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ON TWO-DIMENSIONAL REGULAR LOCAL RINGS

AND A LIFTING PROBZE1VI (1)

by PAOLO VILABREGA (2) 

Introduction.

In [10] and [11], in order to prove the existence of nonecellent regu-
lar local rings of characteristic 0, we showed that two classes of nonexcel-

lent one-dimensional regular local rings of positive characteristic p can be

lifted to characteristic 0, i.e. these DVB’8 are isomorphic with a quotient
ring R/pR, where R is a two-dimensional regular local ring of characteristic 0.

In the present paper we want to investigate the lifting problem for

in characteristic p &#x3E; 0 from a general point of view. ,

Precisely we consider a one dimensional regular local ring B of positive
characteristic p and prove that, if B contains a coefficient field .g and its

fraction field is separably generated over (where X is a suitable

parameter), then there is an isomorphism : B = where R is a two-

dimensional regular local ring of characteristic 0. Moreover R can be chosen
faithfully flat as an algebra over Zpz (ring of integers localized at the

prime p).
The translation of our lifting result into the language of Spectra shows

that it is strictly related with a lifting theorem for smooth schemes (see [7],
proposition 18.1.1.).

We remark also that our result gives a partial answer to a lifting
problem modulo p" for formally gmooth algebras, extending to the non-com.
plete situation results which are well known when the rings are supposed
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to be noetherian complete local rings (see [5], theorem 19.7.2 and remark
19.7.3).

To deal with our main preblem we need a few general results on
formal power series rings. In particular we have to consider the following

’ 

problem : let C be a discrete valutation ring, C its completion and Y an

indeterminate; if t is an arbitrary formal power series in C[[Y]] does t

belong to some non complete regular local ring R, with completion 
and containing 

Our positive answer, with an explicit construction of the ring R, has
applications both when (where R = field and X = indeter-

minate) and when C = complete discrete valutation ring with parameter
the prime number p. It must be observed that this last case is really a
key-point for our lifting.

The lifting result given in the present paper generalizes the main

result of [11]. Also the main theorem of [10] can be slightly improved by
means of properties that we prove here.

We are also able to produce a class of regular local rings of charac-
teristic 0 and equal characteristic, which are not pseudogeometric, genera-
lizing an example of Nagata (see [8], Appendix, example 7).

We wish to thank Michael Artin for some useful conversations on the

subject of this paper.

n. 1.

All the rings considered are commutative with 1.

A ring A, through the present paper, is a ring with a unique
maximal ideal, but not necessarily noeth,erian.

We start with a few general properties of local domains and 

LEMMA 1 : Let A be local dontain with fraction field L, M any
subfield of B = An M.

Then the following properties .are true :

a) B is a local d01nain domitzated by A ;
i-e a principal ideal of B then

PROOF: a) Let m be the maximal ideal of A. We want to see that

tn n B is the unique maximal ideal of B. In fact, if x is in B - m n B),
then x is invertible both in ~. and in M, hence in B.

q) Let x = ay, with y E A, be in JPA n B. Then y E A i.e.
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LEMMA 2 : Let C be any D VR with fraction field M and parameter a.
If E is a 8ubfield of’ M containing a, then R = L fl c is a DVR with para-
meter a.

PROOF: By lemma 1, a), R is a local domain dominated by 0.

By lemma 1, b), ~ce have: Therefore the maximal ideal
00 00

of R is principal. Moreover R C f 1 an C = (0), since C is a Zariski
1 

- 

1

ring ([2], chap. III, § 3, n. 3). This implies that R is a D VB with para-
meter a ( [3], chap. VI, § 3, n. 6, proposition 9).

REMA.R]K: Lemma 2 can be applied in the following situation : 0 =

formal power series ring in the indeterminate X over the

field K. Therefore, if F is any set of formal power series, then (F) n
nK [[ X ]] is a With parameter X and, of course, with completion .g [[X]].

We now give a few useful properties of two-dimensional regular local

rings.

PROPOSITION 3 : Let C be any DVB and Y an indeterminate. If L is
a sub,field of the fraction field of C [[Y]], such that then R =

= Z t1 regular local ring with c01npletion 0 [[Y]I.

