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E. E. LEVI CONVEXITY
AND THE HANS LEWY PROBLEM.
PART II : VANISHING THEOREMS

by ALDO ANDREOTTI and C. DENSON HILL(*)

In Part I of this work [6] we introduced certain cohomology groups,
and showed how they are connected with the Cauchy problem (or H. I,ewy
problem) and the Riemann-Hilbert problem, for cohomology classes and the

operator ~. In this paper we give local vanishing theorems for these groups
at boundary points of locally closed regions, partially bounded by a smooth
hypersurface in Gn. These theorems (Theorems 1 and 2) show that it is

possible to decide, according to the E. E. Levi convexity of the hypersur-
face, whether or not the problems mentioned above are locally well posed.

Global vanishing theorems or theorems of finiteness can be derived

directly from the local vanishing theorems (n. 18). Also, global Cauchy or
Riemann-Hilbert problems can be treated once the global finiteness theo-
mes have been acquired (cf. n. 19). Therefore we have refrained from set-

ting up all the machinery necessary for a direct proof of global vanishing
theorems or theorems of finiteness ; we have concentrated our attention

on the local situation. This can be handled with some simplifications
with respect to the general case.

We have followed partly [4] and partly the paper of L. R6rmander [7].
It should be pointed out that essential use is made (as is required by the
nature of the cohomology groups we treat) of the regularity theorem of J.
J. Kohn and L. Nirenberg [8].

These results have been announced at the International Congress of
Mathematicians, in Nice (1970), by one of the authors.

Pervenuto alla Redazione il 12 Maggio 1971.
(1.) Research supported by the Office of Scientific Research of the United States Air

Force under Contract AF F 44fi20-72-C-0031, and by the North Atlantic Treaty Organization
during the term of a Postdoctoral Fellowship in Science.

1. dnnalv della Scuola Norm. Sup. di Pisa.
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The reader should refer to Part I [6] for any notation not explained
here, for the definition of the cohomology groups we employ, y and for the
motivation behind this work.

§ 1. Pt8elilllinaires.

1. Sequences of Hilbert spaces and densely defined operators.
a) For the sake of completeness, we first recall some well-known

facts. Let Hi and .g2 denote two Hilbert spaces and let D be a dense

subspace of .H~ .
be a linear map and let

be the graph of t. Let Gt (D) be the closure of Gt (D) in the product topo-

logy of and Then Gt (D) is a linear subspace of 81 X ~2 .
If Gt (D) is the graph of a (necessarily linear) map T from the space

Gt (D) we say that t defines a densely defined closed linear operator

with domain DT and graph GT = Gt (D). We will call T the closure of t

with respect to D.

EXAMPLE : Let t be a differential operator t = P (x, D) with C °° coef-

ficients defined on an open set Let CJ) (A) be the space of C °°

functions with compact support in A and let H2 = E2 (A, where

dl4 is Lebesgue measure. Let be a space of square integrable C °°

functions on A such that t defines a linear operator t : D -~ H2 . The closure
of Gt is still the graph of a linear map T. For this it is enough to show
that if I are two sequences in D both converging to an ele-
ment xo E and if t (x,) (xy) -+ yo’ , then we must have yo = yo ·
Denoting by (, ) the scalar product in .L2 (A, dft) we get for every 

where tP (x, D) denotes the formal adjoint of P (x, D). The condition

(yo - yb f ) = 0, V (A), implies yo = y’ since (Z) (A) is dense in L2 (A, 
Of course the closure T of the operator t depends upon the choice of the

dense subspace D.
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b) Let T : H1.., ---~ H~ be a closed densely defined operator. We set

such that ’ °

Since DT is dense in Hi the (adjoint) linear map which

associates T*g = g- to g, is well defined.

If RTe consider in Hi X H2 the hermitian form

for U = U1 X u2 and V = v, X v2 , then we can describe the graph of T*
as folluws :

This shows that T* is a closed operator, its graph being the Q orthogonal
complement in g1 X H2 of the graph GT of T. From this it follows that

GT ix, in turn, the Q.orthogonal complement of GT~ and therefore we de-
duce that

T* is densely defined with domain DT* and that T** = T.

The following are obvious properties for the closed densely defined operator T:

In particular,

THEOREMI A. Let T : H, ... - .g2 be a closed densely defined operator.
The following conditions are equivalent :

a) Im T is closed.

b) There exists a constant c ~ 0 such that

c) Im T* is closed.
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d) There exists a constant c &#x3E; 0 such that

The best constants in b) and d) are the same. We have borrowed this theo-

rem from Hbrmander [7] (p. 91, Theorem 1.1.1).

c) DIEFINITION. A complex of Hilbert spaces and closed densely defined.
operators is a sequence

of Hilbert spaces and closed densely defined operators Ti : 
such that, for each i E Z, we have Im Ti, C Ker Ti+l . In particular, a short
complex is a sequence

with J7g Hilbert spaces and T and S closed densely defined and
such that Im T c Ker S.

Replacing the operators in (a) by their adjoints we get a new complex
(the adjoint complex)

Indeed, Ker T* = (Im (Ker S )1= Im S*. The following theorem

gives a criterion for acyclicity, i. e., for having

THEOREM B. Assume that for the complex (a) we can find a constant
c &#x3E; 0 such that

Then

(a) Im T, Im S, 1m T*, Im S* are all closed.
(b) The complex (a) is acyclic, Im T = Ker S; for g E Ker S we can

f ind u E DT n Im T* such that
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(c) The ac7joint complex is acyclic, Im ~5~ = Ker T ~ ~ for g E Ker Tff
we can find u E Ds* tl 1m S such that

(d) If h E Im ~’ ~ we can find v E Ker S such that

(e) E Im S we can E Ker T* such that

Conversely if the complex (a) is acyclic and Im S is closed, then for some
constant c &#x3E; 0 inequality (1) must hold.

PROOF. (a) !f it follows

from (1) that g || g || c2|| . Thus by Theorem A, Im S is closed and
2 3

Im S* is closed.

If g E DT* n (Ker c DT* n (Im T ) c DT y from (1) we get

|| I g I g || c I . Thus by Theorem A, Im T* is closed and Im T is
2 1

closed.

(b) Let g E Ker S. To show that g E Im T, it suffices to show that

there exists a u E .~1 such that

Indeed, then u E DT** = DT and therefore 

Since DT* is dense in H2, it follows from (Tu, f ) _ (g, f ) that g = Tu.
Since we can write jDy. = (Ker ®

Now if f E Ker S1, we have (g, f ) = 0 and T ~f = 0 since
(Ker 8)1 C Ker T*.

then by (1) we have

This shows that if f E Ker T*, then (g, f ) = 0 (1) and therefore we can con-

(i) We can write f = f1 + f, with f, E (Ker S)1 and 12 E Ker ,S n Since f and Ii
are in Ker T *, so is 12. We then have (~/)=(~/i)+(~,/2)=~ because (g, fi) = 0,

and for f2 we have .
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sider (g, f ) as a linear functional on Im T*. Moreover we have

from what we have just said. Thus (g, f ) as a linear functional on Im T*
is continuous ; hence there exists a u E Im T ~ with such

that (9~ .f ) _ (u, ~’~f )~
(e) is proved as in (b).
(d ) From (b) we have now that Im T = Ker S and Ker T ~ = (Ker 8)1. ·

Thus If h = T*u, u E DT*’ we can write

2c .--- oc -~-- v with a E Ker T " and v E Ker S n DT*. Then we have h = T ~v

and from (I) ) ) v ] ]2  c2 ) ) T~v~~2=c2 ~h~~2.
(e) is the same as (d).

It remains to prove the converse part. First we remark that from

Im T = Ker S it follows that (Im T)1= (Ker 8)1. Hence, using Theorem A
and the fact that Im S is closed, we get that the adjoint complex is acyclic:

= Ker T*.

