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« FARFIELD » BEHAVIOR OF SOLUTIONS
TO PARTIAL DIFFERENTIAL EQUATIONS:

ASYMPTOTIC EXPANSIONS AND MAXIMAL RATES
OF DECAY ALONG A RAY

by ORAZIO ARENA and WALTER LITTMAN

1. Introduction.

If u = u (x, t) is a solution of the Klein-Gordon equation utt - 4u -~- ~ == 0
for all and t, having finite energy and vanishing in the
forward light cone I x  t, t ] 0, then u must vanish identically. This
result, due to I. SEGAL [1] for n = 1, and to R. GOODMAN [1], [2] and C.

MORAWE1’Z [1] for n:2:: 1, has led to a number of generalizations.
It was shown in W. LITTMAN [2] that the condition that u vanish in

the forward light cone could be replaced, for a large class of equations
1-N

with constant coefficients, by the condition that u = 0 (r 2 ) (where
r2 = I x ~2 + t2, N = n + 1) uniformly in the analog of the light cone.

However it is of interest to know how fast u may be allowed to decay
in a semi-infinite cylinder in space-time, say one parallel to the t-axis. In
that direction K. MASUDA [1], [2] has shown for a class of equations including
the Klein-Gordon equation that, if a solution u is defined for all t and de-

cays exponentially in a semi infinite cylinder as t ~ oo, then u vanishes

identically. In [2] K. MASUDA shows, by an explicit example in that

the exponential decay assumption is necessary for the conclusion of his

theorem.

One of the aims of the present paper is to show that, for a large class
of problems for partial differential equations .P (D) u = f in JRN, the expo-
nential decay in a semi-infinite cylinder can be replaced by decay faster

--------
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than any negative power, provided f has compact support. For a related

problem, see R. S. STRiCHARTz [1].
In Section 2 the appropriate assumptions on the operator are spelled

out and the conditions at infinity, insuring existence and uniqueness are
stated. The notion of  ~-local Cauchy problem » is introduced. These problems
have the feature that their solutions are expressed as a sum of integrals
which are Fourier transforms of surface carried measures and of distributions

involving Cauchy type singularities.
In section 3 a far field asymptotic expansion for these integrals is car-

ried out, in negative powers of the distance to the origin, which has the

important property that its coefficients are (real) analytic functions of the
angle. (A variant of MoRSE’s lemma, involving analytic dependence on a

parameter, is used in obtaining the last result). These results yield imme-
diately corresponding expansions for the solutions to the problems discussed
in section 2.

In section 4 we prove a lemma (4.1) according to which a function,
having an asymptotic expansion of the type just described in a cone, can-

not vanish faster than any negative power of x I as I ~ oo in a semi-
infinite cylinder (contained in the cone) without vanishing faster than any
negative power of I in the whole cone. A sharpened version of this

lemma follows, in which the semi-infinite cylinder is replaced by spike-like
region which, after rotation about the origin, can be described by .,.

... + c xN2a , y for some positive a.

These lemmas are applied to yield corresponding results (theorem 4.1)
for solutions to « ~-local Cauchy problems &#x3E;&#x3E; introduced earlier. Applications
to more traditional type problems such as the Sommerfeld radiation problem
for a class of hyperbolic equations are stated as theorems 4.2 and 4.3. We
state these here in the special case of the reduced wave equation and the
Klein-Gordon equation respectively :

I. Suppose that u is a solution to the reduced wave equation du + = 0

(k &#x3E; 0) in the exterior of a sphere, sativfying a Somhierfeld type condition at
infinity. If u goes to zero faster than any power of xNl as I x unifor-
mly in the ... + R2, x~&#x3E; a, then u vanishes identically.

II. Suppose that u satisfies the Klein-Gordon equation utt - 4u + u = 0

for ... , and t h 0 and has Cauchy data with compact sup-
port. If u goes to zero faster than any negative power of t as t -&#x3E;- oo uni-

formly in a cylinder X2 1 -f- ... + X2 N-1 1  R2, t ~ 0, then u vanishes identically
for t ~ o.

Results are also obtained where the above cylindrical domains in I.

and II. are replaced by « spike-like » domains, given by inequalities of the
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form

for some positive 0153.