PROOF: By lemma 1, a), R is a local domain dominated by C[[Y]].
Let now a be a parameter of C. We want to show that the maximal

ideal of R is generated by a and Y. Let x be an element in R but not in
00

(a, Y) R and suppose that x = I bn Yn. If bo = aco , 1 for a suitable co E 0,
n

says that x E (a, Y) B. Therefore ba must be invertible in 0 and x is inver-
tible in R.

Now we want to show that B is a noetherian local ring. For this

pnrpose, let’s first consider the. quotient field K = ClaO and the ring
C [~ Y ]]/a C [[ Y J] = g [[ Y J J. We want to see that BlaR is a DVR. But we
have: by definition of R. Therefore BlaB is a subring
of K[[Y]], with maximal ideal generated by Y and separated in its Y-topo-
logy. This says that is a D VR ( [3], chap. VI, § 3, n. 6, proposition 9).

Let’s now go back to R. To see noetherian property it is enough to
show that every prime ideal is finitely generated ([8], chap. 1, theorem 3.4).

Of course every prime ideal containing a is finitely generated; therefore
we can assume that P is a prime ideal such that a f 1.
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The image of 1P modulo aR is a principal ideal Yr (BlaR), where r is

a suitable integer ~&#x3E; 1 ; sue we can select b in 1P such that its image
modulo aR is Yr . Then we obtain the following inclusions :

If x E f) then x = bc~ + ad~ , where c, and d, are suitable elements

which implies:

It is now clear that, for each n, we can choose en and dn such that

Therefore we deduce the following inclusions :

Extending the ideals to 0 [[Y]] we obtain:

the last equality depending on the fact that 0 ([h]~ is a Zariski ring for

the aC [[Y]]-topology ([2], chap. III, § 3, n. 3).
Hence we have :

Therefore lemma 1, b) says that fl5 = bR.
So R is a local ring satisfying the following properties:

(i) R is noetherian;

(ii) the maximal ideal of R is generated by a and Y;

Therefore we deduce that R has completion 0[[YI] ([2], chap. III, § 3,
n. 5, proposition 11). Hence R itself is regular ( [9J, vol. II, chap. VIII, ~. 11).

A useful application of proposition 3 is the following key-result to

deal with our lifting problem :

THEOREM 4 : Let 0 be any DVR, Y an indeterminate over it8 completion
an arbitrary fort)ial power series in



791

Then there is a local ring R satisfying the following condition8:

+

(ii) R is regular with co?npletion 0 Y]]; J

(iii) R is the smallest ring satisfying (i) and (ii) (I.6. if 8 satisfiø8 (i)
and (ii), then B r- S).

Fitrthermore such a ring R is not C0filp16t6 and its fraction field is gene-
rated over the fraction field of 0 [Y] by t, ao, .,. ~ I....

PROOF: Let’s put: L = fraction field of 

By lemma 2, B is a D VR with completion C.

Now we consider the fraction field of B [Y, t], say K, and put : .R =

By proposition 3, R is regular local with completion C [[Y]J ; hence it

satisfies requirements (i) and (ii).
Property (iii) depends on the fact that a regular local ring R with
"- 

~ 

fraction field 2T and completion R satisfies always the following equality :

([8], chap. II, 18.4).
We want to show that B is not complete. But we know that K =

fraction field of R is contained in the fraction field of C [Y, t], which is a
- -

simple extension of the fraction field of while C[[Y]] has infinite

transcendence degree over polynomials. Therefore R C [[Y]].

COROLLÂ.RY: With notations of if t E C[[Y]], then there M
the local ring R such that :

-

(ii) R is regular with completion 0 [[Y ]J.
Moreover B i8 not the whole C [(Y]].

PROOF : In the present situation the ring R of theorem 4 has fraction
field generated by the unique element t over the fraction fleld of C [Y].

R is different from C [[Y]J, since C [[YJJ has infinite transcendence

degree over C [Y].
We give now a slightly more general result than the’ preceding corol-

lary, exactly in the form we’ll need for the lifting:
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THEOREM 5: -Let C be a DYR, Y an indeter1ninate, t a formal power
aerie, in C [[Y]] and 8 any regular local ring such that : 1

Then there i8 the 8malle8t local ring R 8uch that :

(ii) R is regular with completion 
Moreover the fraotion field of R is generated by t over tlae fraction field

of s.

Put : M = fraction field of S. Then .R = c [[Y]] t1 M (t) is a

regular local ring with completion by proposition 3.

