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THE CAUCHY PROBLEM FOR NON LINEAR WAVE

EQUATIONS IN DOMAINS WITH MOVING BOUNDARY

by JEFFERY COOPER and LUIZ A. MEDEIROS (§)

1. Introduction.

In this paper we shall consider the non linear wave equation

in a non cylindrical domain Q c B = X [0, T], with the boundary con-
dition u = 0 on Z, the lateral boundary of (t) will denote the inter-

section of P with the hyperplane at height t. We shall say that Q is mo-
notone increasing if (t) grows with t.

In [2] Lions obtained weak solutions of (*) for the special case F (u) -
- u 10 under the assumption that Q was monotone increasing.
Bardos and Cooper [1] extended this result to a larger class of regions by
assuming only that there is a smooth mapping 99 : B --~ B such that Q~ _
cp (Q) is monotone increasing 99 preserves the hyperbolic character of (*).
Such a mapping will be called hyperbolic; a precise definition is given
later.

Medeiros [4] generalized the result of Lions [2] in another direction -

namely by employing: the recent convergence theorem of Strauss [6] to
obtain solution of (*) when Q is monotone increasing, for quite general F.

In this paper we shall combine these generalizations as follows : sup-
pose that there exists a smoot mapping qJ of B onto B (with smooth inverse

1.p) such that cp is hyperbolic and Q* ( Q) is monotone increasing. Sup-
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pose is continuos on Rn X R as well as and that
81tj

for all x and u. Suppose in addition that itF (x, u) ~:&#x3E; 0. Denote by G (x, u)
the function such that au = F and G (x, 0) = 0. Let uo E go (S~ (0)) such
that and U1 E L2 (Q (0)) be given. Then there exists a solution of

(*) in the sense of distributions on Q such that

with u (x, 0) = uo (x) and ut (x, 0) = 11,1 (x) for x E ~ (0).

2. Existence of Weak Solutioiis.

We consider the set defined as

where 0  T  oo. Let Q be an open set in B. I3y Q (to) we denote the
intersection of Q with the hyperplane ((x, t) : t = t~) ~ Q (0) (resp. S~{T ))
denotes the interior of Q n Po (resp. Q n PT). Let r(t) = 8Q (t) the boundary
of 0 (t) and set f == U is the lateral bonndary of Q.

Throughout this paper we shall assume that I is an n-dimensional

manifold of class C’.

We shall say that Q is monotone increasing if Q (t) grows with t. That
is, if Qi (t) denotes the projection of Q (t) onto P0, then s  t implies
i2’ (8) c (t).

Only real valued functions will be considered here and derivatives

will be taken in the sense of disiributions.

If D is an open set of R’~ , I then Hi (S~) denotes the space of (classes

of) functions u E L2 (Q) such that au E L2 (Q=1,2...n. g1 (D) is a

Hilbert space with the norm
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will denote the closure in of O (S~) the space of infinitely
differentiable functions with compact support contained in Q. H-1 (~) will
denote the dual of Ho (S~).

Now suppose that u (x, t) is a measurable functions on Q. Then we

say that u E T ; L2 (S~ (t))) if u (x, t) E L2 (Q (t)) for almost all t and

(x, t)Lt(Q (t))  00. The space Loa (0, T ~ H) (.Q (t))) is defined similarly.
os ~T

With these definitions made we now pose the following problem. Let

F (x, u) be a continuous function on with Suppose

that are also continuous and that for some constant c, x u) /
We denote by G(x, u) one function such that with

Q’ (x, 0) = 0. Let 1to E .Hi (S~ (0)) and ui E L2 (D (0)) be given. Then we search
a function u such that

Our method of solving (1)-(3) involves a change of variable. Let 0 (x, t) -

(x, t),..., fln+i (x, t)) be a one to one mapping of B with derivatives
of first and second order bounded on B. Let J (x, t) denote the Jacobian of
~. We shall assume that J and its derivatives are bounded away from

zero so that I is of class C1. We denote the inverse mapping
of 0 (x, t) by 1p (y, s). Next we shall assume that 0 preserves the

hyperbolic character of the wave equation. We set 
1 a X21 /

and assume

(4) The n X n matrix

i, j =1,2, ... , n, is positive definite on B and bounded away from zero by
a positive constant and

5 
a w,,+t 

h 0 on B and 4S maps P (resp. PT)(5) a 
0 on B and 0 maps Po (resp. PT)

onto Po (resp. PT).
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Our key assumption on Q is then that

Let Qff (t) denote 0 (S~ (t)). As was noted in [1], (4)-(6) imply that the
exterior normal to ~ always lies strictly outside the forward light cone.

Before proceeding the statement of our theorem, we give a form of
a recent result of Strauss [6] which we will need later.

LEMMA 1. Let S2 be a finite measure space. Let Uj (x) be a sequence
of measurable functions on S~. Let u) be a sequence of measurable
fonctions on S~ X R such that

(i) is uniformly bounded on Q X B for any bounded sub

set E of R,
(ii) Fj (x, Uj (x)) is measurable and

Then v E Lf (Q) and

we now state our existence theorem.

THEOREM 1. Let F (x, u) and G (x, u) be as described before. Let

2co E Ho 1 (S~ (0)) and ui E .L2 (~3 (0)) be given and assume that G (x, uo (x)) is

integrable on D (0). Then, if (4)-(6) is satisfied, the problem (1)-(3) has a

solution.

