n—1)/r
=c(P,,)(m) —c(P_a)(m) R

= [6(Pa)(1 @)1=l — o(P_,)(1 — a)-nir]ten=ir 4 Ry (1)
. [(1 +a)2(1~n)/r_ (1 _ a)z(l—n)/f]c+(P)t(n—-l)/r +R1(t) y
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by use of (8.26) and (8.32); R,(t) is O(¢"=2/") or O(tV/r) according to whether
the eigenvalues of ¢°(P)(y,#) are simple or not. Now write

(8.35) N+(P+; t) = ¢+(P) =7 + g(t)
(where g(¢) is to be determined), and insert this in (8.34); then we find
g(t1 4 a)2) —g(¢(1 —a)~2) = Ry(t) for ¢>0.

By an application of Lemma 8.10 below (with ¢= (1 —a)~%(1 + a)* and
g = (n—2)/r resp. (n—1)/r), we conclude that

g(t) = O(t(n—ﬁ)/r) resp. O(t(n——l)/r) for t — oo ,

which proves the proposition for N+(P;t). The proof for N—(P;¢) is ana-
logous.

LEMMA 8.10. Let g(t) be a locally bounded function on [0, oof satisfying,
for some ¢>1, ¢ >0,

lg(et) —g@)|<h(®)t® for te[0, oof,

where h(t) is bounded. Then g(t)t™® is bounded. If h(t) -0 for ¢t — oo, then
g)t™*—0 for t — oo.

ProoF. Let k= sup{|g(t)|[te[0,1]}. Then for any se]0,1], any n€ N,
lg(ens)| < |g(c™s) — g(e™*8)| + |g(e~*8) — g(e"*8)| + ... + |g(s)]

<(ens)[h(c™18) ¢+ h(c*28) ¢+ ...+ h(s)¢c™] + K
<(c"s)*Mc(1—c )1+ k%,

where M = sup{|h(?)||t€ [0, co[}. This gives the first part of the lemma,
by setting ¢= ¢*s. For the second part, let s € ]0, c7*[, and define

M(p, s) = {sup|h(t)[|t>¢"s} ,
then for any positive integers p <,

lg(ens)| <(c»8)T [M(p, 8) 6™ (L — 6™+ " M(1 — 1] + k.
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For given ¢ > 0, we may choose p so large that M(p, s)c*(1—c¢91< }¢,
and choose n(>p) so large that ¢~ M(1—¢%) 1< Le¢, then the expres-
sion in [] is < & for s'>s. This implies the second part of the lemma, by
setting £ = ¢ns’.

Applying Proposition 8.9 to G, we now find the special consequences of
Theorem 8.7:

THEOREM 8.11. Let A be formally selfadjoint satisfying Assumption 7.4,
and let A, be a selfadjoint realization defined by a boundary condition (6.7).
Let G be the pseudo-differential operator in F* derived from A, by Theorem 8.4.
Assume n > 1.

1o If A, is elliptic (i.e. D(A,)C H*™H)),
then A, has infinitely many negative eigenvalues if and only if ¢—(B) = 0, and
then

(8.36) N-(A,; 1) <o~ (B)tnDiam 4 R(t)

where R(t) = O(1"=2/2m) for t — co if the eigenvalues of o°(B)(y, n) are simple
(in particular if > p;=1) and n > 2, and R(t) is O(t»V/2m) in general.

jeM,

20 If D(A,)C H*E) for some s € ]0, 2m[, then there exists a constant ¢ > 0
so that

(8.37) N-(4,;t)<ct=vs  for te]0, oo .

Proor. 1° follows from Theorem 8.5.2° and 4°, Theorem 8.7.3° and Propo-
sition 8.9, by using that T is elliptic in F* of order 2m. For 2°, we use that
D(A,)C H(E) implies D(G,) C H*(F1), so that, by a theorem of Paraska [23]
(improving results of Agmon [2]), N—(TG,; t) <const. {1/ which gives (8.37,
by Theorem 8.7.3°.