The information on the ring R introduced in theorem 5 can be impro-
ved by the following

PROPOSIZIONZ s : With notations of theorem 5, let a be a paramotdr
for 0 and t the image of t modulo aC [[Y]]..Let-’s assume that t satisfies one
of the following conditions :

(i) t is transcendental over S and t i8 transcendental over BiaS;

(ii) t is integral over S and t is integral over SlaS, both having the
same degree over s and 81a8 

Then we have RlaR = the snialle8t D VR such that (SlaS) [t] C B a

[[Y]] and .R = ( %/1 °) [[Y]l.

It is enough to prove that R/a,R = ( C/czC) n (fraction field

of (SlaS) [tJ ).
Let now fig be in :8, with f and g in S [t~. If g is not in a C [[Y]] f1 R = aR,

then the image of fig is simply the ’quotient of the images, hence an ele-
ment of (ClaC) [[Y]J (fraction field of (SlaS) [t]).

Therefore we have to examine the case when g E aC [[Y]]. Since fIg is

a formal power series and f = (fig) g, also f belongs to aC [[Y]] and, ij
g = ar g’, with g’ 9 a C [[ Y ]], then f = where f’ could belong again to
a 0 [[ YI]. Moreover, if f’ really belongs to there’s nothing to prove,
since the image of fig is exactly 0. So we can assume that f = ar f’,
g = ar g’, where r is a suitable integer ~ 1 and both f’ and g’ are not in
aC ([Y ]].

It is easy to see that the image of flg is the same as the image of
since both the fractions are the same element in 0 uy]].
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Therefore we are done if we prove that f’ and g’ are elements of
S [t], i.e. if we prove that all the coefficients of f and g, as polynomials in
t over S, are in ar S.

We use induction on r. The step from r to r + 1 being obvious, let’s

investigate the case r = 1.

I) t satiates condition (i). The canonical images of f and g modulo
aC[[Y]] are 0, hence identically 0. This says that all the coefficients of f
and g are in fl S.

II) t satisfies condition (ii). Let s be the degree of t over S.
So every element of S [t] can be written as a polynomial of degree less than
8. Now, if f and g are in aC ][YJ], their images are identically 0, as above,
in case I) ; y but this says that all coefficients of f and g are in aS.

REMARK 1: Theorem 4 can be applied in the following situation: take
00

any fleld K‘ and two indeterminates X and Y. If t Yn is a

o

formal power series in g [[g, Y ]] ~ then theorem 4 says that t belongs to
the regular local ring

If the an (X)’8 are polynomials, then nK (t, X, Y).

REMARK 2 : In [8] (Appendix, example 7) Nagata produces a ring which
turns out to be an example of an equicharacteriatic regular local ring of

characteristic 0 and dimension 2 not excellent, not even pseudo-geometric
(Nagata wanted to investigate analytic normality only, but really it can be
seen that his ring satisfies also the properties now listed: for excellent

property see [10], final remark; for pseudogeometric property see below).
We recall shortly how to define this ring.

Take an arbitrary field K of characteristic 0 and two indeterminateo
00

X and Y. Then select a formal power 8aries w = Z an X" E K [[X]], tran-
1

scendental over polynomials. Now put :

where m’ = maximal ideal generated by 2~ Y,

Nagata proves the following properties :

(i) R is regular local with completion g [[~; Y]] ;

(ii) zR is a prime ideal of R,
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Therefore, if R is pseudogeometric, then is a pseudogeometric
local domain ([8], chap. VI, 36.1), hence it is analytically unrami6ed ([8],
chap. VI, theorem 36.4). But it is easy to see that

is not a reduced ring, since Y + w is nilpotent. So R cannot be pseudo.
.geometric.

We observe that every zn belongs to K (X, Y, z) n K [[X, Y]]; hence R

is simply the smallest regular local ring containing polynomials and z,
i.e. R=K(X, Y, z) n K [[X, Y JJ·

Theorem 4 is useful to generaiize Nagata’s example, i.e. to produce
a wide class of non pseudogeometric regular local rings of characteristic 0
and equal characteristic, according to the construction of the following

PROPOSITION 7 : Let .g be a field of characteristic 0, X and Y two
00

indeterminates and t = I an (X) non format power series in
0

K [[X, Y]] satisfying tlae following conditions :

1) t is transcendental over K (X, Y, ao (X), ... , a’n (X ), ...) ;

2) l = where z is a suitable elemen,t in K [[X, Y]] and r an integer
not less than 2.