PROOF. We transform the equation (2) via the mapping (y, 8) = 4Y (x, t).
In divergence form it then becomes (with u (x, t) ( 4Y (x, t)), Dj = alayj and
Ds = 

where f (y, s, v) = F(1J11 (y,s), ... , s), u.tp) is still continuous on and

is a primitive
of f such that 0 ; a and aij are given in (4) and the other coefficients
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involve first and second order derivatives of 0. The initial conditions become

where 1f () = (y, 0) , ... , 1pn (y, 0)).
The boundary conditions of course becomes.

(9) v = 0 on -Y* 7 the iateral boundary of Q*.

To solve (7)-(9) we shall follow the tecnique of Straus [6] and at the
same time use the penalty method. Thus we shall consider equation (7) in
B with f approximated by a Lipschitz function and with the addition of
the penalty term.

LEMMA 2. Let f (y, s, v) be continuous on j6xR with vf (y, s, v) §a 0.

Suppose that 2013 is continuous on B X R and that is constant such c &#x3E; 0p 
as

af I on B &#x3E;C H. Then there is a sequence of continuous functions/ as /
f k (y, 8, v) such that vfk (y, s, v) &#x3E; 0 and

where ck is continuous on B ; y

(ii) fk - j uniformy ou Bo is any bounded interval of R and

Bo is a bounded set of B ;

The proof of lemma 2 is left till the end.
v

Now define g k (y&#x3E; 8, v) ) --- f k (y, s ~) d$. From (iii) it follows that 
0

After makiug this approximate the initial data. We extend vo (y)
and v, (y) by zero to all of Rn , keeping to same notation. Then Vi (y) E L2 (Rn),
and by the smoothness assumption on the boundary of Q we have vo (y) E
E H1 (Rn). There exists a sequence VOk (y) such that Vok (y) -+ Vo (y) in H i (Rn)
and a. e. such that vok has bounded support and The former

is achieved by multiplying v 0 by a suitable snooth function of bounded
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support, and the latter by truncating at height k (see Stampacchia [5],
lemma 11).

It follows from lemma 2 that gj - g uniformely on Bo x K where K
is a bounded subset of It, and Bo is a bounded set of B. Then, for each
fixed k, 0, vok (y)) converges to 0, Vok) a. e. and hence in Lt (Rn)
because the support of wok is bounded. Now because is monotone

increasing in v ~~ g (y~ 0, wok (y))  9 ~y~ 0, vo B1 (Rn ) and 9 (wok) -~ 9 (vo) in
L1 (Rn). Thus we may choose a subsequence of the gj which we sball de-

note by gk, y such that

After these preliminaires, we consider the following approximate equa-
tion in B to (7)-(9) :

is a function equal to zero on Q* and equal to one outside Q*.
As is well known, the Galerkin method may be used to solve (10), (11)

(see [3]). The only point to mention is that in multiplying by Ds V in order
to make the usual energy estimate, one finds that

The last term may be absorved in the estimate because 
Thus for each k = 1,2,... there exists a solution Y k of (10), (11) such

that Vk (s) is weakly continuous in .81 1 (Rn) and Ds Yx (s) is weakly conti-
nuous in L2 (Rn), 0 ~ 8 m T. Furthermore Yk satisfies the energy inequality
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By our choice of the sequence vok and of the subsequence gk, we
know that the right side of (12) will converges to

The left side consists only of positive terms and these must be bounded.
Thus we may extract a subsequence again denoted by ~V~ such that

By a standard compactness argument (see Lions [2]) we also assume that
Vk --~ V a.e. in B. (12) also implies that for some constant C2 &#x3E; 0 we have

From the fact that Q* is monotone increasing we may deduce that

and it follows that

Then by Schwartz inequality and (14), we obtain

To obtain convergence of the non linear term we shall need (15), We
multiply (10) by V k and integrate from 0 to T. Using the weak continuity
of V k we obtain :
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T

The bounds established in (12) and (15) imply that Vk) ds is

o

also bounded. Thus we are in a position to apply lemma 1 and we deduce

that f ( V ) is locally integrable and in for any
bounded set D of B.

Let v denote the restriction of V to Q*. Then is any testing
T

function with support in Q*, we have Taking the
o Rn

limit as k -+ oo we will have that V satisfies (7) in (Q*). Next we show
that v satisfies (8). Let S denote the cylinder Q* (0) x [0, T] which is con-

tained in Q* because Q* is monotone increasing. Then of course ro satisfies

(7) in (Z)’ (S). We may deduce that the restriction of w to S is continuous

(as a function of s) in LQ Q* (0)) and that is continuous in (Q* (0)) +
+ ([2* (0)).

The usual integration by partes then implies that v (y, 0) = vo (y) and

Dg v (y, 0) = vi (y) in (0). Finally, we turn our attention to (9). Our esti-
mate (15 and the fact that Vk---~ V a.e. implies that V = 0 a.e. in B C’0 Q*.
Hence by the regularity property of the boundary of Q* we may deduce
that

which is to say that v satisfies (9) in a generalized sense.
Setting u (x, t) = v ( ~ (x, t)) and using the smoothness properties of the

mapping J we find that u is a solution to our original problem (1)-(3).
Q.E.D.

PROOF OF LEMMA 2. We set

for 0  v  k and - k 0 and - Ilk we let x belc
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linear and for we let fk be the appropriate constante. We have
vfk (v) &#x3E; 0 f is continuous so it clear that fk is uniformly Lipschitz in v.

Furthermore fx --&#x3E; f uniformly on vounded sets. Now

so that

3. Final Remarks.

The importance of the condition

is not yet clear. Thus if Q itself is monotone increasing, we can solve
(7)-(9) with, say, F (x, u) = exi " - 1 for u ~ 0.

However, a change of variable would yield

with

which would not satisfy our condition.
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