Finally, a remark concerning systems of differential equations is made.
In this paper the spaces J§’, Y’, Co etc. will have their usual

meanings as explained, for example, in H6RMANDER [1].

2. ~-local Cauchy problems.

We consider a class of problems for partial differential equations with
constant coefficients in which, although superficially appearing to be

problems of a different nature, are really variants of the same problem.
Consider the following two problems:

(1) The non-homogeneous reduced wave equation

with a Sommerfeld type condition at in6nity.
(2) The Cauchy problem for non-homogeneous Klein-Gordon equation

Both these problems can be brought under one roof, namely what we
will call, for lack of a better name, ~-local Cauchy problems.

Let P ( ~’) = P (~1, ... , ~N ) be a polynomial with real coefficients.
We will be interested in the partial differential operator

Let us assume that :

(i) the set S of real solutions of P (~) = 0 is non~empty ;
(ii) grad P (~) # 0 in S and therefore S is a smooth N -1 dimen-

sional surface; to be more precise S is the finite union of smooth N -1
dimensional (connected) surfaces;

(iii) the Gaussian curvature of S, i. e. the product of N -1 principal
curvatures, is different from zero.

Let us now assign a unit normal v to each point on S, varying smoo-
thly with position. Given a unit vector w, the set of points p; on S at
which the normal to S is parallel to w is finite in number. Moreover this

number will be constant and the will be analytic functions of w as

long as 0) stays sufficiently close to a non characteristic direction.
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By $-local Cauchy problem we mean the following pi-eblem :
Find a solution in to

such that, given any point p on S, for any qJ E C0°° with small enough sup-
port near p,

in the half space 9 (,v) - x --- 0, for arbitrary positive k.

In other words the solution, if suitably localized in ~-space, is to ap.

proach zero faster than any power uniformly in the - v (p) direction.
It follows from results in Littman [2] that this problem is uniquely

solvable and that the solution is in fact given by

"I

u,here stands for the Fourier of f and a is the of
on S. Here «jP. V.» « Cauchy principal value&#x3E;&#x3E;.

Precisely, existence follows from lemma 2 of Littman [2]. To obtain
"I

uniqueness suppose f == 0. We note that u * 99 is again a solution to the
homogeneous equation, which, applying a modification of theorem of

Littman [2], must vanish identically. By varying 99 we deduce that u has
I, 

support away from S. Since jP()()===0 we conclude u 0, hence u « 0.
"I 

In lemma 2 of Littulan [2] it was assumed that f E This may be

weakened to f E _9’ arguing as in lemma 3.3 of the present paper.
It is of interest to mention two problems which can be stated as ~-local

Cauchy problems.

A. Sommerfeld type problems. Given a partial differential operator
with C’°° coefficients depending only on m, such that

and

(~) Namely, in the statement of that theorem, 0Cs may be replaced by 9( Q where
A

CX! is the cone generated by a neighborhood of the spherical set v (s ~ supp u).
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consider the problem

Under assumptions (i)-(iii) there exists a unique solution of this pro-

blem, given by formula (2.1).
For hypoelliptic P (D) this problem or its equivalent was treated by
v

cxRusiN [1] and V AINBERG [1]. For general P (D) this problem can also be
shown to be equivalent to a corresponding ilocal Cauchy problem and its

solution is given by formula (2.1). However we shall not present a proof
of this fact here.

B. Hyperbolic Cauchy-type problems in 1RN. Assume that :

(iv) P (D) is strictly hyperbolic with respect to 

(v) the closure of the cone generated by all directed normals v to

S does not intersect the set 0, except at the origin.
Under assumptions (i)-(v) the problem

has a unique solution u E g’ again given by formula (2.1).
The uniqueness part of the above assertion follows from Theorem I in

Littman [2]. The existence part for f E Co follows from lemma 2 of that
paper. For f Egan argument similar to the one used in lemma 3.3 of

the present paper is applicable.

REMARK: In B. the case f - 0 for t C T is equivalent to the usual

Oauchy problem, with zero data assigned on t - T. The general case may
be thought of as a Cauchy problem with Cauchy data zero at t = - oo.