Then the ring satisfies
the following conditions :

(i) B is regular local of characteristic 0 and dim6nsion 2 ;

(ii) R is not excellent, not even pseudoge01netric.

PROOF: (i) is a consequence of theorem 4, with C = 
As far as (ii) is concerned, let’~ prove first that tR is a prime ideal

(of course it is proper, because t is not invertible in K[[X, Y]]). Let’8
assume that (a/a’) (b/b’) = t (c/c’), where a, b, c a’, b’, c’ are in K[X, Y, t, ao (X), ...
..., an (X), ...] and all the fractions are in R. We deduce : c’ ab = toa’ b’.
Since t is transcendental over K [X, Y, ao (X), ... , an (X), ...], either c’ con.

tains the factor t or ab contains the factor t. If ab contains the factor t,
we are done, because either a or b contains t, i e. either a or b E tR. Let’,#

now suppose that c’ contains the factor t. Since clo’ is in K [[X, Y]], i. e.

c = c’ la, with hE K [[X, Y ]], c must contain the factor t either, for the unique
factorization in the regular local ring K[[X, Y]]. So we can assume that 0
and c’ have no common t factor, which says that c’ is not divisible by t.
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So we have just proved that R/tR is a local domain. If R is pseudo.
geometric, then BITR is pseudogeometric either ([8], chap. VI, 36.1), hence
it is analytically unramified ([8], chap. VI, theorem 36.4).

But it is easy to see that (RITB) _ ~ [[X, Y]]lzr K [[X, Y]] = ring
with nilpotent elements.

Since R excellent &#x3E; R pseudogeometric ([5], 7.8,3., (vi)), (ii) is proved.

n. 2.

The main result of the present section is a lifting theorem for one

dimensional regular local rings of characteristic p ~ 0.
It is well known that, if K is an arbitrary field of positive ebaracte-

ristic p, then there is a D V R C such that:

(i) C has characteristic 0 ;

(ii) the maximal ideal of C is generated by the prime number p ;

(iii) 
We’ll say that such a ring is a lifting of K.

Of course, if C is a lifting of K, also 0 (= p.completion of 0) is a

lifting of K. Therefore we can always choose a complete lifting of K (for
an effective construction of such a ring C, see [4], 10.3.1.).

We recall that, if A is a local ring with maximal ideal a coefficient
field K for A is a field satisfying che following conditions :

(i) i

(ii) K is isomorphic with A/m under the canonical map.
Of course a local ring A having a coefficient field K has the same

characteristic as its residue field.

Let now A be a local ring with maximal ideal m and characteristic 0,
while A/11t has positive characteristic p. We shall say that C is a coefficient
ring for A if the following conditions are satisfied:

(i) C is a complete DVR with maximal ideal generated by the prime
number p and C C A ;

(ii) C/p C is isomorphic with A/m under the canonical map.

DEFINITION 1: Let K be a field of positive characteristic p. A K-ring
V is a local ring aatisfying the following condition8 :

(i) g is a coefficient field for V ;

(ii) V i8 regular of ditnension 1.
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In other words, if ~’ is a parameter for V, we have:
vol. II, chap. VIII, § 12,

corollary to theorem 27).

DF,FINITION 2. : Let 0 be a complete D PR of characteristic 0 with

maximal ideal generated by the prime nuutber p. We say that a local ring U
is a C-ring if the following conditions are satisfied :

(i) 0 is a coefficient ring for U;

(ii) U is regular of di1nension 2.. .

(iii) U/p U is a k-ring.
In other words, there is an indeterminate -X over 0 such that :

to theorem 31 ).

DEFINITIùN 3 : Let K be a field of positive characteristic p and 0 a

cornplete lifting of K. We say that a C ring U is a 0.lifting of a K.ring V
if there is an isomorplcism of Y N Ul p U.

We are now ready to prove our main theorem :

THEOREM 8 : Let K be a field of positive characteristic p and 0 a com-
plete lifting of K. Let then V and B two satisfying the following
conditions :

(i) V a B ;

(ii) V and B have a common parameter X ; i

(iii) tlae fraction field of B is separably generated over the fraction
field of V.

Then, if V admits a C-lifting U, B admits a C-lifting R such that UCR.

