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E. E. LEVI CONVEXITY
AND THE HANS LEWY PROBLEM.
PART II: VANISHING THEOREMS

by ALpo ANDREOTTI and C. DENsON HILL (¥)

In Part 1 of this work [6] we introduced certain cohomology groups,
and showed how they are connected with the Cauchy problem (or H. Lewy
problem) and the Riemann-Hilbert problem, for cohomology classes and the

operator 9. In this paper we give local vanishing theorems for these groups
at boundary points of locally closed regions, partially bounded by a smooth
hypersurface in C?. These theorems (Theorems 1 and 2) show that it is
possible to decide, according to the E. E. Levi convexity of the hypersur-
face, whether or not the problems mentioned above are locally well posed.

Global vanishing theorems or theorems of finiteness can be derived
directly from the local vanishing theorems (n. 18). Also, global Cauchy or
Riemann-Hilbert problems can be treated once the global finiteness theo-
mes have been acquired (cf. n. 19). Therefore we have refrained from set-
ting up all the machinery necessary for a direct proof of global vanishing
theorems or theorems of finiteness; we have concentrated our attention
on the local situation. This can be handled with some simplifications
with respect to the general case.

‘We have followed partly [4] and partly the paper of L. Hoérmander [7].
It should be pointed out that essential use is made (as is required by the
nature of the cohomology groups we treat) of the regularity theorem of J.
J. Kohn and L. Nirenberg [8].

These results have been announced at the International Congress of
Mathematicians, in Nice (1970), by one of the authors.

Pervenuto alla Redazione il 12 Maggio 1971.
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The reader should refer to Part I [6] for any notation not explained
here, for the definition of the cohomology groups we employ, and for the
motivation behind this work.

§ 1. Preliminaires.

1. Sequences of Hilbert spaces and densely defined operators.

a) For the sake of completeness, we first recall some well-known
facts. Let H, and H, denote two Hilbert spaces and let D be a dense
subspace of H,.

Let ¢: D— H, be a linear map and let

G (D)= {w,y) € H X Hy |y =1 (x), x€ D)

be the graph of ¢. ILet G.,(D) be the closure of G;(D) in the product topo-

logy of H, and H,. Then G(D) is a linear subspace of H, <X H,.
If G,(D) is the graph of a (necessarily linear) map 7' from the space

Dy =prg, G:(D) we say that ¢t defines a densely defined closed linear operator

T:H,..—H,
with domain Dr and graph Gr= G,(D). We will call T the closure of ¢
with respect to D.

ExAMPLE: Let ¢ be a differential operator ¢ = P (x, D) with 0> coef-
ficients defined on an open set 4 € IR™. Let D (A) be the space of 0
functions with compact support in A and let H, = H, = L?(A, du), where
du is Lebesgue measure. Let D D (A) be a space of square integrable O
functions on A such that ¢ defines a linear operator ¢: D — H,. The closure
of @, is still the graph of a linear map 7. For this it is enough to show
that if {,},¢p, (#),cjp are two sequences in D both converging to an ele-
ment «,€ H, , and if ¢(x,)—y,, t(®)—> Y, then we must have y,=y,.
Denoting by (,) the scalar product in L? (4, du) we get for every feD(4):

(¥o— 90, f) = lim (P(x, D)x,— P (x,D),, f) = lim (x, — a,, ‘P (x,D)f)=0,
where P (¢, D) denotes the formal adjoint of P (x, D). The condition
(Yo — Y0,J) =0, M f€D(A), implies y, =y, since D (A) is dense in L*(4,du).
Of course the closure T of the operator ¢ depends upon the choice of the
dense subspace D,
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by Let T':H,..—> H, be a closed densely defined operator. We set
Dr+ = (g€ H,|3g*€ H, such that \* f€ Dy, (Tf, 9)u, = (/5 9%)m,)-
Since Dy is dense in H, the (adjoint) linear map 7'*: D+ — H,, which

asgociates T*g = ¢g* to g, is well defined.
If we consider in H, >< H, the hermitian form

QU, V)= (uy, v))m — (Uy, V)m,,

for U=u, X u, and V =wv, X v,, then we can describe the graph of T*
as follows :

GT*= n {{EEHiX]{ng(v}x)zo}'
veGp

This shows that T* is a closed operator, its graph being the @ orthogonal
complement in H, > H, of the graph Gr of T. From this it follows that
Gr i8, in turn, the @-orthogonal complement of Gr+ and therefore we de-
duce that
T* is densely defined with domain Dr+ and that 7** = T.