Secondly, we have

Thus DT* = Ker ~’~ fl Ds EB Ker S n DT* (indeed, if u + v E DT* with
u E Ker T*, and if u + v E Ds, then, since v E Ds, we must
have u E Ker T * t1 Ds ). Let g E Ds (1 Dp* , 9 = u + v according to the ortho-
gonal decomposition given above. We Also by
Theorem A we must have

Adding these two inequalities we obtain inequality (1).

REMARK. An estimate of type (1) is called a W ellipticity estimate (cf.
[4], [5]). The validity of a W-ellipticity estimate implies for Hi, 1 ~2 , .B3
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the following direct sum decomposition into closed subspaces

COROLLARY. Assume that a W-ellipticity estimate (1) holds. Then given
f E .H2 with f E Ker S, there exists a unique u in .gi with u E DT n 1m T ~ and
a unique x in .g2 with x E DT* fl Ker S such that

Moreover, we have the estimates

and therefore

An analogous (adjoint) statement is valid, in which the S, T, S*, T* are re-

placed, respectively, by T*, S*, T, S.

PROOF. By looking at the above direct sum decomposition we see:
since f E Ker S, then f E 1m T; i hence for some u E DT, Tu = f: The choice
of u is uniquely determined by requiring that and from

the previous theorem (b) we get the estimate 11 u c II f IIHi. · But

(Ker T )1= Im T*. Thus there exists an x E DT- such that u = The

choice of x is uniquely determined by requiring that 
= Ker s n DT- - Hence Sx = 0 and by the previous theorem (d ) we get the
estimate

Now S*Sx = 0 since ~x = 0 ; therefore

2. Notation and preliminaries. a) Let U be an open set in where

z = (zl ... , zn) will denote the usual holomorphic coordinates.
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For u, v in C~~°s~ ( U ~,

we define the pointwise euclidean inner product

and the pointwise euclidean norm

If we want to emphasize the system of coordinates we have chosen,
we will write instead I2.

Another choice of holomorphic coordinates ~ = (~l , ... , ,,) on U will
produce an equivalent norm on any compact subset ..~ of U; i. e., we can

find positive constants °1 (K), C2 (K) sueh that for any point of K,

We fix the volume element

and define the * operator. * : ( ~T ) - 0/::-8, n-r) (U), by requiring that

One has

b) Let function ; we set

’ 

and we assume that dh # 0 on S, so that S is a smooth hypersurface. Note
that Q may be partly open and partly closed.

(2) The prime denotes summation over strictly increasing multi-indices,
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Let u, v be forms in (S~) such that

is a compact subset of ,~. We then define

If u E (’0)~ ~ E (Q), and if the intersection of their supports
is compact in Q, we obtain from Stokes formula the relation

where

We want to investigate under which conditions the boundary integral
in (1) vanishes.

For that purpose, we introduce the differential ideal 9°° = E9 9’:: 8)’
where

and we denote by ~~~r, ~~ (S~) the subspace of 9«o&#x3E; (Q) consisting of those
elements with compact support in Q. We may drop the superscript oo when
it is obvious from the context.

LEMMA 1. Consider the equation

for f E Cp~r, ~_1) (~~) and g E 0(n--r, n-s) (Q).
a) The necessary and sufficient condition for (2) to hold for any choice

of f is that g E 1°&#x3E;.
b) For g to belong to 9t:-r, n-s) (S2), it is enouyh to verify that equation

(2) holds for a,ll f E ~,~p~n-r, n-s-~-1) (Q).
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PROOF. Sufficiency. Let g = ha + Bh with a E (~) and

(3 E n-I-1) (Q). Since h = 0 on S, we get

Now if i : S --~ ~I is the natural injection, l*dh = (h) = dO = 0. Thus

the last integral is zero because dh on S is zero.

Necessity. It is enough to prove statement (b) i for that, it is enough
to show that g E 5~~,~-~ in a small neighborhood OJ of each point zo E S
in U (by using a partition of unity). If sufficiently small, we may assume
that h can be taken as a coordinate in a system of local C °° coordinates

on OJ.

Let f be compactly supported in w, and set, for 8 small and positive,

Then F (E) is a 01 function in a small interval 0 C 8 2 and we have

From the mean value theorem we derive:

for some

moreover,

Therefore, if f is of the above specified type, we must have

Let I be a real C °° function, compactly supported in m, with 0==~~1
and ~ ~ 1 in a neighborhood w’ ce w of zo. Then
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and therefore we must have

because fAg A ah = alv 12 dp.. Again by the
mean value theorem we have, for some E’ with 0  s’  E,

When E -~ 0, then 8’ --~ 0, and we deduce that

Therefore, , I 9 A ah I2 = 0 on S and consequently in a neigbborhood of zo ,

According to Proposition 1.2 of [6], this implies that g E 9(n-r, n-s) (lJ fl w’).
As a corollary, we deduce the following

PROPOSIZITON 1. (a) If v E C°°, 8 (,Q), and if for every u E iae

have

(b) If u E (Q), and if, for every v E Co~r, 8~ (Q), we have

then u E 8-1) (Q).

- 

REMARKS 1. The condition is already implied by the validity of

(au, v) = (u, lsv) for all u E 
_

2. The condition u E ~ is already implied by the validity of v) =
= (u, Ov) for all v E 9.

c) Let 0 : Q - R be a C °° function; for u, v in C~r, _~ with

(support of u) f1 (support of w) compact, we define the weighted scalar product
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and for compactly supported u we set 11 u 11’45 = (u, u) !P We call 0 a weight
on the space C(,,,) (0). The formal adjoint with respect to this scalar prod-

uct of the operator ~.===~-==2013 is the operator 61 ~ J ’ 

and the commutator is given by

If we introduce the weight ø 1 on the space (Q) and the weight
tP2 on the space C~)(J3~ we get as formal adjoint of the operator
a : --~ (~) the differential operator :

d) Given the functions 0 and h on Q, for every z E Q, we will make
use of the following notations :

For u E (S~), we set, when s ~ 1,

and

n 1n 2

where I grad k [ = 2 1 12 
2 

is the euclidean norm of the gradient
of h, calculated at z.

e) We end this paragraph with some explicit formulas we need in

the proof of the basic estimatei :
Let

where A = (Ctf , ... , Ctr), B ==== (~ .,. , Ps).
We denote the partial derivative and by a- the partial

- 

derivative 
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We have

where C = y1, ,., , ys+1). If D denotes a multi-index of length s -1 ~ we have

In particular,

and if we set 01 =- 0 - 2y), 02 == ø - 1jJ, we get

Finally, the condition u E *i7 is equivalent to the condition

§ 2. The Estimates.

This section is devoted to establishing W-ellipticity estimates for the

a-operator and boundary estimates needed for regularization of Lz-solutions.

3. Stretching the coordinates. Let 0 be a C °° function defined in some

neighborhood U of a point zo E (tn. We assume that at zo the Levi form
(zo) has at least p positive eigenvalues.

By a unitary transformation we can assume that is diagonalized
at the point zo with eigenvalues

so that

We now change the coordinates, first bringing zo to the origin by a
translation and then applying the transformation z - 1 :

with
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In the new coordinates we get

and therefore

provided u is of type (r, s) with s &#x3E; ~2013~; in fact, every component 
when J contains more than n - p indices, must have one of the indices
1~...~ among the indices appearing in J.

We can therefore find ?7o &#x3E; 0 and so &#x3E; 0 such that if q &#x3E; then,
in the ball B (zo) _ (~ ~ ~~ ~Q S Eo~, we have for any with

Now let a be a C °° function defined on 1R with the properties:

If we set ii§ =,u (Ø) we get:

We thus obtain the following

PROPOSITION 1. Let 0 be a C °° function defined in an open neighbor-
hood U of zo z7z ~’~, and such that ,~ ( ~) (zo) has at least p positive eigenva-
lues. Then we can find 

-

i) a neighborhood ro of zo with w c U,
ii) a system of holomorphic coordinates ~ in U, such that for any C°°

function p: 1R - 1R with ~C’ ~ 0, ~u" ~ 0 and arcy u E ( IT) with s &#x3E; n -_p,
we have

In particutar, for p (t) _--_ t we have
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4. Choice of the weight functions and basic inequality. a) We assume in
this section that D is compact, so that S = aD is a compact smooth hy-
persurface.

