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ON BANACH ALGEBRAS

SATISFYING A SPECTRAL MAXIMUM PRINCIPLE

by E. VESENTINI (*)

Let U be a complex Banach algebra with unit. For any x E Sp x
will denote the spectrum of x.

Let F : jD 2013~ 111 be a holomorphic map of a domain D in C into TH.
A point zo E D such that

will be called a spectral maximum point. The Banach algebra 111 will be

said to satisfy the spectral maximum principle if, for any holomorphic
map F : D -&#x3E; U having a spectral maximum point, Sp F (z) is independent
of z. If the existence of a spectral maximum point for F always implies
that F is constants, U1 will be said to satisfy the strong spectral maximum

principle.
Let F : D -+ 111 be a holomorphic map for which there is a point zo E D

satisfying (1). It has been shown in [7, propositions 5 and 7, p. 116] that,
if either has no interior points or Sp F (z) does not divide the

complex plane (i. e., C.Sp F (z) is connected) for all z E D, then Sp F (z) is

independent of z. This result implies that if for all x E Bt1 either Sp x has
no interior points or does not divide the plane, then 111 satisfies the spec-
tral maximum principle. It has been proved in [8] that, if lll is commuta-

tive and semi-simple, the validity of the spectral maximum principle entails
that of the strong spectral maximum principle provided that Sp x has no

interior points for all x E 11B.

Pervenuto alla Redazione il 13 Settembre 1971 ed in forma definitiva il 13 Dicem-

bre 1971.

(*) Partially supported by the National Science Foundation (GP-28216).
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The purpose of this note is to find a necessary and sufficient condition

for the spectral maximum principle to hold for a certain class of Banach

algebras. A condition of this kind (Theorem 1) depends on the topological
structure of the spectra of the elements of the algebra. Theorem 2 shows

that the spectral maximum principle and the strong spectral maximun

principle are equivalent conditions for these algebras.
The class of Banach algebras to which Theorems 1 and 2 apply con-

tains any commutative Banach algebra for which the Gelfand transform is

a continuous isomorphism onto a closed subalgebra of all continuous func-

tions on the space of maximal ideals (with the Gelfand topology). Theorem
3 characterizes the uniform algebras C (X) of all continuous functions on

a compact Hausdorff scatterad space .~ as the only function algebras sati-

sfying the spectral maximum principle.
According to Theorem 4, the Banach algebra of all bounded linear

operators in a complex Hilbert space satisfies the spectral maximum prin-
ciple if, and only if, the latter space has finite dimension.

In the final part of this paper the validity of the spectral maximum

principle in regular self-adjoint Banach algebras is investigated. Theorem 5
characterizes the compact abelian groups as the only locally compact abelian

groups whose group algebras satisfy the spectral maximum principle.

1. Let X be a compact Hausdorff space. Let C (~) be the complex
Banach algebra of all continuous complex-valued functions on X with the

uniform norm.

In [4] A. Pelczynski has proved the following

PROPOSITION 1. Zet U be a (uniform) function algebra on the conipact
1net1t1ic space X. is uncountable (if, and) only if there exists a subset

S of X homeomorphic to the Cantor set and a linear operator T : 
such that for every f E 0(8), II TIll = ~ and (Z f ) (s) = f (s) for every s E S.

Taking as f E C (S) a Peano curve, i. e., a continuous mapping of T

onto the unit disc

the above theorem implies the following

COROLLARY 2. If X is an uncountable compact metric space, and if S

is a compact subset of X homeomorphic to the Cantor 8et, there is a f1tnction
such that ilfil =1 and
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REMARK. Actually Proposition 1 of [4] is slightly more precise than

Corollary 2, but the latter will be sufficient for the purposes of this note.

Let .g be a compact subset of C. We denote by A (~) the uniform

function algebra of all continuous functions on ~~ which are holomorphic
on Int (g) (endowed with the uniform norm).

Let j5~ be the complement of the unbounded component K.

The boundary jf K, of i. e., the outer boundary of K, is the Silov
boundary of Let B (KI) be the uniform function algebra on jf K1
consisting of the restrictions to ~f .g1 of the elements of A (~1). Applying
Corollary 2 to B (Kl) we obtain

LEMMA 3. If K is an uncountable compact subset of C, there exists a

function f E A (K,) such that

LEMMA 4. The spectral maximu1u principle does not hold for the disc

algebra A (11).