Finally, let us remark that for purposes of the present paper the only
fact we need is that the solution of the problems under consideration is

given by formula (2.1 ).

della Scuola Norm. Sup. di PiBa,
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3. Asymptotic expansions.

In the following 9lz and %a will denote neighborhoods of the origin in

x-space and a-space respectively. « Analytic &#x3E;&#x3E; will mean real analytic.
We shall prove the following

MORSELS LEMMA (with an analytic Let

be an analytic of x and a, defined in the neighborhood Cflx X 9fa of
the point x = 0, (J, = 0. Suppose that .

and that the hessian matrix [hi;l « (0 ; 0)] is non-degenerate.
Then there exists a non-singular analytic transforntation of

the variables x in a neighborhood 9L~ c under which

The transformation depends analytically on a E a sufficiently small subset

Of and takes x = 0 into y = 0. the inverse transformation
y -+ x (= x (y, a)) exists in a fixed neighborhood 9ly of the origin (independent
of a) for cx E and is analytic in 9ly X 

PROOF. The proof is a slight variant of the original proof due to
MORSE, [1].

Since [hij] is symmetric, it has a set of m orthonormal eigenvectors.
We may assume that these point in the positive coordinate xi axes ; other-
wise we may achieve this situation by a rotation of axes.

Now by Taylor’s theorem with integral remainder, we can write

where

We note that the are analytic in 9S/ X 9La, for some ~’ ? are

symmetric in i and j, and
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Furthermore the matrix 0)] is diagonal with all its eigenvalues
different from zero. From this it follows that, for x sufficiently small and
a in some sufficient small compact subset of 9f,,, au (x ; a) ~ 0.

Hence we may define :

and obtain

where Q = :¿ and the matrix is symmetric analytic near
i, j~2

(0 ; 0) and diagonal at (0 ; 0) with all its eigenvalues different from zero.
Thus Q is a quadratic form in the variables z. ... , 7 with coefficients

depending analytically on Z1 , ... , zm ; a1, ... , a, , such that it is diagonalized
when these arguments vanish. Applying the previous argument again, the
parameter variables this time being Z1’ 1* we obtain

where Q is a quadratic form in the variables z3 , ... , zm , with coefficients
- - -

depending on Zi’ z2 , ... , zm, By repeated application of this

procedure and possibly reordering the variables, we eventually obtain the
desired form for ~. The transformations involved enjoy all the properties
required in the statement. Therefore the lemma is proved.

Now we will carry out an asymptotic expansion for the integrals ap-
pearing in formula (2.1).

Let S be a compact real analytic N - 1 surface (possibly with boun-
dary), with gaussian curvature different from zero, embedded analytically
in and let g be a smooth mass density defined on S with compact
support on S.

Suppose v is a unit normal on S varying smoothly on S and let us

denote the Gauss normal also by v.

Suppose that, in a neighborhood 9ft of the support of g, v is 1 : 1,
and that the inverse image ~-1 (Cfl2) of a neighborhood CJl2 of a given direction
0)0 (9Lt ::J (~2)) contains the support of g. Assume further that g is

analytic in v-1 being a neighborhood of wo such that CtZ2
We shall often make use of the notation : e (.) == ei(-) .
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LEMMA 3.1. Under the above mentioned assumptions the integrals
,

has the asymptotic expansion as I x -&#x3E; 00

where the coefficients are analytic functions of (o for ro sufficiently close to

ccy and the expansion is uniform there. denotes the unique point in

C’Ji1 f1 S at which 9 (~(0) = w.

PROOF OF LEMMA 3.1. First, let us suppose that at the point Po :=
(wo) the second fundamental form of the surface S has distinct eigen-

values. Then this will also be the case for points p in a neighborhood of po.
For each such point p on S, let us introduce a new coordinate system

01 , ... , 7 z, centered at ~ = p, obtained from the original coordinate sy-
stem by an Euclidean transformation (that is, a rotation followed by a

translation), such that the distinct eigenvectors of the second fundamental
form at p are the new a1, ... , 6n axes, respectively~ and in such a way that
the (algebraically) smallest eigenvalue corresponds to ~1, 7 etc. and the r-

axis is 9.