Let us consider a C °° vector field (complex-valued) on U :

Setting

we have the formula

On S we define the quantity

Then we have the formula

where dS denotes the element of area on S oriented in such a way

that dft = dS A dg, where g = 2013 ( 12) 2 h. We denote by div the

p

b) Given the form with we construct the vector

field on D

where
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A direct calculation establishes the following basic identity (cf. [5], p. 113).

valid for any choice of 0 and for any u E with s ~ 1.
The calculation is based on the computation of the divergence of the

vector field 8, making use of the Ricci identity (n. 2), and the identity

LEMMA 2. If u E (Q), then the vector field 0 h-aa the following
properties :

1 W
PROOF. Let c = - (2* aah 12) 2. Then we have2 

.11

= - e!t eL (h) lu, ti) (again by virtue of formula (5) of n. 2).

Making use of this lemma, and the previous basic identity (4), we obtain

PROPOSITION 2. For any u E *9 (Q) fl we have the following
identity :
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Here we have changed the weight 0 into - 1&#x3E;, so as to have the first

term on the left with the positive sign.

c) For the spaces

we now select the weights as follows :

on F3 we choose the weight ø,

on FQ we choose the weight ~2 = ø - 1jJ,

on F1 we choose the weight ~1= ~ - 21jJ,

where 1jJ is a C °° function on U. From Proposition 2 we derive

PROPOSITION 3. For any u E we have the following inequality :

PROOF. We have to compare ,0-w with ø1{}-ø,. From formula (4) of

n. 2 we obtain .

From the inequality a -fi b ~2 C 2 ~ a ~2 -~- 2 b ~2 we derive the estimate

2. Annali della Scuola Norm. Sup di Pisa.



764

Multiplying by e-lp and integrating over D we obtain

This proves Proposition 3.

5. Local estimates in the interior. Let U and 4ii be as before, with iii

compact.
Select a function 4l that is strongly plurisnbharmonic in Q. Replacing

4l where p : 1R is C °° increasing (p’ h 0) and convex
(ft" ~ 0), we may assume that for every u E (Q) with s &#x3E; 1, we have

From Proposition 3 we thus derive the following

PROPOSLTION 4. We can choose a strongly plurisubharmonic function 0
on Q such that :

for any choice of a C °° increasing convex function ,u on 1R, and
~ 

0

for any choice of u E (Q), with s ~ 1,
we have 

°

Here

6. Local estimates at the boundary. Let U be open in (tn and let Q =

= (x E where h is 0- and (x E 
We want to prove the following :

PROPOSITION 5. Let zo E S and assume that (zo) has at l east p po-

sitive eigenvalues. Then there exists 

i) an open neighborhood OJ of zo in U,

ii) a sy8tem of holomorphic coordinates in U,

iii) a strongly plurzsubharmonic function (P on co, such that : For any

choice of an increasing convex 000 function p on 1R, and for any u E n S~) n
n (w fl Q) with s &#x3E; n - p, we have on w f1 Q,
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Here 03 = IU (0), ~2 = ,u ( ~) - y~, 01 =,a (0) - 2y, and the above e,xpres-
sion is computed in the coordinate system given by ii).

PROOF. We apply Proposition 1 to the function h ; there is an open

set w 3 zo , and there are holomorphic coordinates C on U such that, on OJ,

for any 1t E *9 n (w n S~) with s ~&#x3E; ~ 2013 p.
Now choose P as was done in Proposition 4 (replacing Q by w there)

so that

The estimate then follows from Proposition 3.

REMARK. We may select (JJ to be a domain of holomorphy and P

strongly plurisubharmonic in w such that the sets ~x E w I ~ (x)  c~ are

compact in w for every c E 1R (i. e., ~ : w - 1R is a proper map).

COROLLARY. Under the assumptions of Proposition 5, C °°

function in w we can choose the increasing convex function fl such that for
~3 = ,~ ~ ~)~ and for 
I1 (w n Q) with s ) 7i - p, we have

if a) aitd 0 are as in the previous remark, given any J* E
E (w fl we can select ju such that

PROOF. For the validity of the inequality (a), a must be chosen such
that 

-
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or

This is possible since the second member is a bounded function on any set

~~k-~-1~ for ~== 1, 2,....
For condition (~) it is enough to choose It increasing convex such that

7. Symmetrization of the iceights. Since the paper of Kohn and Niren-
berg employs only .L2-norms without weights, we show how to write the
basic estimates using only L2-norms and putting an equal share of the

weight on each of the operators a and 0.
For notational convenience we replace the weight functions 01 7 Y

by 2 ~1, 7 2 ~2 , 7 ~~3’ For any point where f (h) (zo) has at least p
positive eigenvalues, we can select an open neighborhood co of zo which is
a domain of holomorphy, a C °° funtion 1p on co, and a strongly plurisub-
harmonic proper function 0 : OJ -+ 1R so that we have the estimate (for
2~g = ø, 2Ø2 2Ø{ = 4l - 21p)

for all u (w fl ~3) fl (OJ fl £2) with s &#x3E; it - p.
Let us denote by D the set ro n Q. If a and P are C °° functions on

D, we will use the following notation :

We then have the commutative diagrams :
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and

Applying the isomorphisms

we deduce from (1) the following inequality on D = (M fl Q :

This is valid for all 1t E *9 (D) n Co~~, 8~ (D) with 8 ] n - ~.
Moreover, given any f E (D) the choice of (P can be made such

that for f’ = e-’2 f we have 
-

We note that the problem of finding a solution to

is equivalent to the problem of finding a solution to

§ 3. Vanishing theorem for Hr,8 (D).

8. Preliminaries. a) The situaticn we are considering in the following :
On an open set U of Gn we have a C °° function h : ~ --~ 1R; we set

and we assume that dh # 0 on S, so that S is a smooth hypersurface.
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Let z E S ; we assume that (zo) has at least p positive eigenvalues.
Then according to Proposition 5 we can choose the coordinates in 

we can find an open neighborhood w of zo in U which is a domain of ho-

lomorphy, and we can choose a 000 strongly plurisubharmonic function
0 : w - 1R which is proper and such that:

for any choice of a C °° function 1jJ on w
for any choice of an increasing convex 000 function a on 1R we have

an estimate

for any u Q) fl Co~r, ~~ (w fl Q) with s ) ~z - p.
. We remark that any sufficiently small domain of holomorphy w which

contains zo will have this property. In any case, w will be assumed bounded.

b) We fix w and set Let be a sequence of real-

valued C °° functions on w such that:

i) ~y has compact support in w, V v E N

ii) for any compact subset .g c w there is an such

that fJ" == 1 on K if ’)1 (K).
We choose now the function 1f’ to be C °° on w and such that:

for v =1, 2~ 3~ ....
This function 1jJ exists, since on any compact set I~ there is only

a finite set of v’s such that ~ 0 on K.
We then choose the function ø as stated above and we take the

weights

be given. Then we can select the function f1- in such
a way that we have, according to the corollary of Proposition 5 and (n. 7).
the



769

Basic estimate on D :

for all u E *9 (D) with s &#x3E; n - p ;
moreover,

where

c) We now defines the Hilbert spaces

where denotes the closure of with respect to the
usual L2-norm (without weight).

Next we define the densely defined linear operators

as follows :

T is the closure of the operator

S is the closure of the operator

Since

we obtain, when closing the graphs, that
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In conclusion we get a short complex of Hilbert spaces and densely
defined closed operators :

PROPOSITION 6. For the above defined short we have

PROOF. By definition (D) c DT and (D) c Ds; hence i) and

ii) follow.
Let this means that for every zc E C2013i)(-D) we

0

have (Tu, v) = (u, T*v), in particular for every 2c E VO(:.,8-1) (D).
Now on (D) T is given by the differential I so

that we have, for u E Co~~, ~_1y (D), v E (D),

0

In particular, for every u E (D) we obtain

This shows that if and v E C~~r, $~ ~D~, we have

But then from (a) it follows that we must have
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According to Lemma 1~ this implies that Conversely, because of (fJ),
if v E ~.~, then again by virtue of that lemma. This proves iii).