PROOF : Condition (ii) says that V and B have the common completion
and the following inclusions are true :

We know that there’s a natural isomorphism : V. Let h an

element of U whose image modulo p is X. Then we have :

Therefore p and Y form a system of parameter for U and we obtain
the following inclusions: 

-
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Moreover we have the following commutative diagram (where the vertical

arrows means reduction modulo p) :

Put: k ( Y) = fraction field of V, k (B) = fraction field of B. Then

k (B) is separably generated over k (V), i.e. there is a transcendence basis

A of k (B) over k (V) such that k (B) is separable algebraic over k (V) (A).
Therefore it is enough to prove the theorem when k (B) is either purely

transcendental or separable algebraic over k (V).

STKP I: k (B) is purely transcendental over k ( Y ) and is a

transcendence basis for k (B) over k (V) such that k (B) = k ( Y ) (A).
Multiplying each element of A by a suitable power of X, we can assu-

me that A C B.

For each i E I, choose t; E C [[ Y]] such that ti = t; modulo p 0 [[Yj].
Then put : E = ·

It is easy to see that the are algebraically independent over U.
»

In fact, if ai ti = 0 is a relation of algebraic dependence over U, we can
1

clear any common factor pr and assume that a,t least one ai is not in p U.
But this mean that, reducing modulo p, we obtain a non trivial relation

of the t;’s over V.

Let’s now put :
L = fraction field S - L f1 c ([Y]].
By proposition 3 S is a regular local ring of dimension 2, with com-

pletion C i[Y]].
We want to show that S/ps = B.
First of all, is a D YR with completion K[[X]] containing both

V and A. Hence it contains also k (V) (A) f1 g [[~]] = k (B) = B.

So the only thing we have to prove is that B.
I,et’s remark that, if (ti y .... ) t,) is any Bnite subset of E, then Sn =

= C [[Y]] 11 (fraction field is a regular local ring with com-
pletion C [[Y]] and S is the union of all these regular subringø.

Therefore it is enough to show that B, for every choice of
the finite set (t, ... , tn).
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Since Sn = c ([Y]] ~1 (fraction field of S"_1 (tnJ ), we can assume, without
loss of generality, than n = 1, i.e. we consider the ring Si = 0 [[Y)J f1 (frac-
tion field of U [t]), where t is arbitrary in B.

But now the result is a consequence of proposition 7, since B contains
the smallest containing V and t.

STEP II : k (B) is separable algebraic over k ( V ).
Let’s introduce the following family .Z~ = ((R; ,111;))~ E 1 of rings :

if and only if R, is a regular local ring with maximal

ideal ttt; such that:

is a completion of Ri ;

F is not the empty family, since at least U E F. Moreover it is induc-

tive, i.A. the union of any chain in F is an element of F.

In fact, let G _ (... c Bi c Rj C ..,) be a chain in F.
Passing to the fraction fields, we obtain a chain of fields:

. Put: Then proposition 3 says that L f1 C [[Y]] == ,R’ is a

regular local ring with completion C [[Y]j. But it is easy to see that

B’ :::II: U G. In fact, if R; E G, then R; = L; n C [[Y]J C L n C [[YJj. Moreover,
if x E L f1 C [[Yl], then z E Lie n C [[ Y ] _ .R; , for i suitable.

Furthermore, it is easy to check that B.

By Zorn’s lemma we can choose a maximal element in F, say (B, n1).
Then B is an algebraic separable extension of R/pR. Let’s suppose

that B and select t in B but not in R/pR. Without loss of gene-
rality we can choose t integral over In fact, if t is algebraic, there
is always a suitable element c E R/pR such that c t is integral. Now, if

and 0 E BjpB, c t can’t belong to R/pR, since B is faithfully
flat over both rings being regular with completion K [[X]] (see [2],
chap. 1112 § 3, n. 5, proposition 9, and [1], chap. 1, § 3, n. 4, remark 2).

Let g [T] = T" pr-l ~- ", -+- cr be the minimal polynomial of t
over R/pR, i.e. g (t ) ~ 0 is a relation of integral dependence of degree as
low as possible; g (T) is irreducible over R/pR,

We want to show that it is possible to find an element t E C [[ Y]l and
and a polynomial f (T ) E R [T] such that:
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(i) f (T ) is monio and has image g (T) modulo p ;

(ii) t has image t modulo p ;

(iii) f (t) = 0.

First of all, let’s choose arbitrarily an inverse image x of t and inverse

images c,’8 of the c~’s (i == 1, 2,..., r).
Let’s now consider the following element:

Since t is separable algebraic over R/pR, the element

in surely different from 0.