In case the second fundamental form of S at po does not have distinct

eigenvalues, we may by an appropriate non-singular affine transformation

of ~-space, close to the identity and centered at po , convert the integral
over S into one over a surface having the desired property at po . To be
more precise, 9 (po) is left invariant and the transformation takes place in
the tangent plane to S at po .

With each direction ro (close to (oo)7 there is thus associated a change
of variables ~ -+ (0, ’l) depending analytically on roe Introducing the Q va-
riables into the integral for I, we have

where o = 01 , ... , On (n = N -1 ) and ~ (a, (0) represents S parametrically.
Since we wish to study the asymptotic behavior of I as I x ---~ oo in

the co direction, we set x = r cu, thus obtaining
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where J, (a, co) is the appropriate Jacobian and r (0, co) expresses the surface
8 in the a, r-coordinates.

Applying MORSE’s lemma with the parameter, we get for each w, close
n 

to coo’ a change of variables u --+ 8 such that ’1 co) = 2’ 8j 82 i (Ei = ± 1),
i-1

thus yielding

where J s co == 2013 is the Jacobian of the composite (s co asda ds , 

p p , )

well as J2 (s, m) are analytic near the origin, while g is analytic in a neigh-
borhood of the origin and has compact support in a somewhat larger nei-

ghborhood of the origin s = 0.
Hence we may write

where h is analytic in a neighborhood of s = 0, w = (oo but has compact
support for s in a larger neighborhood of s = 0.

Let us introduce, -now, the C °° function of one variable

(a being sufficiently small) and fl (82) ... ,8 = B (s). Then we split I
into the sum I’ + I", obtained by replacing, in I, h by Bh and (I - B) h
respectively.

The integral I" may be shown to be 0 (r-k) for any k, by making the

substitution si = and integrating by parts an appropriate number of
times.

Now we turn our attention to
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Expanding h in a Taylor series in power of s, with integral remainder, y

where ba is as smooth as h, we obtain as in Littman [1] :

We remark that, in the first group of terms, the terms with any odd

aj must vanish leaving only terms with all even powers in s.

Next, letting si =’ + and = 2yj , we see that

where 0 (r--) denotes a sum of terms approaching zero faster than any

power of llr. Now, by integrating by parts, it follows that

enabling us to remove the factor (r~~~ in the last integral appearing in
_

(3.2). With this factor removed that integral is in fact equal to r
within a multiplicative constant.

Hence the first group of terms in (3.1) gives rise to the expansion

the rate of decay of Rm being governed by the last sum of terms in (3.1j.
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We wish to show that, by appropriate choice of ~n, Rm can be made
to approach zero faster than r-k for prescribed k.

To this end we let 2k + n, make the substitution sj = and

integrate by parts  2013 1 times with respect to nj, for each that yields1 2 1
an estimate 0 (r-k) for any k for the last group of terms in (3.1).

Therefore the stated asymptotic expansion for I holds with coefficient
analytic functions of co (cm sufficiently close to coo).

A careful analysis of the proof shows that the asyniptotic expansion
is valid uniformly with respect to all directions in a neighborhood of coo .

LEMMA 3.2. Suppose that all the assumptions preceding Lemma 3.1 are

satisfied..
Let u.s define

Then J has the same type of asymptotic expansion as 7vas stated for I
in .Lemma 3.1.

PROOF. The proof of this lemma follows from the proof of lemma 2 in
Littma-n L21, where it is shown that the asymptotic behavior of integral of
the type J are governed within 0 (1,,-00) by the behavior of a corresponding
integral of type I.

3.3. Let roo be a non- characteristic direction for P (D). 
that g (x) E Y is real analytic near S. Then, for (0 in a sufficiently small

neighborhood of coo , 
¡e

has the uniform asymptotic expansion as i, = I x 

where pi = pi (00) are the k points p on S at which v (p7 = ± w ; the pi ((o)
a.3 well as the coefficients aij (00) vary analitically with 00.