The proof of iv) is by the same argument. Finally, v) follows from ii)
and iii).

REMARK. We have shown that

9. Density theorem. a) Consider the densely defined operator

For u E Dr* f1 Ds we define

as the « graph norm &#x3E;&#x3E; for T~ x S.
We have the following density theorem :

THEOREM 0. The space *9tD) n 00(:., s) (D) is dense in DT* il DS in the

graph norm.

PROOF. Consider the sequence q, defined in the previous section.
Let u E Dr* n Ds. Then rjy u E Dr* n Ds for each v. For this it is enough to
show that

i) if u E Ds ~ then ?i E 

ii) if 1t E DT* , E DT* .

we have u E Ds andFor we u E Ds and

For v E 00(:.,8-1) (D), we have v E DT and

Let u E Ds. We can find a sequence with ~M2013~~2013~0 and
‘I Su - 0. Then remains valid also in the limit ; 2c E Ds .
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Let Then, for any v E Co., s_l ) we have°° D we have

From this we obtain, for v E DT

Hence the functional I (v) = (,q,, u, Tv) is continuous, extends to all of 

and we can write

for some g E Hi. This shows that qv u E DT * (and T ~ (r¡,,1l) = g).
(b) From the last argument, because of the choice of q, we have

Hence there exists a constant c &#x3E; 0, independent of v, such that

for every 2c E .DT~ and E (D).
Consequently we must have

By a similar and simpler argument, we deduce from (a) that

with another constant c &#x3E; 0 independent of v.
(c) We now show that ||nv 1t 111-+ 0 as v -&#x3E; oo.
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1. pointwise on D, I ~v u - ~c I2 C I ~c 2 and II 1~ II2 C 00.
Therefore by the Lebesgue-dominated convergence theorem we obtain that

as

2. - SIt II ~ I I ~ ~~y 1t) + 11 
The second term on the right tends to zero by the same argument given
for 1. The first goes to zero as v -~ oo, because vol (supp 1 2013~ 0.

Both terms tend to zero as v - oo by the same arguments as those gi-
ven in 2.

(d) We can therefore suppose that it E DT* fl Ds has compact support
in D. We want to show that we can find a sequence with

such as k - 00.

Let D’ be a subset of D, open in D, relatively compact in D, and

such that supp u C D’. Let co’ be an open set in (o such that D’ = D n 00’,
and therefore I)’ = ix E 00’ h (x) ~ 0). We now consider on D’ the system
of equations

where f = S-u and g = T *u by definition. If we extend u, f, g to on

w’ by setting them equal to zero on w’ - D’, then since 2c E DT~ , for any
v E (w’) we have

Now the system (s) is of the type studied by H6rmander [7] (3) and
« the Cauchy data of u with respect to the operator T* vanish on h = 0 ».

(3) Note that the system has the form

with B and C of order zero with C °° coefficients that are bounded on D’; 1jJ, B, C can
be extended in a C °° fashion, keeping them bounded on w’,
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Therefore, we can apply to (E) the proposition 1.2.4 of his paper and deduce
that there is a sequence uk E (D’~~ ( lc = 1, 2, 3, ...) such that

and moreover zck E DT. (D’) ; i, e. , (D’). This com-

pletes the proof of the theorem.

b) As an immediate consequence of the density theorem we derive
from the basic estimates the following important

COROLLARY 1. For the short coinplex of Hilbert spaces and closed den-
sely defined operators, we have a W-ellipticity estimate

whenever s &#x3E; n - p.
From this corollary we obtain that if s &#x3E; 11, - p the graph norm III II

is equivalent to the «Dirichlet norm &#x3E;&#x3E;

Now let us remark that under the graph norm the domain of a closed

densely defined operator is a complete space. In particular, by applying
these remarks to the operator T* X S, whose domain is Dr* n Ds, we get
the following

Then if s &#x3E; it - p, the completion K of the space B with respect to the form
1

Qo (u, u) 2 is the space K = DT* fl Ds.

c) Now let p E S ~1 D and consider any neighborhood of p in U

such that w’ n D is compact. Set D’ = D’ (p) = D.

Then from the basic estimate we deduce the following

COROLLARY 3. Let a point p E ,S ft D and a relatively compact neigh-
borhood D’ ( p) of p in D be given. Then there exists a constant c (D’) &#x3E; 0
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such that

for all u E B (D’) = .9 (D’) fl (D’) with s &#x3E; n - p.

10. The vanishing theorem. a) We formulate the vanishing theorem as
follows :

THEOREM 1. Let U be open in Gn, let h : U -+ 1R be a 000 function
with ~x E Let zo E S be a point of S at which
-0 (h), the Levi form of h, has at least p positive eigenvalues. Then there exists
a neighborhood W of zo in U such that for any domain of holomorphy (o

contained in W, setting D = (x E w I h (x)  0 ), we have

REMARK. What really has a geometric meaning is the number a of

positive eigenvalues of the Levi form restricted to the holomorphic tangent
space ~T at zo :

But then by replacing h by with c &#x3E; 0 sufficiently large, we may always
achieve that (zo) has at least :n -~-1 positive eigenvalues.

PROOF. To prove Theorem 1 we have to show that given f E (D),
with af = 0 and s &#x3E; n - p, we can find a u E (D) such that

We may assume that f is the element we have chosen in n. 8 b), so

that f’ = (D) and -4~~&#x26;4~~ f’ = 0. Equation (1) is therefore equi-
valent to the equation

wherein we want to show the existence of a solution u’ E C~~, d_l~ (D), kno-
wing that the compatibility condition -øa8 ø’J!’ = 0 is satisfied.
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b) Weak solution of Equation (2). Equation (2) admits an L2-solution

by virtue of Theorem B and Corollary 1 of Theorem 0. Indeed, according
to the corollary of Theorem B, we see that we can find u’ E DT n Im 
and x’ E D1.’* fl Ker S c H2 such that

and

Moreover,

Equation (2’) exhibits the weak solution of Equation (2), since T is the

closure of the operator - ip,,8ipl .

c) Regularity of the solution in the interior of D. The weak solution
we have produced is of the form u’ = T*x’ where x’ is a solution of Equa-
tion (3).

Now the operator TT* + is an extension of the (system) of partial
0

differential operators (defined on 

whose principal part is

This is an elliptic system ; therefore, from the interior regularity theorem
for such systems, we get 

-

d) Regularity up to the boundary. Consider the space K = DT. f1 Ds
that was introduced in Corollary 2 to Theorem 0. We have

For any v E .g we also have
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Thus x’ is the unique solution x’ E K of the equation

when Qo is extended as a bilinear form on K. (Indeed, by the W-ellipticity
inequality, Qo defines on .g an equivalent norm to the graph norm under
which h’ is complete).

Now we make use of the estimate given in Corollary 3 to Theorem 0
and apply the results of the paper by Kohn and Nirenberg [8]. First we

remark that their assumptions a), b), c) on page 451 of that paper are ve-

rified ; also their assumptions i), ii), iii) on page 452 and 453 are verified

because in our case Q’ (u, v) == 0. The bilinear form Qo (u, v) is associated

to an elliptic system with principal part e-Y -E- ~a~. In cv’ ccco we have

e-1p ¿ const. &#x3E; 0. Thus the system is strongly elliptic in D’. Also x’ E K

as required in their Theorem 4 (page 458). Then Theorem 5 on page 459

can be applied since x’ E .g and by virtue of Corollary 3 of n. 9 (4).
It follows that x’ E (D’) ; this being true for any choice of D’, it

follows that x’ E C~~, 8~ (D). Bllt then we have

Restricted to this space, the operator T* = Øl{} -Ø2. Therefore, u’ = ~9-.~ x’’
is in (D). This achieves the proof of Theorem 1.