PROOF. Let K, and .~2 be two disjoint compact subsets of T = (z : ~ I z [ = 1 )
with Lebesgue measure zero, both homeomorphic to the Cantor set. Let 01
and 1&#x3E;2 be two continuous mappings of K, U K2 onto the unit interval

such that qJl(K2) = W2(Kt) = 10). Let VJ be a continuous mapping
of I onto the rectangle Ra of (; having vertices 1 + n i, - a + 17- i, -
- a - 17- i, 1 - a i (a &#x3E; 0), such that tp (0) = 1 + 17- i. By Rudin-Carleson’s
theorem [6] there is an element 0 E A (A) mapping 4 onto Ra and whose
restriction to Ki U 1~2 is 1p o øt. Thus 0 (K1 U K2) = 0 (A) = Ra . The

entire function 1 exp : z --&#x3E; ez-l maps Ra onto the annulus with center 0

and radii 1 and e-a-1. Let exp o ø. Then FE A (A), and F-1 (1) c T.
e 

()

Consider now the conformal mapping

of Int (A) onto the half-plane II = iz : Re z  0). The image of the disc

iz : I z I ~ is, for a sufficiently large, a neighborhood, Ya , of the

point -1. The diameter of Ya tends to zero as a tends to + oo.
Let f be the holomorphic function defined on L1’ = d - .F~ (1) by

Then f (d’) = f Kî = II - Int ( V~a), where ~i = gl - F-¡l (1).
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Choose now a so large that Ya is seen from 0 under an angle less

than 
71

than 12 . °
Let 8 be the closed circular sector with center 0 and radius 2 deter-

i17 a
mined by the points 2e 8 and 2e2 24. Its amplitude is n . Let A be a con-

6
tinuous mapping of I onto S such that À(0) = 0. The function A o 02 maps
K1 U ,g2 onto S, while ~, o clJ2 (g1) = 10). By Rudin-Carleson’s theorem, there
is an element g E A (d) such that g K, = À o ([&#x3E;2’ and g (d) - S. Since

g2 n F-1 (1 ) = ~, then g (d’) _ S.

Let C be any complex number, and consider the function f + ’g. For

all ( E C

Thus

for 

Since for C = 0, (/-}-)(J’)=2013Int.(F when [ is suf6ciently° 

i ’-

small ( f -- g) (d’) does not contain Ya. Since when ( = e’ 6, Int (S), then Va
,n

is contained in the interior of ( f + ( g) (d’), provided that - e’ 6 1 is Suffi-

ciently small.
Let B be the open circular sector with center 0, and vertices 1 and

e2 6. For every C E B the function Fc defined by

belongs to A (d).
For all C E B, Fc ( 4 ) C 4 ; for (d) =~= A, while for some

(L1) = A. Thus the mapping B 3 C I--~ Fc is a holomorphic
function with values in A (A) for which the spectral maximum principle
does not hold. Q. E. D.
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2. Let U be a complex Banach algebra with unit. For any x E U. , 11 
antl e (x) will denote the norm and the spectral radius of x.

Let xo be an element of U and let :IS be the closed subalgebra of’ 111

generated by x and by the unit.

LEMMA 5. If Sp xo is uncountable, and if there exists a constant k &#x3E; 0
such that

for all x E 36~ then there exists an element y E ’~ such that

Spy=d.

PROOF. The spectrum of $0 in is the union of Sp xo and of all

bounded connected components Sup xo . Thus Spz xo is connected.

Since Sp xo is uncountable, then Sp xo contains a Cantor set. Thus also 8py x,
contains a Cantor set. By Lemma 3 there is a function f E A (Spy xo) such that

In view of Mergelyan’s theorem, V is topologi-

cally isomorphic with the commutative Banach algebra A (Spy xo), the iso-

morphism mapping xo onto the function ~ I--~ ~. Let y E ~ be the element

whose image is f. Since the space of maximal ideals of 36, endowed with

the Gelfand topology, is (homeomorphic to) Spy x~o , then SpS y = A.
If ( pv) is a sequence of polynomials converging to f uniformly on

Spy x, then the sequence pv (x) ~ converges to y. Since pv (Sp xo) = Sp py (xo),
then for all ~ E Sp y, i. e., f (Sp xo) c Sp y. But then

Consider the natural homomorphism of the uniform algebra A (4j =
= A (Sp y) onto the Banach algebra U. The image of A (A) lies in 36. Let

g (y) be the image of any g E A (A). Then Sp g (y) I 9 (A).
A direct application of Lemma 4 shows that, if is uncountable

and if condition (2) holds for all x 6 3By there is a holomorphic function

F : D -~ ~ with values in 1S, having a spectral maximum point in the

domain D and such that Sp F (z) is not independent of z.