A similar result holds for the Cauchy type integral J.

k

PROOF. We decompose g into a sum I gi such that, for i 1. gi be-
i=o

longs to C~ and is analytic near pi (roo), while go belongs to 9 Hnd va-
nishes near the points pi (i =1, ... , k).
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Since Lemma 3.1 can be used to deal with the integrals involving
gi (i =1, .., k), it remains to investigate the integral involving go.

First, we note that n (supp go) v is bounded away from a whole

neighborhood of directions close to roo. Next, we note that for the case

of go (~) infinitely differentiable with support in a unit sphere with

max we have, by section 2 of Littman [1]Di go I !

For go not having compact support, we introduce a partition of unity
199h of appropriately chosen C °° functions with compact support in unit

spheres, (necessarily) having the property that the distance from the support
of 99h to the origin goes to inf nity as a positive power of the index h. Let

goh = go (fh. Since go and any fixed number of derivatives tend to zero faster
than any power of I x I as I x ---~ oo, it follows that for a fixed m ¿ 0

faster than any negative power of h as h --~ oo.
Thus

implying that

and hence I (x, go) = 0 (r-°°).
The proof for the Cauchy-type integral J follows similar lines and in

addition uses the fact that grad P ($) on ~S cannot approach zero faster
than some negative power of x ~ I as I x ~ I --+ 00 (2).

REMARK. In lemmas 3.1, 3.2, 3.3 all x derivatives of I and J have

similar expansions. That follows simply by multiplying g (~) by the appro-
priate monomial in ~.

It can be shown that the asymptotic expansion may be formally diffe-

rentiated ; however we shall not need this fact here.
We are now able to state the following :

THEOREM 3.1. The (unique) solutions to the ~-loca~l Cauchy problems of
section 2, or to problems A and B of that section, have aSY1nptotic expansions
of the type described in lemma 3.3. Sintilar expansions hold for the derivatives
of the solutions.

(2) Here the role of sec. 2 of Littulall [1] is played by sec. 6 of reference [5] in

Littman [1].
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This theorem follows by simply applying lemma 3.3 to the solution
formulas (2.1) as well as taking into account the previous remark.

Let us mention that, for the case of the reduced wave equation, con-
vergent expansions were obtained by C. H. WILCOX [1] for N = 3 and by
S. N. KARP [1] for N = 2. (The latter was not in powers of r).

Asymptotic expansions near infinity of solution of elliptic partial diffe-

rential equations with no lower order terms are due to N. MEYERS [1]
(second order) and PAZY [1] (higher order). The latter results may also be
found in A. FBIEDMAN’s book [1]. The condition of no lower order terms,
although necessary, seems to be omitted from the statement of the theorems
in the last two references.

REMARK. The coefficients of the asymptotic expansions of lemma 3.3

may actually be computed explicitly by the methods used here.
For instance, for j = 0, we obtain :

where It (00) and I- - 17 (00) denote the number of positive and nega-
tive principal curvatures at pi respectively. K (pi) denotes the Gaussian

curvature at Pi, i. e., the product of the principal curvatures at pi, while

aP 
stands for the directional derivative of P ($) in the w direction.

000

4. Consequences of the asymptotic expansion.

LEMMA 4.1. Let u (r, (o) (r = ~ I x I, 00 a point on the unit sphere 
x =1) be defined in an open acute cone 1(0 - (00 I C K. Assume in C)(
u has an asymptotic expansion as r - oo, uniformly in CJC,

(as parametrized , j’or example by projection in the plane orthogonal to roo) with
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each as analytic in 0. Suppose further that in some semi-infinite cylinder e
(contained in fli)

u (r, co) --~ 0 uniformly faster than any negative power of xN as r -+ oo.
Then all the terms as (co) vanish in C)( identicalLy.

PROOF. We observe that it suffices to consider the two dimensional

case. Namely, choosing a plane 1t containing the origin and the point coo,
we apply the two dimensional theorem to the restriction Un of u to that

plane and conclude that each coefficient as (co) must vanish for directions
co parallel to a. Since n is arbitrary as (co) must vanish in all of c)C.