REMARK. Note that 4y~#-g, sends ~~(.D) f1 C~~°g~ (D) into 
Therefore, the solution u’ = 4~,lS-4~, x’ of (2’) is in (DB, and the
same is true for the corresponding solution u of (2) which we have found ;
i. e., u satisfies some « natural boundary conditions ».

~ 4. Vanishing theorem for (D, 9).

11. Basic estimate. a) For an open set UC (tn, let h : U- 1R be C °°,
be smooth (dh + 0 on S ).

We assume that

i) S~ is compact ;

(4) In the statement of their Theorem 5 the inequality of Corollary 3 is postulated
for all u E B. But in the proof (see page 476, line 20) the inequality is only used for all
u E B (D’).
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ii) an open subset Z of S is given, and there is a constant C1 &#x3E; 0

such that, for any u E (S~) with s &#x3E; n - p, we have :

at any point of I,

at any point of S - 

Let : ~2 2013~ 1R be a fixed strongly plurisubharmonic function on Q.
Then there exists a constant Cg~&#x3E;0 such that, for u E C~°° 8~ (S~) with 

we have

at each point of D. From Proposition 3, we obtain, for any 

(S~) with s &#x3E; ~~ - p, the estimate :

Replacing rJ&#x3E; by 24$ and symmetrizing the weight (here 11’ = 0), we can

rewrite the estimate as

b) Let us write as

with C~,~)(~). Then we find that

Also,
so that

We thu8 obtain the following

PROPOSITION 7..Let Q ; S, ~ satisfy the aS8untptions (i) and (ii) specified
above. Then there exists a positive constant c such that, for any 
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(,Q) with s  p, we have the basic estimate :

(where 0 is any fixed strongly plurisubharmonic function on Q).

c) Given 8  p, we consider the Hilbert spaces

where .L~h, k) (Q, dp.) denotes the closure of (Q) with respect to the

usual L2-norm.

We define a densely defined operator T : g1... -~ H2 as the closure of
the differential operator

~a --~ . 9t:: 8-1) (~’) ~ ~c~° $) (~) ~ .g2 . °

Similarly~ we define a densely defined operator S : g2 H3 as the clo-

sure of the differential operator

Since o = 0, we have Im T c Ker S. Thus we obtain a short

complex of Hilbert spaces and closed densely defined operators :

PROPOSITION 8. For the above-defined short complex, we have

’-t. Annali della Scuola Norm. Sup di Pisa.
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PROOF. By definition, 
there exists a sequence ~ u ~ m with M~65~-i)(~) ) such that 
and ~~2013p~~2013T~~-2013~0. In particular, for any we must

have

Since um E 9’:’ ,-]) (Q), we have um A *w = 0 ; hences

It follows that

But if C, =_1) (S), the action of T on It is the operator p-p (as
o -

follows from (a) by taking w E ((2)). This shows *w = 0 for

s
all hence by Lemma 1~ we must have This

proves (i). The proof of (ii) is similar.

The proof of (iii) follows from the fact that, for any u E C~~° s) (S~) and
any ~6.9(’~-i)(~ we have

This must hold in the limit also for any v E DT . Thus ’It E DT*. The proof
of (iv) is similar. Finally y (v) follows from (ii) and (iii).

12. Density theorem. For the operator

defined for u E fl Ds, we introduce the graph norm

We have the following density theorem : 
"

THEOREM 0~. The space dense in n Ds with respect to
the graph norm.



781

PROOF. Let u E DT~ We consider in Q the system of equations

- - -

where f -- Su and g = T*u by definition. Extend zc, f, g to zc, f, g on U
by setting them equal to zero outside of o. Since for any v E

E C~~°s+1) (U), we have

The system (a) is thus of the type studied by Hörmander ([5], Proposition
1.2.4). That proposition can be applied because the «Cauchy data of M with
respect to the operator S vanishes on h --- 0 ». Therefore, there exists a

sequence such that ~~2013~~2013~0. Note that we have essen-
tially used the condition that S be a smooth hypersurface.

COROLLARY 1’. For the short complex defined above, we W-ellip-
ticity estimate

 p.

Arguing as we did in 9 (b), we also deduce

COROLLARY 2’. For 2l E ~~r~ ~ s) ~ S~ ) set

1
Then if s  p, the completion K of B with respect to the norm Qù (u, u) 2 is

the space DT. fl Ds .
Finally, from the basic estimate we derive

COROLLARY 3’. For any u E B = 9(’:, ,) (Q) with s  p, we have

13. Vanishing theorem ( preliminary form). Let S~ be compact in an open
subset U c Gn with smooth boundary S, and let ~ be an open subset of S.
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We assume that where h is C°° on U, ~=~==0~ and
0 on S. 3Ioreover, we assume that h is chosen so that we can find a

constant el &#x3E; 0 with the property

for every u E C’B) (Q) with s - p.
_ 

0 0

Let us denote by 9/:, 8) (D U Z) the space of C °° forms on 0 which

belong to the differential ideal ~a generated by h and ah, in a neighborhood
of any point of I. Under these assumptions, one can prove the following

PROPOSITION 9. with and suppose that a f = 0
o

on Q. Then we can find a g E 5~-i) (~ U z) such that

PROOF. Because of the W-ellipticity estimate given by Corollary I’ to

Theorem 0/, we can apply the corollary to Theorem A. Precisely : if f’ =

we have f ’ E ~~~° ~~ (S~) Hence we can find u’ E

E Dp f1 Im T*, x’ E n Ker S such that

and therefore

Since the operator TT* + 8*S is an extension of the differential operator

whose principal part is -~- Oa, we obtain from the interior regularity
0

theorem for elliptic operators that x’ E (Q).
We have to prove that x’ is of class C °° also at points of ~, and

that it’ = T*x’ belongs to the ideal generated by hand ah at points of ~.
Consider a point zo E Z, and let (u be a small neighborhood of zo is U

such that 60 n S = w We set D = m and
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We have

since jE"== DT. n Ds by Corollary 2’ to Theorem 0’. For any v E K, we have

Therefore, x’ E ~ is the unique solution in K of the equation

Now the system we are dealing with is strongly elliptic, and we have the

inequality 
-

for all it E B (D). By the theorem of Kohn and Nirenberg, it follows that
, 

x’ is 000 in D. Thus x’ E C, s (D U Z). Therefore, u’ E (Q U X) because,
0

on QUI, u’= 
o 

,

Now u’ E DT; hence u’ E DT n s-1) (S2 U 1). Applying the argument
0 0

used in Proposition 8 (i), with w E ~), we get u’ E $_l~ (S~ ~ ~).
~ ~ 

0 

’ ’

Hence u = 6- u’ E 9t:: s-l) (Q U -Y). Therefore, u has the desired properties
and is a solution of the equation au = f ; the proof of Proposition 9 is

complete.

REMARKS 1. If the assumptions of Proposition 9 are satisfied with

8, we get, for s  p, the vanishing theorem

2. We have the estimate

- 0

for the solution g of the equation --- f (with g E ~~.s2013i) (10 ~J 2:)) that we
have constructed.

3. We have chosen 0 to be strongly plurisubharmonic. However, the
only requirement we have made on 0 is that there should exist a constant
c &#x3E; 0 such that, for all u E C~~) (~~ with s - p, we have an estimate

at each point of Q.
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14. a) We now restrict our attention to the following situation : We
are given an open bounded set D~ in Gn and two C °° function h and g on

IT with the following properties :

Let

be non-empty. Because of assumption (iii),

We will assume that

iv) D is a compact set, and that every connected component of D
meets S.

Let denote the subspace of (D) consisting of those forms
of the type ah + fl A ah, with a E and fI E (D). We set

90(r, 8) (D) = 9t:: 8) (D) n OO(r, s) ~ D)’

LEMMA 3. Assumptions:
a) There exists a constant el &#x3E; 0 such that

on S fl D for all u E with s ~ n - p.
P) is positive semidef inite.