The following are obvious properties for the closed densely defined operator 1':

1. Ker T'=pr, (GrN H, > {0}) is closed and contained in Dr.

2. Ker T* = (Im T)*; thus Ker 7 = (Im T*}.

3. (Ker T*)! = Im T; thus (Ker T'}! = Im T*.

In particular,
Dr=Ker TP DN (Im 7%

Drs = Ker T* @ Dy« 0 (Im 7).

THEOREM A. Let T:H, ..— H, be a closed densely defined operator.
The following conditions are equivalent :
a) Im T is closed.
b) There exists a constant ¢ > 0 such that

”f”Hl <c ” Tf”ﬂ2 e fE D (Im T*)‘ = DrN (Ker T)t.

¢) Im T%* is closed.
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d) There exists a constant ¢ > 0 such that

lgllm<cl|T*|la, ¥ g€Dr+N(ImT)= Dg+n (Ker T*1,

The best constants in b) and d) are the same. We have borrowed this theo-
rem from Hormander [7] (p. 91, Theorem 1.1.1).

¢) DEFINITION. A complex of Hilbert spaces and closed densely defined
operators is a sequence
T; Tit
e H;...——> H¢+1 oo ——> H;+2 e —>
of Hilbert spaces {H.-},,EZ and closed densely defined operators T;: H;...—> H;y,

such that, for each i€ Z, we have Im T; € Ker Tiy,. In particular, a short

complex is a sequence
T S
() H,..——H,..— H,

with H,, H,, H; Hilbert spaces and I and S closed densely defined and
such that Im T c Ker S.

Replacing the operators in («) by their adjoints we get a new complex
(the adjoint complex)

T* S*
(e®) H «— .. Hy<+— .. H,.

Indeed, Ker T* = (Im T')l > (Ker S)t = Im S*. The following theorem
gives a criterion for acyclicity, i. e., for having

H ((«)) = Ker §/Im T'= 0.

THEOREM B. Assume that for the complex (x) we can find a constant
¢ > 0 such that

1) lol? <7l +118912 )  g9€Dr«nDs.
H2 1 3

Then

(@) Im T, Im 8, Im T*, Im 8* are all closed.

(b) The complex («) is acyclic, Im T = Ker §; for g€ Ker 8 we can
find w€ Dgn Im T* such that

Tu=g, ||vllm<c|g|m.
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(¢) The adjoint complex (a*) is acyclic, Im 8* = Ker T*; for g € Ker T*
we can find w€ Dg«N Im S such that

Stu=yg, [lullm,<c|glm-
(@) If heIm T* we can find ve€ Ker S such that

T*=h, [v]m=clt|m.
(e) If keIm 8 we can find we Ker T* such that

S0 =%, [l <e| k.

Conversely if the complex (a) is acyclic and Im 8 is closed, then for some
constant ¢ > 0 inequality (1) must hold.

PROOF. (a) If g€ Dgn(Ker S)tc Dgn Ker T* < Dg N Dy« , it follows
from (1) that ||g|[i{ < S_qH?H . Thus by Theorem A, Im S is closed and
2 3

Im 8* is closed.
If g€ Dp«n(Ker 7" € Dy« N (Im T)< Dr+ N Dg, from (1) we get
||g||2H < || T* ”23 . Thus by Theorem A, Im T* is closed and Im 7 is
2 1

closed.
(b) Let ge Ker §. To show that g€Im T, it suffices to show that
there exists a « € H, such that

(u7 T*f)=(gaf)’ VfEDT*-

Indeed, then u € Dy« = Dr and therefore (u, T*f) = (Tu,f), M f€ Dr+.
Since Dr+ is dense in H,, it follows from (T, f)= (g, f) that g = Tw.
Since (Ker 8)c(Im T} = Ker T*, we can write Dy: = (Ker S}t @
@ Ker 8N Dz« . Now if fe Ker 8t, we have (g,f)=0 and T*f= 0 since
(Ker 8)t € Ker T*.
If fe Ker 8N Dyp+, then by (1) we have