Note that we have as a special case of 29, that when G is elliptic of order
s€]0, 2m[, then

(8.38) N-(4,; t) <o~(B) 1~ R(t),

with R(t)= Q@ 2/s) or O(¢"1/5) as usual.
In the converse direction we find:

THEOREM 8.12. Let A be formally selfadjoint satisfying Assumption 7.4.
Let Bt (or B®) be given arbitrarily, and choose B*® (or B), so that X = Y.
Assume n >1 and let s€10,2m]. For any ¢ >0 we may choose B (pscudo-
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differential) so that the realization A, defined by (6.7) is selfadjoint with D(A,) C
C H'(E), and satisfies

(8.39) N—(4,; t)>ctmvs - O(t=2ls)  for t — o0,
and moreover, if s< 2m — 2m/n,
(8.40) N_(Am; 1) — clin—vls — O(t(n-—l)/o) for t—00.

Proor. Given s€]0, 2m] and ¢ > 0. Let P be an elliptic selfadjoint
pseudo-differential operator in F* of order — s, positive w.r.t. |¢|_,,, with
simple eigenvalues in ¢°(P)(y, 5), and with ¢(P~1)=e¢. Then S+ P is el-
liptic selfadjoint of order — s (since — s>— 2m) and positive in the above
sense, S0 we may define

B=—(8g+ P)7;
it is elliptic of order + s, so D(G,)= H*(F1), and
(8.41) Sg+B*=—P on LFY).
For A, (defined according to Theorem 8.6), we then get by Theorem 8.7.4°
A (Ap) > p; Sp+ BT = A (— P,
for all j € N, whence by Proposition 8.8
N=(4,;t)> N~(— P15 1) = otv=le - Q(giv=2h)

for t— oco. This proves (8.39).
Assume now furthermore that s< 2m — 2m/n; then (n—1)/s > n/2m.
By (8.19), (8.41),

A7 = A1+ JBMJ* pr,
= A;'— J8yJ* pr,— JPJ* pr,
= C—JPJ*pr,,

where the operator C is continuous from L2(E) into H2m(E), so that the eigen-
values satisfy p,(|C|) <const.j~?™» (Paraska [23]). The positive eigenvalues
of the nonnegative operator C,= JPJ* pr, satisfy

”—}-(01) = /,(,}"(P) ~ Gy :"-a/(u—l) for 7 > o,
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where ¢,= ¢ ¥, by Proposition 8.8. Since — s/(n — 1) > — 2m/n, a theo-
rem of Ky Fan [20] implies that

# (145%) ~ 6=/ for j— oo,
which gives

N-(4,; 1) <N+( 4,5 t) = qtv—Dls | (f(n—1ls)

Together with (8.39) this shows (8.40). (Similar arguments seem to lie behind
M. Gehtman’s estimate of positive eigenvalues for certain lower bounded
realizations of the Laplacian [10]).

Without doubt it would be worthwhile to scan the literature for further
useful perturbation theorems and apply them to the correspondence between
A, and G, by use of Theorems 8.5-8.7 etc.

ReEMARK 8.13. When A4, is a nonselfadjoint realization of a formally
selfadjoint A, and X = Y, we still have the key formulae (8.18) and (8.19),
to which perturbation theorems may be applied. When A itself is nonself-
adjoint, we get partial information from the formula, valid when D(4,)C
CD(A]) and X = Y:

(8.42) Re(dw, ) = (A u;, w;) + (C"J1uy, J1uy) ,
where G' is the 2m order pseudo-differential operator
G = EA*(M + P*QP)AE

in F* (A and E as in the text preceding Proposition 8.3, constructed relative
to A7), and J is the isometry J = (y;)*WAE of L*F') onto (y;)1X
(c LA(E)). (In fact, (B Juf, J- uf) = Re[(Tu;, ”Ic) + (Aug, pr; u))], cf. Re-
mark 3.7, from which G"and J are found by Corollary 6.5 and Propositions 7.6
and 8.3.)
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