Therefore we have:

where 8 is an integer ~ 0 and y is an invertible element of B.
Let’s select an inverse image y of y in 0 [[Y]]. We obtain :

where the are suitable element in C.

Now we replace c,-i by the following element:

obtaining :

where b is an invertible power series.

Therefore we can assume are chosen in such a way
that a = where 8 is a suitable integer ~ 0 and b is an invertible
element of 0 [[1’J].

14. della Stuola Norm. Sup. di Pita.



800

Let now h (T) be an arbitrary inverse image modulo p of g (T) (i.e. the
coefficient8 of h (T) are inverse images of the coefficients of g (T)). Since

g (t) - 0, we have : (.r)==2013 where gi is a suitable power .erie3. This

is true in particular if h (T ) is the polynomial Tr + el Tr-1-E-... + Cr_i T 
where or-, is selected in the preceding way.

Now we try to solve the following equation (in the variable T):

where the are unknown elements of 0[[YJ] to be selected in a suitable
way, submitted to the following condition : for every i, hi is a polynomial
in 0 [Y], whose degree is not larger than s.

00

If the preceding property is satisfied, Z jp" bn is of course an element
1

of 0 [[ YI], since C[[Y]] is radically complete, and also an element of 0 [Y],
00

because of the restriction on degrees. This says that ¿ p" bn belongs to R.
1

Hence, if we are able to satisfy the condition on degrees of the bilis, our
equation will have all coefficients in JR.

In order to solve the equation, we look for a root of the following
kind :

where the must be determined, under the unique condition that

a; E for each i.
00

Of belongs to C [[Y]], because C [[ Y]] is p-complete.
1

Moreover any element of C [[Y]] can be written in the preceding way,
if we allow the an’s to be arbitrary power series.

Substitution of t for T in our equation gives the following equality in

where the e¡’ 8 are polynomials in the elements at,..., a; , x with coefficients
in R.

Let’s put : 
-
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and choose :

Let’s now suppose we have determined the a;’s and the b;’a, for
every i  n. Then put:

and choose :

The inductive construction allows us to obtain a root t = x + pd of
the polynomial f (T) = T r + of. T r-1-+- ... + or, where c,-, is chosen as we

00

said above and or is obtained incorporating in the old or the term pnbn.
1

Let7a now consider the following ring :
W = smallest regular local ring with completion C [[ Y]]~ containing

both Rand t.

Such a ring exists by theorem 5 and contradicts maximality of R by
proposition 6. In fact W/p W is the smallest DVR with completion K[[X]]
coutaining both R/pR and t ; hence W%p W C B.

Therefore we conclude that R/pR = B.

BEMARK 1: In our proof we use strongly completeness of C. But the
proof can be carried over with an arbitrary D VR C in the special case

that k (B) is purely transcendental over k ( V).

REMARK 2: The proof of theorem 8 contains also the following useful
result on lifting of roots for separable polynomials :

Let K be a field of po8itive charaoteri8tic p and 0 a complete lifting of
- ..

then V be a K-ring and U a C-lifting of V. If t i8 an element of V
root of the monic 8eparable irreducible polynomial g (T) E V [T], then there are

an element t E U and a polynomials f (T ) E U [T J such that :
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(i) f (T) is monic and has image g (T) moi’ulo p :

(ii) t has image t modulo p ;

Moreover, from the proof of theorem 7, it follows that all the coeffi-

cients of f (T ) can be chosen arbitrarily, except Cr-l and which are

submitted to conditions.

REM.1RK 3 : If we take V = then theorem 8 gives rise to the

following special cases:

(i) B = any D VR which is algebraic over i.e. B = any
DVR between and its henselization hK [Xlx) (= algebraic closure

in its completion see [8], chap. VII, theorem 44.1 ).
In fact it is well known that K ((X)) is a separable extension of K (X),

because is a pseudogeometric local domain ([6], theorem 7.6.4).
Therefore the algebraic closure of K (X) in K((X)) is separable algebraic
over K(X), as a subextension of a separable extension ([9], vol. I, chap. II,
§ 16); and the same is true for each field M such that and M

is algebraic over 

(i) More generally the following situation is included in our result:

choose any finite set .,. , an) of formal power series in K [[X]] and put :
L = K (X, a, , ... , an), hf any separable algebraic extension of L contained

in K ((X )) (for instance L itself).
Then the ring is a D YR with completion g [[XJ) (see

n. 1, lemma 2). Moreover the fraction field of B is separably generated
over since it is separable algebraic over a finitely generated exten-
sion of K (X), which is separably generated because it is separable ( [9J~
vol. I, chap. II, § 15).