Contention :

Let ’YJ &#x3E; 0 be given, and set

Then if f E 90&#x26;, o (D), af = 0~ and 0  s  p, W6 can find u E ~~~°8_1? 
such that, on we have

PROOF. Consider the graph of the function y = ~ t ~ I for t E and let

E &#x3E; 0 be given. We can construct a convex (t), which rounds
the corner of the graph y ..~- ~ t ~ I in the interval - 8 ~ t £ a. We may as.
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sume that

Consider the function

it is a C °° function on U. We define

Then we have

Indeed, D = (x E sup (h, g) c 0), and, moreover,

since

with the equality sign holding if and only if 8.

We also have

since

if s is sufficiently small.

Indeed, if ke = 0, then h  0 and g S 0. If h 2013 ~ ~ ~ then we are on
S (if h - g &#x3E; 8) or F (if h - g  E) ; there ke equals h or g, respectively,
and ={=0. If h - g I  E, then we are in the region {.? E D I h  8) n

n (x E D g  8}, which is a neighborhood NE of S fl r. If 8 is small, this
neighborhood Ne is small, because s fl r is compact (5). Now

(5) Let W be an open neighborhood of r. Consider 0: U - 1R2 given by 4l (x) =
= sup (h (x), g (x)). Then ø ( U - W ) is compact and does not contain the origin. Therefore,
there exists an s ~ 0 such that (lz  el n (g  El c W.
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and either 1 + 1§ # 0 or 1- ~,E ~ 0. Then either dkE A dg # 0 or dke A dh # 0
because, if 8 is small, we have dh A 0 on N~.

Finally, we have

Since Z(g) &#x3E; 0, we obtain therefore that

if 11, E C~~° ~~ ( U ) and s &#x3E; n - p.
Let ¿s = S~E n S. We can then apply Proposition 9 to DE and IE, as

the required assumptions are verified for 8 sufficiently small. Moreover, for
~ ~ 

0

small 8, (S~E~. We thus obtain a it, E Sr.0 (DE U ~E) such that

Now if e is sufficiently small, we must have

and

Restricting equation (*) to D~ , we get a solution M==M~.9(~-i)(~).

b) Let B c A be open sets in We say that (A, B) is a « Runge
pair in dimensions  q » if the natural map

is an injection for s ~ q.

LEA 4. Assumptions :
a)

fJ) ~ as in Lemma 3 ;
y) there exist 80 &#x3E; 0, no &#x3E; 0 such that, for 0  8  E~ , 0  q ’YJo ,

if we set

then (A (E), B (e, 1])) is a Runge pair in dimension -,- -P.
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Contention :

PROOF. (a) We first consider the case s = 0. then f
is a holomorphic form whose coefficients vanish on S n D. Since we have

assumed that every connected component of D meets S, we deduce that

f = 0. Therefore, the lemma is true for s = 0.
(f3) Let 0  s  p with af = 0 be given. According

to Lemma 2.1 of [6], we can find a v E ( D ) such that all the coeffi-

cients of f - av vanish on S to infinite order. It is therefore not res-

trictive to assume that all the coefficients of f vanish to infinite order on
S fl D. We extend f to 7, defined on A (~), by defining f to be zero outside
of D.

Let x be a C °° function on A (e) such that

Then and its support in the region

By assumption (y), we can find a 99 E Co~r, ~~ (B (8, such that

We define

Then /1 has the following properties :

ii) the support of 11 is compact in A (8) and contained in n B (s, q) ;

Let g be a C°° function on IT with 1 &#x3E; o ~ 0, and

Set
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Then

Let q be fixed. If 8 is siifgciently small, the hypersurface

is smooth and tranversal to Il Then If (D’ (~, ~)) and, for small 8,

Lemma 3 can be applied to D’ (E, q) and /~ . 
-

We conclude that, given f E 9/;:,) (D) with a f = 0, and given q &#x3E; 0,
we can find u E ,r;’8_l (Dr) such that

(y) Now consider a seqnence r &#x3E; &#x3E; ’YJt ) 2 ) ... &#x3E; 0 0.

If q is sufficiently small, each connected component of D~~, with p  ~’ S ~,
meets the hypersurface S. Indeed, dg =}= o on D - D~ , y 0 small, g
has no local minima in D - D,7 . Therefore, for 0  q’  q, we have that

each connected component of D’1’ meets and contains a connected compo-

nent of D17. The number of connected components of D~ can only decrease
as I tends to zero. Thus it remains constant = k when q is sufficiently
small, and, if .1 is small, each of these components meets S (g).

According to (,8), we can find a 14, E such that

Therefore,

If 8 ._=1, then P2 = Pi on 93 = ft2 on D ’q2 - - " Therefore, by set-

ting p = pv on y we define an element p E 9/;:8) (D) with

(6) In fact, D is arcwise-locally connected. The same is true for Dn if .1 is’ small.
- 

77

Thus there are finitely many components of say 4 , ... , * Let DI D2 , .., be the

connected components of D. If Ai c we can fiud a path connecting a point of Lli with
a point of 8 in D.. If o is small, the component Ai will contain that path.
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If s &#x3E; 1, then, because of (fl), we can find a

such that

Let 1:1 be C°° on D with

Then ~1 0, is compactly supported in D’70 we have

Thus we can replace P2 by ~2’ Again, we can find a

such that

Let r2 be C°° on D with

Then 1’2 OF2 is compactly supported in D,,i 7 and

Proceeding in this way, we may successively replace u, y and we

will have
.. - I -

Setting It _ ~Cy on D 4,-2 1 we get a well-defined element u E (D) for

which
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This achieves the proof of the lemma.

15. The vanishing theorem. We formulate the vanishing theorem as

follows :

THEOREM 2. Let U be open in (¡n, let h : ~I -~ .R be a C °° function
with dh =f= 0 on S -_ (x E D~ h (x) = 0). Let zo E S be a point on S at which

-0 (h), the Levi form of h, has at least p positive eigenvalues. Then there

exists a fundamental sequence of open neighborhoods of zo which are do-

of holomorphy, and such that, for D = x E co h (x)  OJ, we have

Note that a remark similar to the one made after Theorem 1 applies
here also.

In the proof, we will make use of the following criterion for Runge pairs.

CRITERION : Let X, Y be complex manifolds with Y c X. Suppose that,
for every compact set we can find a C °° lY -~ R with

the following properties :
i) for all c E 1R, the sets (x E (x) c cj are 

ii) at erery point of has at lea,st p positive eigenvalues
iii) K c ~x E X 145 (,~~) ~ sup 01 c Y.

Then for any locally-free sheaf the natural map

is injective if s S p.
For the proof of this criterion, we refer to [5] (Lemma 29, p. 122).

The statement can also be derived via Serre-duality from Theorem 12 of

[1] (p. 248).

PROOF OF THE THEOREM. It is enough to find a sequence (w) of Stein
neighborhoods of zo such that the corresponding D satisfy conditions (a),
(~3), and (y), as required in Lemma 3 and 4.

(a) By a suitable choice of local bolomorphic coordinates at zo ~ y we

may assume that zo is the origin and
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E 1R, a11 Em, and where the matrix

is hermitian and positive definite.
We set Zj = x; + i  j  n. Since 0, we may solve

the equation h (z) = 0 with respect to xi in a neighborhood yP of zo by

The Taylor expansion of 8 at the origin begins with second order terms

From h (0, ... , 0, we deduce that c + ail == 0, aj - i alj = 07
sij = 0, + = 0 or lij + = 0. It follows that

where

is positive and non-degenerate (indeed, we have Q = (z dt z) In a

neighborhood of the origin, we may repla:e h by xi - 0 ; note that the

region (h ~ 01 corresponds to ~xi ~ 0).
(p) Consider the coordinates as parameters : ( =

= (~+1 y..., Qn) = ... , We let

denote the p-dimensional space through the point (0, ~) which is parallel to
the coordinate space of 2’1 , ..., zp. On GP (0), we have - 8~ « - 0 (y, z, o) -
Q (2/1 ? X2 , z2 , ... , xp, yp) + 0 ( ) z 13). - °0 has a non-degenerate critical

point with positive definite Hessian at the origin. A C°° change of coordi-
, 2 

nates y1, x2, y2, ... , xp, yp would give to - 00 the form -- °0 = yi -~- ~ x~ +
2

F -f- y2 . This shows that we can find an E ? 0 and a 3 &#x3E; 0 such that, for
2
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any 6’ with 0  b’ ~ 6, Vo = ix, ~ ~ 2013 compact, connected,
and contained in

Moreover, dxl A d0 =~= 0 on (xl = 0~) n j~ == 2013 6,1.
Let W be an open bounded set in containing v0 , and let a &#x3E; o

( n )
be chosen so that, on the closure of W 12 ~, 7 0 is well-defined.)
We claim that there exists an I with o &#x3E; q &#x3E; 0 such that (~~.r~~2013~~) i1
f1 is compact in W x CP (C) if

If this were not true, we could find a sequence (+ --&#x3E; 0 and, for each v, a

point z" E a W such that 9 CJI) &#x3E; x, (zv, C") ~ 2013 6’. Since a W is compact,
by selecting a subsequence we may assume that -+ z E a W, so that, in

the limit as v --~ oo, we get 0 (z, 0) (z, 0) :2 - V and z E a W, which

is absurd.