1/l < el T7F || -

This shows that if f€ Ker 7%, then (g, f)=0(!) and therefore we can con-

%) We can write f=f, + f, with f, € (Ker S)L and S,€Ker 80 Dpy. Since f and f;
are in Ker T'*, so is f,. We then have (g, f)=1(g,f)) + (9,/,) =0 because (g, f;) =0,
fi€ KerS1, and for f, we have || fo|| ¢ | T*f; ||



752 A. AnxpreorTI and C. DensoN HiLL: FH. E. Levi Convexity

sider (g, f) as a linear functional on Im 7* Moreover we have

[, ) <ellglla-I| T/ |lm

from what we have just said. Thus (¢, f) as a linear functional on Im 7'*
is continuous; hence there exists a  €Im T* with || u ||z, << ¢| ¢ |z such
that (g, f) = (u, T*f).
(c) is proved as in (b).
(d) From (b) we have now that Im 7 = Ker § and Ker T* =— (Ker S)!°
Thus Dy = Ker T* @ Ker SN Dyp+. If h=T*u, w€ Dy+, we can write
w=a-+v with a€KerT* and ve¢Ker SN Dr+. Then we have h = T*v
and from (1) ||o|P<<®|| T*|F = | k|
(e) is the same as (d).
It remains to prove the converse part. First we remark that from
Im 7' = Ker 8 it follows that (Im 7')! = (Ker S).. Hence, using Theorem A
and the fact that Im § is closed, we get that the adjoint complex is acyclic:
Im 8* = Ker T*,
Secondly, we have

Ds=Ker S P (Ker 8)tn Dg= Ker 8§ @ Im 8*n Dg

= Ker 8 @ Ker T*n Dg

'

Drp+ = Ker T* $ (Ker T*)1N Dp+ = Ker T* G I ' N Dy«

=Ker T* G Ker SN Dr+.

Thus Dgn Dp+ = Ker T* N Dg® Ker SN Dy+ (indeed, if u -+ v€ Dp+ with
w€Ker T'*, veKer 8N Dy+ and if u + v€ Dg, then, sinee v€ Dg, we must
have u€Ker T* N Dg). Let g€ DgN D+, g = u 4 v according to the ortho-
gonal decomposition given above. We have ||g|?=|u|?+ | v|? Also by
Theorem A we must have

[P e[ Sul®=c*| Sg ]
[olP< | T* [P = || T*g |
Adding these two inequalities we obtain inequality (1).

REMARK. An estimate of type (1) is called a W-ellipticity estimate (cf.
[4], [5]). The validity of a W-ellipticity estimate implies for H,, H,, H,
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the following direct sum decomposition into closed subspaces

T
o ——>
{Ker T é® Im T'¥| {(Im T = Ker 8) @ (Ker T* = Im 8%).
S
;“_’_‘_‘* (Im § @ Ker §*).
O

COROLLARY. Assume that a W-ellipticity estimate (1) holds. Then given
f€H, with feKer S, there exists a unique w in H, with w€ DynIm T* and
a unique x in H, with x € Dr+ N Ker 8 such that

1. Tu=f 3. Sx=20
2. u=T* 4. (TT*+ 8*S)ax = 1.
Moreover, we have the estimates

fullm=cllfllms; lelm<elwlm;
and therefore

|2 llm=< e[| fllm-

An analogous (adjoint) statement is valid, in which the S, T, S* T* are re-
placed, respectively, by T*, S* T, 8.

Proor. By looking at the above direct sum decompositicn we see:
since f€ Ker §, then feIm 7T; hence for some u € Dy, Tu = f. The choice
of u is uniquely determined by requiring that € (Ker T')ln Dy, and from
the previous theorem (b) we get the estimate ||u|m <<c|f|m. But
(Ker Tt = Im T'*. Thus there exists an « € Drs such that v = T*x. The
choice of x is uniquely determined by requiring that x € (Ker 7*1 N Dps =
= Ker SN Dy+. Hence Sx = 0 and by the previous theorem (d) we get the
estimate

H v ”H: =¢ H u “H, .

Now 8*S8xz = 0 since Sz = 0; therefore
TT*x + 8*Sx = Tu = f.