Therefore theorem 8 says such a B can be lifted to characteristic 0.

It must be observed that hK [X )(g ) has a well known lifting, indepen-
dently on theorem 8, i.e. the henselization of 

We dont’t say anything new if, in theorem 8, we take V = henseli-

zation of In fact any separably generated extension of the alge-
braic closure of K(X) in K((X)) is also separably generated over K(X)
itself.

REMARK 4: Theorem 8 contains a generalization of the main result

in [111, i.e. the existence of regular local rings of characteristic 0 and une-
qual characteristic, with arbitrary residue field, which are not excellent,
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not even pseudogeometric. In fact it is enough to consider any non excellent
DVR with fraction field separably generated over ~ (X) : its lifting is our
counterexample.

Such a ring can be obtained where L is a field sati-

sfying the following conditions:

(ii) L is separably generated over K (~ ) ;

(iii) K ((X)) is not iiepa.-able over L.

As far as condition (iii) is concerned, it is enough to observe that a

one.dimensional regular local ring, is excellent if and only if the fraction
field of the completion is separable over the fraction field of the ring itself

( [6j, 7.3.19., (iv)).

RF,mAn.K 5: In [10], giving a lifting to characteristic 0 for a basic

example of non excellent D VB in characteristic p ) 0, we showed aho that
there are liftable D pR’s which are not finitely generated over polynomials,
not even of f inite transcendence degree (except, of course, K[[X1J itself).
To obtain a slightly larger class of liftable DVR’S, we give now a genera-
lization of the main result contained in [10] :

First we give a lemma on lifting of field8 :

9 : Let B be a DVB of characteristic 0 and maximal ideal gene-
rated by the prime number p &#x3E; 0. Put : k = BIPB. If K is an algebraio
extension of k, then there is a D V R 0 with maximal ideal generated by p
such that :

(i) 0 contains E and is an integral extension of E;

(ii) C/pC and K are k-isotnorphio.

PBOOF : see [4], 10.3.1.4. : it is easy to see that the ring C constructed
there 88 direct limit of a suitable family of extensions of .E is

really integral over .~, since every A~ can be chosen integral over E.

PROPOSITION 10 : .Let k be a field of characteristic p ) 0, K an algebraio
extension of k such that [K: k] _ - 00 and X an indeterminate.

00

Let V be the following ring : f = an In E K ([In is in V if and only
n

Then there is a lifting 0 of .g Buch that V zs a-liftabl, to oharaoteristio 0.
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PROOF : Choose liftings E and 0 of k and g respectively, such that

0 is integral over 19 (lemma 9).
00

Let’s now define the following subring 8 of C [[g]] : f =  c" X" belongs
o

to 8 if and only if B [co 9 ... 9 of&#x26; y ...] is finitely generated as an E-module.

Now put: 0 [[g]], where L --- fraction field of S.
Since any element of C is integral over E, C C R. Therefore R is a

regular local ring with completion 0 [X]] (n. 1, proposition 3).
We want to show that R/pR = V.

/00 B

First we need to prove that, if g is in S, then also t 0 /
Since the po,.’ 8 give a finite E.module, they contain a finite set of

generators for the E-module .E ..., 9 PCn ...]:

Hence we have, for each n :

pcn = polynomial in the pc;’s (0 s z s t).

This implies :

cn = polynomial in the o;’s (0  i S t).

Therefore we obtain : E [co , ...] = E [co , ot] == finite E-module,
since 0! is integral over JE".

By an inductive argument it can be seen that is in S,
then also g’ is in S.

Now consider an element a,/b in R, with a and b in S. The image of
a/b modulo p is the quotient of the images, after we clear any possible
common factor pr both from a and. from b. But, if and b =pr b’,
we know that a’ and b’ are in S. Hence the image of a/b is the same as

the image of a’/b’ which is in g [[gJ] (1 (fraction field of V) = V.
So we proved that V.

Let now, be in V, so that k (co , ... , 0" , ...) = finite exten-
v

lion of k = k (oo , ... , or)~ for a suitable r.