(y) Consider the function

In the (Z’ ) space, we clearly have .C (g’) &#x3E; 0 if K &#x3E; 0. Let m &#x3E; 0 be such
( n )

that 0 for all points in W 12  ?? . Select
P+l )

Then the region

is compact because it is closed and contained in the compact set

If I is sufficiently small, the piece of hypersurface
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is non singular, and g’ : Sa --~ 1R is C °° on So . The set of critical values

of g’ is of measure zero. Therefore, we can select 0’ with 0  ~’ : ~ such

that, setting

we have

on the set

It follows from (y) that D is compact. Moreover each connected component
d of .D meets S -- (h (x) = 0). For otherwise we would have h (x) [ 0 on if
and L1 would be open with a compact closure A. Then, since g (x) tends to

zero at each point of Li - LI, g must have a minimum at a point x. E 4 ;
there dg = o. But this is impossible because aglax, = - 1.

Thus D satisfies the conditions specified at the beginning of n. 14 a).
Moreover, by a linear change of coordinates we may assume (cf. Proposition 1)
that assumption a) of Lemma 3 holds. We have also seen that g satisfies

assumption .P) of Lemma 3.
(E) It remains to show that assumption y) of Lemma 4 also holds.

For this we will apply the criterion for Runge pairs given at the beginning.
Let

with 0  6 ~ o° , and !to and co sufficiently small so that

B (Po, U.

Consider the three functions
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Then on are all positive definite. Set

We have

Let g be compact, K c B (tt, o). Then for some large No,

Set

80 that

We define

Then we have

and, moreover Z ( 4Y[ + 4S§ + 0 on C~(0. Hence we can find a "0 such

that K c Avo.
Let

Select p (t) and o (t) to be increasing convex C °° functions such that

Note that (p, a), so that r1  11- and ð  0. Consider the function.
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We have

Also Z &#x3E; 0 on (tp (~). Finally, since p (h) = a (g) = 0 on K, we get
.g c  1) if v is sufficiently large. But  1) c Av c B 6).
Therefore, the criterion is applicable and we conclude that (A (p,), B (p, 0))
is a Runge pair for all dimensions 

This proves that condition y) of Lemma 4 is satisfied.
Note that U can be taken to be an arbitrarily small domain of holo-

morphy, by taking and ð sufficiently small. Then

is also a domain of holomorphy, since ~ 0. We set D = h ~ 0),
and the proof of the theorem is complete.

16. Now we combine Theorems 1 and 2 with Theorem 7 of [6]. We
obtain the following conclusion in which the eigenvalues of the Levi form

are computed on the holomorphic tangent space. 
’

Let II be an open set in en and h : can be a C °° function

such that, on S = (x E (x) = 0), dh ~ 0. We set

Let zo E S and consider

We assume has ~a positive and q negative eingenva
lues, p + q  n - 1 ; then

THEOREM 3. There exists a fundamental sequence of neighborhoods
Em of z0 in en such that each co, is a domain of holomorphy and mo-

reover, setting

4 Annali della Scuola Norm. Sup di Pisa.
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PROOF. We may replace h by ech - 1, with c &#x3E; 0 sufficiently large,
so that (zo) has p +I positive eigenvalues at zo . I Then we select the

sequence mv so that each my is a domain of holomorphy of the special
type described in Theorem 2.

By Theorem 1 we have :

From Theorem 2 we also have:

Now by Theorem 7 of [6] we have the isomorphism

Hence we obtain :

Changing the sign of h permutes rot with and p with q. In particular
we have

From this the first half of the statement now follows, taking a sequence
coy where v runs through the even numbers.

The second half of the statement is proved in the same way.

REMARKS : 1. For all v E 11 we have Hr, 8 = 0 if s &#x3E; n - q -1
and Hr,8 (my) = 0 if s &#x3E; n - _p - 1. We do not know that we can find a

sequence wy such that~ for all v, = 0 if 0  s  p and (wy ) = 0
if 

2. For s = 0, we have

This is an immediate consequence of Proposition 4.3 of [6].
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3. When the Levi form of S at zo is nondegenerate (i. e., when

q==n-p - 1), then

~ 5. Concluding remarks.

17. Construction of non-vanishing cohomology classes on S. a) We colisi-
der in (tn - (0) the differential forms

where I ... an) E I1n. We set a + 1 = (Lx -f - 1, ... , an + 1 ).

LEMMA 5. Let U be an open set in (tn - (0) (n ~:&#x3E; 2) containing a closed

half sphere

Then the forms for a E I1n represent linearly independent classes of
H9L-l (U, 0) over ~.

PROOF. be a finite linear combination of those forms
with c~ E G, and suppose that there exists a differential form p of type

(0, n - 2) such that q = 8p on U.

Let o &#x3E; 0 be so small that the part S6 = 2 = B, Re Z1 ~ - 6~
of the sphere S = ~~ ~ za I2 = ~ ~ is contained in U. For any function f
holomorphic in (¡n we have

Now

therefore
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For 6 &#x3E; 0 the domain of integration of the right hand integrals is

compact and contrained in D « [ Z ) z; ) 2  s + 3 ) n Re z If B iscompact and contrained in ;1. If B is( 5
the ball, centered at the origin of radius 6 , then B and D are Runge

4

domains in en and they are separated by Re z1 + 2 Hence BUD is aB 
Runge open set in Cn. Let g be any holomorphic function in B and let K
be a compact subset of B containing the origin in the interior. We can

find a sequence I of holomorphic functions in en such that fv --~ g
uniformly on .l~ uniformly on This gives, for

any 9, the relation

This relation is only possible if all Ca’ S are zero.

b) We resume the notations of n. 16. We have on an open set U

in (In (7a &#x3E; 1 ) a C °° function h : U -+ 1R such that on

Let zo E S and consider the Levi form of h restricted to the holomor.

phic tangent space to S at z. :

We assume it to be non-degenerate with _p positive and q = n - 1 - P
negative eigenvalues. Then we have the following

THEOREM 4. Under the above assumptions, there exists a neighborood 11T

of Zo in U such that for any domain of holomorphy OJ 3 zo with OJ c W, the

groups

are all infinite dimensional over G

PROOF. (a) We first assume that p == ~ 2013 = 0. It is enough to

prove the statement of the theorem for the case r = 0. Replacing h by
- 1 with c &#x3E; 0 sufficiently large, we may assume that at zo is
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positive definite. In a convenient neighborhood W of zo we can introduce

holomorphic coordinates (with the origin at zo~ such that

positive definite. Now the hypersurface S is strongly convex
in the elementary sense. For a = (at,..., set B (a, 
If E is sufficiently small, say E  Eo with Eo &#x3E; 0, then

a B (0, E) n U + contains a closed half sphere.

Then we can find a 6 (E) &#x3E; 0 such that if a I  6 (E), then

U + also contains a closed half sphere.