2. Notation and preliminaries. a) Let U be an open set in C», where
2= (2, ..,%) Will denote the usual holomorphic coordinates.
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For u, v in Cg. 5 (U,

— 3 —dsI A dad — SV Azl A AT (2
u= 2"uysdelAdz’, v= Z'v;;de'Ade’,(?)
Ly LJ

»

we define the pointwise euclidean inner product

e ’ - -
<“’”>_2_“I,J 1,7
17

and the pointwise euclidean norm
[uP= 2" |u; |2 =<Cu,ud.
I,J
If we want to emphasize the system of coordinates we have chosen,
we will write |« |* instead of |u|?.
Another choice of holomorphic coordinates { = (,,...,{,) on U will

produce an equivalent norm on any compact subset K of U; i. e., we can
find positive constants C, (K), O, (K) such that for any point of K,

CE) [ufi< [vff< Gy (K) |ul.
We fix the volume element
dp = (20" de, A dz, A ... A dz, A d2,,
and define the * operator, *: ;75 (U) — Cpes, n—r (U), by requiring that
(u, v) du = u A *v.
One has
¥y = (— 1)t3y,
b) Let h: U— R be a O function; we set
Q= |xeU|h@x <0},
8= {xeU|h{x)= 0},

and we assume that dk == 0 on §, so that S is a smooth hypersurface. Note
that £ may be partly open and partly closed.

(®) The prime denotes summation over strictly increasing multi-indices.
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Let u, v be forms in O 4 (2) such that
{support of «} N {support of v}

is a compact subset of 2. We then define

(u, v) = (u, v>g=f<u,v>d/»-
Q

If w€ 05 sy (2), vE Cf 5 (92), and if the intersection of their supports
is compact in 2, we obtain from Stokes formula the relation

(1) (6, v)g = (u, Dv)g + f wA*v
8

where
9 = — *o*.

We want to investigate under which conditions the boundary integral
in (1) vanishes.

For that purpose, we introduce the differential ideal 9° = @ Iy,
where

Ty (8) = (9€0p. 5 (2)| ¢ = ha + oh A B for some a € O, (2)
and some € O 1) (2)},

and we denote by Iy, (2) the subspace of I, (2) consisting of those
elements with compact support in £. We may drop the superscript co when
it is obvious from the context.

LEMMA 1. Consider the equation
(2) ] frg=20
§

for f€ O s—1) (2) and g € Cpy,n—g (2).

a) The necessary and sufficient condition for (2) to hold for any choice
of f is that g€ Tmr, n—s (2).

b) For g to belong to Jm—r, n—s) (L), it is enouyh to verify that equation

2) holds for all € *Tga, nsrr) (2).
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PrOOF. Sufficiency. Let g = ha 4 6h A f with « € Of ., n_y (2) and
B € Om—r, n—s—1)(£2). Since h = 0 on §, we get

ff/\g =/f/\5h/\,3 =ff/\ dh A B (for reasons of degree).
8 5 §

Now if ¢: § — U is the natural injection, *dh = di* (h) = d0 = 0. Thus
the last integral is zero because dh on S is zero.

Necessity. 1t is enough to prove statement (b); for that, it is enough
to show that g € 9(;’,°_,, n—s i & small neighborhood w of each point z; € S
in U (by using a partition of unity). If sufficiently small, we may assume
that A can be taken as a coordinate in a system of local C* coordinates
on w.

Let f be compactly supported in w, and set, for ¢ small and positive,

F(e) = f fAgAdh = f FAgA k.
—e<h=0 —s<h=<0
Then F (¢) is a O! function in a small interval 0 << ¢ << ¢, and we have

F(O)=0, F'()=— f fAg.

$h=s}
From the mean value theorem we derive :

F(e) _F(s)— F(0)

€ €

= F'(’s\i for some & with 0 <;< €3
moreover,

lim f FAag= /- /A g =0 by assumption if 1 € *Tou_r, nss1) (2N )
M 0{h=;} s

Therefore, if f is of the above specified type, we must have
lim 1 Fe) = 0.

en0 ¢

Let { be a real C > function, compactly supported in w, with 0="0=<C1
and { =1 in a neighborhood w’ cc w of 2z,. Then

J="(g A )€ *Topr, n—stn (2 N @),
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and therefore we must have

lim 1 Z|g/\a_h|2d,u=0,

e 0
N —esSh=<0

because fAgASh = *gAdh)AgAoh=—(]|gAdh[®du Again by the
mean value theorem we have, for some & with 0 <& < ¢,

1 ’ — —
= / C]gl\ahlzd,u,zfC|gA8k|2dS£».