We prove the two dimensional result in the following form :

Suppose

..

is an asymptotic expansion for u for y -+ oo uniformly in C : I x  8/ y
and that the coefficients a. x are i-eal analytic in c)C. Assume further thaty
u (x, y) - 0 faster than any power of y-l, as y - oo, uniformly in I x  .

Then all x I  8.y

Proof of the two dimensional case. Each a, can be expanded in power
series

converging in a neighborhood of zero possibly depending on ~.

Thus we write

From the definition of asymptotic expansion, we know that

uniformly in %, hence uniformly for I 0153 I ~ 6.
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Therefore

uniformly in I x I :::;: 3.
Now

Hence

It follows that for each a &#x3E; 0 :

that is the same as

We observe that, for fixed x, the left hand side of the latter relation

is a polynomial of degree  a in q = y-I , vanishing at -q = 0 to order
o -~-1. Hence its coefficients

must vanish for all x, ~ I x I :::;: 6.
But this implies that all the aj’s must vanish for s -~- j :::;:: o. Since 0

is arbitrary this yields the identical vanishing of all the coefficients 
which in turn implies the identical vanishing of all the coefficients as in (4.1).

LEMMA 4.2. Let G be the region given by rotating the two dimensional

region 0’
I Xi I ~ 3 1 X2 a positive integer

about the x2-axis.
Then in the statement of lemma 4.1 the semi-infinite cylinder e may be

. replaced by G.

PROOF. Just as in the case of lemma 4.1 it suffices to consider the

two-dimensional case.

We introduce new scalar variables
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Thus we have, in place of the asymptotic expansion (4.1), the expansion

valid uniformly for x c ~, where the coefficients as are analytic functions
of their arguments 

As before we expand as about zero

and first conclude that

Exactly as in the case of the previous lemma, we get

where
if the set of surnmation is not empty,

otherwise.

Arguing as before, for fixed x, the left hand side of (4.3) is a polyno-
mial in 27 = Y-1 of degree S a having a zero at q = 0 of order g -+-1,
hence vanishing identically. Thus Ck (x) must vanish identically for all x,

~ x I ~ 6. This implies all aj = 0 and consequently all as vanish identically.

COROLLARY 1. Suppose u is a finite linear combination with constant

coefficients of integra,ls of the type appearing in (2.1), with functions f =
1*1

==fj E Y (1RN) assumed real analytic near S. Suppose that for some non-

characteristic direction (00 ( wo I = 1) u -&#x3E; 0 faster than any negative power
of I x I as x I -+ oo uniformly i~z the set

Then u --~ 0 faster thucn any negative power of I x I uniformly in a cone
containing roo.

PROOF. The proof follows by applying lemma 4.2 to the expansion
theorems of section 3.
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Let us now make the following assumption
(vi) each (complex) irreducible factor Pj of P(E) has a N -1 dimen-

" 

sional real solution set Sj .
It is then easy to prove the following

THEOREM 4.1. Suppose P (E) satisfies assumptions (i)-(iii) and (vi) and
that u (x) is the unique solution to the ~-local Cauchy problem of section 2,
with f of class C’O. 0 Suppose that wo is a non- characteristic direction and

that it occurs as an  assigned normal direction » for each of the surfaces 
If u ---+ 0 faster than any negative power of uniformly

in the set

then u has compact support.

PROOF. The proof follows directly from the previous corollary, the re-

presentation of the solution by integrals as in (2.1) and by theorem II of
Littman [2].

As special cases we mention the next two theorems.

THEOREM 4.2. S1tppOse P (~) satisfies assumptions (i)-(iii) and (vi) and

that 0)0 is a non-characteristic direction which occurs a,s an assigned normal
direction for each surface Sj of assumption (vi). In addition let us assume that

in the exterior of a bounded set and that u satisfies the radiation condition

as in problem A of section 2.

If u -1- 0 than any negative power of I x I as I x --~ 00 uniformly
in a cylindrical domain

has compact support.

PROOF. First consider the case in which u is C°°. Extend u to be

zero where it is not defined. Let U = (p u, 99 being an appropriate function
with compact support ; we have P (D) U = F E 

Applying theorem 4.1 to the last equation, we conclude that TI and

hence u has compact support.
If u is not (7°°~ let v. be a smoothed out version of u such that

ue -~ u. Applying the previous argument to we obtain that u,, has
compact support which, by LIONS’theorem on the supports of convolutions
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(J. L. LIONS [1]), must be contained in a fixed neighborhood of the support
of F. Since u~ -+it, u must have compact support.