(~) (Added in proof; December 9, 1972). According to a result of W. Zelazko, which
was communicated to me by A. Browder, any complex Banach algebra A satisfying (2)
for all is commutative. lience the Banach algebra in Theorem 1 is commutative.
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On the other hand, Proposition 5 of [7] implies that if the spectral
maximum principle does not hold in ’U1, then there is some x E 1I1 such

that Sp x contains interior points.
In conclusion we have the following theorem

THEOREM 1. Let U be a Banach algebra with unit such that (2) holds

for all x 6 TH. Then the spectral maximum prirrciple holds in ’tIl if, and only
if, Sp x is countable for all x 

Let U be a commutative Banach algebra with unit, and let Ma be

the space of maximal ideals of U, endowed with the Gelfand topology.
Let be the subalgebra of C consisting of the Gelfand transforms

of the elements of U. Then (2) holds for all x E U if, and only if, U is
-

semi simple and U1 is a closed subalgebra of C 
Let U be a commutative Banach algebra with unit satisfying (2) for

all x E U, and let F : D -+ Ta be any holomorphic mapping of a domain

Dc (: into U, having a spectral maximum point zo E D. If Int (Sp F (zo)) = ~,
then for all X E Mtn the holomorphic function X o F : D -+ (t is such that

Hence x o F is constant on D. That implies the

following

THEOREM 2..Let be a commutative Banach algebra satisfying (2) for
all x E B11. Then the strolzg spectral maximum _principle and the spectral maxi-

principle are equivalent conditions for U.

3. Let ol be a (uniform) function algebra on a compact Hausdorff

space X. Then for all and Theorems 1 and 2 apply.
Since lll separates points, Theorem 1 implies immediately that, if BIl sati-

sfies the spectral maximum principle, then X is totally disconnected.
This section will provide a characterization of function algebras sati-

sfying the spectral maximum principle.
Let X be a compact Hausdorff space. It has been shown in [5] (cf.

also [6’]) that X is scattered (i. e., contains no non-empty perfect subset) if,
and only if, f(X) is countable for any f E 0 (X). Furthermore, if X is scat-

tered, then C (~) is the only function algebra on X [5, 6’].
For any compact subset R ( ) is the closure in C (K) of the

subalgebra generated by the rational functions on I with poles off K.

LEMMA 6. Let TH be a function algebra on a compact Hausdorff space X.
If Sp f has planar Lebesgue measure zero for all f E B11, then :

a) U = 0 (-X);
b) X is scattered ;
c) Sp f is countable for all f E C (X).
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PROOF: I a) For any x E X let 1’x be the character of U1 defined by
1’z ( f ) = f (x) The mapping : x - Ta; is a homeomorphism of X onto
a closed subset of An element f E U1 and its Gelfand transform are

-

related by the identity f = f o r.
Let r be a rational function on C with all its poles off Sp f. Then

Since Sp f has planar Lebesgue measure zero, by the Hartogs-
Rosenthal theorem [1, p. 47], Therefore the continuous

function C I~’ can be uniformly approximated on Sp f by rational func-

tions with poles off Sp f. Hence f E U1 for any By the Stone Weier.

strass theorem, 
b) is not scattered, there exists some f E C (X) such that

f (~) _ ~ --- [0, 1]. Let g be a continuous mapping of I onto A. Then

g o f E C (X), while Sp (g o f ) = d has positive planar measure.
Since X is scattered, then b) implies c). Q. E. D.
As a consequence of Lemma 6 and of Theorem 1, if U1 satisfies the

spectral maximum principle, then (Sp 1 is countable for all and there-

fore) X is scattered and U = C (X). Conversely, if X is scattered then

C (X) is the only function algebra on X, and, for all f E C (X), f (X) = Sp f
is countable.

In conclusion we have

THEOREM 3. Let U be a function algebra on a compact Hausdorff space
X. If U satisfies the spectral maximum principle, the X is scattered and

U1 = C (X). Conversely if X is scattered then ’~ satisfies the spectral maxi-

mum principle.
Let U be a O. algebra with unit and let x be a normal element of U.

Let U’ be the closed C* subalgebra of U generated by x and by the unit.
Then there is a *.isometry Q of onto U’ mapping the function

« 1 » onto the unit and the function « ~ 1-+ ~ &#x3E;&#x3E; onto x.
If Sp x is uncountable, then it contains a perfect set, and therefore U’

does not satisfy the spectral maximum principle. But for any f E 0 (Sp x),
Hence if the C* algebra ’ij1 contains a normal ele-

ment x such that Sp x is uncountable, then U does not satisfy the spectral
maximum principle,.