Therefore we have : on - hn (co , ... , for every n &#x3E; r, where hn is a

polynomial with coefficients in k, for every n.
Let ’0’’’.’ er be arbitrary inverse images of co , ... , or in C. Then

is a finite E~module which reduces to k (oo, ... , or) modulo p.
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Therefore there are elements

~r.~l~...~4n~....

whose images are

00

is an inverse image of j
o

REMARK 6 : Proposition 10 contains, as a special case, the main result
of [10]: it is enough to choose k = KP, taking care of the condition that

[K: .gp] _ -~- oo. In this situation it is easy to see that is algebraic
purely inseparable over V.

But proposition 10 contains also quite different situations : for instance,
if we choose k = Fp (integers modulo p), K = algebraic closure of Fp ,
then it is easy to check that every formal power series which is

00

purely inseparable over V is in V. In fact, let f = , cn g" be such that
o

Y, with q = pr . Then is finite over Fp ; so there are

elements co , ... , et such that: where the fn’s
and the gn’s are polynomials with coefficients in jpp. Since there

are polynomials f" such that:

We conclude that Fp (c° , c,, ...) = Fp (c° , == finite Fp-module.
Theorem 8 says that not only the preceding rings Y are liftable, but

also every B such that k (B) is purely transcendental over k (V). As far as
separable algebraic extensions are concerned, theorem 8 can be applied only
when the lifting 0 of K is a complete (see remark 1).

REMARK 7: We should observe that, given a field K of positive
characteristic p, there is a complete lifting of g, say C, which is faithfully
hat as an algebra over the integers localized at p, (this fact follows

from [4], proposition 10.3.1.).
Hence a C-liftable K-ring B admits really a C-lifting B which is a

faithfully flat Zpz.algebra. In fact C [[X]] is faithfully flat over ( [2J
chap. III, § 3, corollary 3 to theorem 3) ; hence R is faithfully flat over

Zpz ( [1], chap. 1, § 3, n. 4, remark 2°).

The preceding fact allows us to relate our lifting with a problem of

lifting for formally smooth algebras.
Grothendieck ([6], theorem 19.7.2.) proves the following result: let A

be a noetherian local ring, I an ideal of A7 Ao = A/I, Bo a noetherian
complete local ring, Ao -~ B° a local homomorphism giving Bo a structure

of formally smooth Ao*algebra. Then there is a noetherian local ring B,
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which is complete and a flat A-algebna, such that B Ao = Bo (isomor-
phism of Ao-algebras).

If we suppose Ao complete for its natural topology as a local ring,
and if we want to eliminate the condition of completeness on Bo, we can
see ([6], 19.7.3.) that the question is reducible to the following one : if Bo
is a regular local ring containing Fp (but not necessarily complete), is

Bo N Bn/pRn, f for each n, being Rn a hat (Z/pn Z).algebra 1.
Theorem 8 gives a partial answer, in a special case, to the question

of lifting modulo p". In fact, if B has a C-lifting R, then R~, = R/pn R =
B Z) is a (Z/pn Z ).flat algebra ([1], chap. 1, § 3, n. 3, corollary
to proposition 5). Moreover we have: = R/pR = B.

REMARK 8: In [7], proposition 18.1.1., Grothendieck gives the follo-

wing lifting theorem for smooth schemes :
Let S be a prescheme, So a closed subpreeicheme, ,XQ a smooth So-pre-

scheme, xo a point of X0 . Then there is an open neighbourhood of xo , say
Uo C a smooth S-prescheme U and an So-isomorphism ~7 xs So = Uo. ·

Theorem 8 gives a slight generalization (formally smooth instead of

smooth), but in a special case (a class of particularly simple preschemes)
to the preceding result.

In fact, let’s translate theorem 8 into the language of geometry:
Let K be a field of positive characteristic p and 0 a lifting of K,

complete for its p-topology. Let then B be a K-ring (def. 1) and put : S =
Spec (0), rSo = Spec (K), Xo = Spec (B). Now So is a closed sub8cheme of
S and go is formally smooth over ,So ([5], theorem 19.6.4.). Then there is a

formally Schonic U= Spec (R), such that Xo is i8omorphio with Uxs So.
Moreover B is a regular local ring.

The unique non trivial fact we have to prove is that the ring R we
defined in theorem 8 is formally smooth as a C-algebra. But this depends
on [5], theorem 19.7.1.
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