THEOREM 4.3. In addition to properties (i)-(vi) let us assume that the xN
direction occurs as an assigned direction for each surface Sj of’ as-
sumption (vi). Now, suppose that

1¿ assumes Cauchy data with compact support on XN = T, and u = () ( 
uniformly in a semi-infinite cylinder x1-~- ... -~- xN-1 _R2, xN &#x3E; T for all
positive k.

It then follows that u == 0 for xN &#x3E; T.

PROOF. First suppose u E C °°, thus insuring that u has Cauchy data
in 0,,’ .

It then follows (as in Littman [2], proof of theorem Ill) that u =

_-- 0 (1-~- ~ for T, and some a.
Extend u to all1RN by defining it zero for Set x’=(x x N-1)’

From the hyperbolicity of P (D), it follows that the support of u is contai-

ned in a certain truncated cone

Let 99 (xN) be a 000 function which vanishes for lies bet-

ween 0 and 1 for 8  xN - T  2E and equals one for &#x3E; T + 2e, and

set Then the support of U will lie in the closed set e n .8),
N iV

while the support of P(D) will lie in the set C’E T  2BI.
Applying theorem 4.1 to the equation

we conclude that U has compact support which, again by Lions’theorem

on the supports of convolutions, is contained in Thus U and hence u
vanishes for T + 2e. Since u is independent of E, u must vanish for
all T.

If u is not C °°, mollify u to obtain a 000 approximation ue --+ u. Ap-
plying the theorem (just proved) for the C °° case to ue, we conclude that

ue « 0 in xN&#x3E; T + s. Since ue --&#x3E; u we 0 for T.
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Remaks concerning theorems 4.2 and 4.3.

a) If we are willing to assume that u is C °° we may replace the

cylindrical region in these two theorems by a spike-like region as in theo-
rem 4.1. On the other hand, for theorem 4.2, if P (D) is hypoelliptic the

assumption u E 0 - becomes redundant.
b~ More generally, let us mention that in either theorem, to be able

to replace the cylindrical region by a spike-like region, it suffices to know

that if a solution is C °~ in the coo direction, then it is 000 in all directions.
We illustrate this remark in the case of theorem 4.3.

PROPOSITION. Ij, in theorem 4.3, th,e strictly hyperbolic polynomial

is such that Qo (~l , ... , 5N-1) is elliptic of order m in ~l , ... , ;N-l’ then the semi-
in fi nite cylinder of theorevt 4.3 may be replaced by the spike like region

To prove this proposition we need the following

LEMMA. Under the conditions imposed on P (~) above, if P (D) u = 0 in

an open set S~ and if - u E for any k ~ (), then u E C °° (S~).oxN
This lemma is a consequence of the differentiability properties of el-

liptic equations and follows by a straight- forward boot-strap argument ap-
plied to the equation

PROOF OF THE PROPOSITION. We mollify u in the xN direction (only)
to obtain a solution ue which, by the previous lemma, is C" with respect
to all variables. We then apply theorem 4.3 for the spiked region to u~
(taking into account the above remark c~)) and let u~ 2013&#x3E;- u.

Remarks concerning systems.

Let us point out that the results of this paper carry over to systems
of differential equations.
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For example, consider the following system

where Pkj (D) - Pkj (2013 ° k --. 1 ... , r and j =1, ... r are artial diffe-
z ax ( ’ . ’ )

rential operators with constant coefficients and Q (0, D) is a suitable ope-
rator with coefficients depending only on the direction co (see section 2).

In this case we are reduced to consider the problem

r

where P (D) is the determinant of the system and gj ’-V (D) fk, 
k=l

= co-fac;tor of Pk; .
Therefore, if P (D) satisfies the assumptions required in this paper and

g~ is in the class Y, then the above system is uniquely solvable and the
solution ~... can be expanded in the form of the type described in
lemma 3.3 of section 3.
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