As a consequence of this statement we have

THEOREM 4. The algebra of all bounded linear operators in a Hilbert

space H satisfies the spectral maximum principle, if, and oiily if, H has finite

(s) This proof was inspired by that of Theorem 3, p. 201 of [3].

13 Annali delda Scuola Norm. Sup. di 
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4. Let U be a (semi-simple) regular Banach algebra with a unit.

LEMMA 7. The regular self-adjoint Banach algebra U satiBfies the 8pee-
tral maximum prineiple if, and only if, for every f E tI1, Int (rSp f ) = 0.

PROOF. a) Let fE U be such that Let ’0 and C 1 be

two distinct points of Int (Sp f ). There is no restriction in assuming ’0 = 0,
C1 =1. For any C E C, 4 (C, r) will indicate the closed disc with center ( and
radius r. Let ro and r, be two positive numbers such that

Let 0 and a be two positive numbers such that

and that both closed discs are contained in Int ~Sp f ).
Let

~~ I’ll

Let 00 and Pi be two elements of U such that 00 and 01 are real-valued
functions on Mta, y satisfying the following conditions

The element fo = 00 f is such that, if Bo = f -1 (IDt (4 (0, ro + ~o + a)),

n

Let 11’ be an element of U such that qp is a real-valued function satisfying
the following conditions

The image J = is a closed subset of [o,1~ containing 0 and 1. If

f1=~1(f-e)-~-~, then 
-
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n

Being f i = f on F1’ then f! 13 r1). Furthermore

Let h Since A (1, rl) contains any square with center 1 and
/

side J’2 1"1 then h contains the annulus P with center 0 and radii

-..~-i) (~’2)e A .
Let F: C - lll be the holomorphic mapping defined by

Then

If z satisfies both conditions

i, e., if

then

Thus, by (3) is the same for all z satisfying conditions (4).
If o ) 0 is sufficiently small, then the latter inequalities are compatible

and the set of points satisfying both of them is a non-empty annulus. Let

0  r  R be its radii. Then F (z) has a spectral maximum point in

Int (4 (0, R)) but Sp F (z) is not constant. &#x3E;

b) If Int (Sp f ) = ~ for all f E U, then by Proposition 5 of [7], U
satisfies the spectral maximum principle. Q. E. D.

We will apply now Lemma 7 to the group algebra of a locally com-

pact abelian group G. First we recall that, if U is a regular Banach alge-
bra without a unit, then also the algebra U X C obtained by formally
adjoining a unit to lll is regular, and vice-versa.

Let G be a locally compact abelian group and let r be the dual group
of G, endowed with the locally compact topology defined by the continuous
characters of G.
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PROPOSITION : 8. The group algebra Ll (G) contains an element f E Ll (G)

.g?tch that Int ( f (F)) 4= 0 if, and only if, G is not compact.

PROOF. a) If G is non-compact, then r is non-discrete. Therefore r

contains a Cantor set 0 which is also a Helson set (cf., e. g. [2], Theorems
41.5 (p. 555) and 41.13 (p. 564)). So if g : 0 - C is a continuous function

on 0 such that g (C) = d there exists an element f E L1 (G) such that

f (x) = g (x) for all x E 0. Hence f (1’) ::J 4.

b) Conversely, let Int ( f (r)) # §§ for some f E L1 ( G). If r is not

compact the function f vanishes at infinity. Therefore it extends uniquely

to the one point compactification r of r assuming value zero at the com-

N N N

pactifying point. Let 7 be the extended function. Then Int (§S(T)) # §§ and
N N IV

therefore 7 (p) contains a perfect set. Thus 1’ is not scattered and a fortiori
is not discrete.

If 1~ is compact this argument applies directly to r, leading to the

same conclusion. Q. E. D.
The following theorem is a consequence of Lemma 7 and Proposition 8.

THEOREM 4. The group algebra Ll (G) niore exactly the algebra ob-

tained by formally adjoining a unit to .L1 (G)) satisfies the spectral maximum
_principle if, and only if, G is compact.

For example the spectral maximum principle is satisfied when G is the

circle group, and is not satisfied when G = 1R, G = Z.
Furthermore the spectral maximum _principle and the strong spectral

maximum principle are equivalent conditions for the group algebra Li (G).

Univer8ity of Maryland and Scuola Normale Superiore, Pisa
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