Consider the coordinates Cj === ~ 2013 ~ ~ ... y ~ == ~ 2013 ~ ~ and

the forms 1Pa+l (~). These forms are regular in W± U + fl W if
0

a E U- ; moreover, by the above lemma, they define linearly independent
0

cohomology classes in (B (a, E) fl U+, Õ) provided E  a E U-, and

( a (  3 (E).
Given a domain of holomorphy co with m 3 zo , I we can find E and a as

above such that B (a, E) C Consider the commutative diagram

Since the image of a is infinite dimensional, then dima Hn-1 (w n U+, Õ)
must be infinite.

This achieves the proof since the rest of the contention is trivial. The

statement for S follows from the Mayer-Vietoris sequence (cf. Theorem 1 of [6]).
(b) In the general ca,se, we may take coordinates in a neighborhood

W of zo such that
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0, uj  0 and

if (zl ... , Zp+l) ~ v0, .,. , 0).
By restricting ~Y if necessary we may assume that

Also, we can find a sequence

such that

Set B (a, E) = (z E ~’ ~ z~ - aj 12  8}, where a = (at, ... , an). For E  Eo ,
with Eo ) 0 conveniently chosen, we will have that a B (0, E) n (zp+2 =
_ ... = 0) must contain a closed half sphere. Also we can find a

6 (E) ,~ 0 such that if  3 (E), (a(k), E j n U+ n ~z~+2 =... = zn =
= 0) contains a closed half sphere.

Introduce the coordinates

We consider the forms y in the coordinates C, , ... , (p+i , as forms in W.
Because of iii) the forms V’a+] are regular on W+ = U +. By Lem-
ma 5 they define linearly independent elements in .ffp ( W +, C~)~ since their
restriction to are such. The same is true

for HP (B (a~k~, E) f1 ~7+ ~ 0), for E and I ~ 8 (E).
Arguing as before, we obtain the desired conclusion; the proof of the

theorem is complete.

c) Nonvalidity of’ the Poincaré lemma for as. Let us consider an in-

teger p such that 0 for a fundamental sequence of neigh-
borhoods Q,, of a point zo E S, v =1, 2, 3, ....
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Consider the following diagram

where 0 = ill and

We remark first that

where a (r, p) = ) n 1 . . When r = 0, for example, we have( r ( -P
!S ) = .2  ... A with E C °° 8 ), and

a1...ap
where col 8e is a basis for Coo (0, l)-forms along S. Thus

f1 S ) is a Fréchet-Schwartz space. Moreover, the maps i, j, i,, jy ,
ry are continuous. Also, is a closed subspace of Q(r, p) s)
and therefore also a Fréchet-Schwartz space. The image (on S), being
the image of a Fréchet space, is of the first category, as by

assumption. The sets have the following
property :

Therefore,
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a) either they coincide with the whole space 
fl) or else they are of the first category, y

because they are the continuous images of the spaces 
endowed with the quotient topology of S )·

Now if the Zevi of Zo, y restrieted to the holomorphic tangent space
to S at zo , y is nondegenerate and has either p positive or p negative eigenvalues,
we have constructed elements such that

This rules out possibility (a). Therefore, under the conditions specified above,
CX&#x3E;

r-I i (Br, f1 S )) is of the first category. Hence U r-1 i (Br, p · (S~y n S ))v v ,,=1 v v

is of the first category. This means that there exists a g E n S)
such that, for every v, the equation

cannot be solved in every although the integrability condition

is satisfied.

CONCLUSION. Let S be a hypersurface in (tn such that, at zo E S, the Levi

forin of S is nondegenerate with p _positive (and q negative) eigenvalues (along
the holomorphio tangent space to S at zo). Then the cornplex of sheaves :

the Poineari lemma is not valid in dimensions p and q, but it holds in any
other dimension.

Note that the nonsolvability in the example of H. Lewy, as discussed
in [6], is included as a special case of the above result.

18. Global theorems of finiteness. Let X be a complex manifold of com-
plex dimension n, and let h : X -+ ’I~ be a C °° function on X. We set

and we assume that :

i) U- is a compact set
0

ii) on we have so that U- - U-=

=S=aU-
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iii) at each point the Levi form (the Levi form of
h restricted to the holomorphic tangent space to 8 at zQ) has at least p
positive and at least q negative eigenvalues (~ -~- q ~ ~ 2013 1).

THEOREM 5. Under the above assumptions we have

for s  q and s)n-p-1.

PROOF Using the customary argument via the bump lemma (cf. [1], p.

237) one establishes the existence of an E &#x3E; 0 such that, if we set

we have that in the range s ~ q and s ) n - ~ -1~ the restriction maps

are surjective. The first of these facts is proved in [1] ((1], Propositions 16
and 17). The second is proved in the same way, because at each boundary
point we have the local vanishing theorem given by Theorem 3, or the
extension theorems of Remark 2 to Theorem 3.

Moreover from [1] ] we also have that

is an isomorphism ([I], Propositions 21 and 22). But this restriction map
. factors as follows :

Since ,8 is surjective and a is an isomorphism, y must be injective.
But y is also surjective. This proves our contention.

COROLLARY. Under the same assumptions, and in the same ra,nges for s,
we have
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0

Indeed the groups .fI8 ( IT -, or) are finite dimensional ([11, Theorem 11).
In a similar way, using cohomology with compact supports, one can

prove the following

THEOREM 6. Under the above assu1nptions we have

for s  p -+-1 or s &#x3E; n - q. In particular, for s in this range, these coho-

mology groups are finite dimensional.

REMARK. Of course we also have vanishing theorems for or

whenever the corresponding cohomology groups (according to
0

Theorem 5 and 6) of D~- vanish. For instance: if h is such that -0 (h) has
, ~ 

0

at least p -~-1 positive eigenvalues in all of then we have

Consider in particular the case where, at every point zo E S, the Levi
form E(h) is non-degenerate with a fixed signature, say, p positive
eigenvalues and q == ~ 2013 jp 2013 1 negative eigenvalues.

Then we get that .gr~ s ( U-) is finite dimensional for s # q. Moreover
we have

THEOREM 7. Under the assumptions speoified above,

PROOF. "1" e can find an E &#x3E; 0 sufficiently small for which the restri-

ction map

has a dense image (cf. [1], Proposition 19 and [3], Proposition 7). Moreover
0 0

by [2], Theorem 2 we have that oo and that 

is a separated (Hausdorff) topological space ([4], Corollary 37 and the re-
mark on page 82). Now fl factors as follows :
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0

Thus the image of y is dense in If were finite,
then Im y would be a finite dimensional subspace of a separated topological
vector space. Therefore Im y would be closed. But then it could not be

c

dense because = oo. This shows that we must have

= oo.

19. Global Cauchy and Riemann-Hilbert problems. Let X be a complex
manifold of complex dimension 11. Let function on X

such that dh ~ 0 on S = We set

and

We shall say that the

Riemann-Hilbert problem is almost always solvable in dimension q, if

the natural map

has finite dimensional kernels and cokernels.

We shall say that the

Cauchy problem is almost always solvable in dimension q from the side

L~ -, 7 if the natural map

has finite dimensional kernels and cokernels (analogous definition for U+).
Assume now, for instance, that .X is compact and that at every point

zo E S the Levi is ’nondegenerate, with p positive and

q = n - p - I negative eigenvalues. Then we have the following situation :
(U -) is finite dimensional except for s = q, where it is inf inite di-

mensiorcal.

H -,’ ( U+) is f inite dimensional except for s = p, where it is inf inite di-

mensional.

Using the Mayer-Vietoris sequence for X = U - U U+ ([6], Theorem 1)
and the standard finiteness theorems for a compact X, we obtain further that :

If p =F q, then the Cauchy problem is of interest in diinension q fi-ont
the side U-, and in di1nension p from the side U+ ; in these dimensions it

is almost always solvable.

I fp = q = n 2 
1 

(n must be odd), then the Riemann-Hilbert p roblem is

n - I
of interest, and it is almost always solvable in dimension p = q = n " 1 .J

University of Pi8a
and

Stanford University
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