—e<h=0 Sh=¢'}

When ¢ — 0, then ¢’ — 0, and we deduce that

0 = lim fCIgAB_hIZdSys[C|g/\5h|2dS.
AN Jh=g’ K}

Therefore, { | g A oh |*=0 on § and consequently in a neighborhood of 2,
g Adh|s=0.

According to Proposition 1.2 of [6], this implies that g€ Jn—_s, n—s (20 o’).
As a corollary, we deduce the following

PROPOSITION 1. (a) If v € Cp 4 (2), and if for every w€ Oy, 4—1) () we
have
(_‘_9“7 v) = (u, Pv),
then v € *9&0—1‘, n-s) ().
(b) If € Og -1y (), and if, for every ve Oy, 4 (), we have

(Ou, v) = (u, Iv),
then w € Ty o1 (Q).
REMARKS 1. The condition v€*J is already implied by the validity of
(0u, v) = (u, $v) for all u€*J.
2. The condition €Y is already implied by the validity of (Eu, V) =
= (u, 9v) for all veJ.

c) Let @: Q— R be a (= function; for u, v in Oy ,(£2) with
{support of u} N {support of v} compact, we define the weighted scalar product

(%, ¥) =fe¢ Cu,v)dp,

2



758 A. AnprrorTI and C. DexsoN HiLL: E. H. Levi Convexity

and for compactly supported u we set || u |2 = (x, ), - We call & a weight
on the space O, 5 (£2). The formal adjoint with respect to this scalar prod-

uct of the operator 4, = &:—‘3— is the operator J§, = ¢—9 iedi:—_e—dﬁ d;je?,
j j 92 J or
J §
and the commutator is given by
- 7 * P Lo .
(Or 8 — 0j 0p) U = — — -w  (Riceci identity).
0?5 02k

If we introduce the weight @, on the space O ,—;) (£2) and the weight
®, on the space O (), we get as formal adjoint of the operator

8Os (2) — OF (Q) the differential operator :
—oPp, = 01 Dot

d) Given the functions @ and h on £, for every z€ £, we will make
use of the following notations :
n 82(1) _

LD ()= = — (2) wjwy W= (W, y ., wn)E T
5 k=1 825 62

For u€ Oy 5 (2), we set, when s >1,

n 2(D
> 0

j k=1 0% 0%

L(D) [, u) () = =
I,K

and

~ 1
L(h) {u, u} (2) = I—gm—l L (R) fu, u) (2)

1
n F)
where | grad h | = 2( > | 0h/8z, |2) is the euclidean norm of the gradient
j=1
of h, calculated at z.
e) We end this paragraph with some explicit formulas we need in

the proof of the basic estimates :
Let

w= 3 U, g dzA A deB € O, 5 (U)
AB
where A = (ety ..., &), B= (,3_1 y ey B).
We denote by o, the partial derivative 8/9z, and by 8; the partial
derivative 8/6z, .
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‘We have

(1) ou = (— 1)y 3’ (—1=18-u _ & _ \dzAAdz?
AT h Yh Ay, ¥R e Vs

where C = (;71 g e ,;g.,.,). If D denotes a multi-index of length s —1, we have

(2 g, U= (—1)"1 3" 3 (7P §jeP)u, 55 dzt A dzD,
4,D j
In particular,
(3) —g¥p U = (— 1)1 2_’ P} w55 dz4 A d;D’
4,D j

and if we set &, = ® — 2y, Dy = D — y, we get

(4) —gV U=V _glg,u -+ (—1y"1 2" 3 ojp-u, ip de4 A de?,
4,D j !

Finally, the condition u €*J is equivalent to the condition

(5) A'ZDI %‘ (a] h) uA']Tb- |h=0 = 0.

§ 2. The Estimates.

This section is devoted to establishing W-ellipticity estimates for the
6-operator and boundary estimates needed for regularization of L,-solutions.

3. Stretching the coordinates. Let ®@ be a (> function defined in some
neighborhood U of a point z,€ Q" We assume that at z, the Levi form
L(D) (2,) has at least p positive eigenvalues.

By a unitary transformation we can assume that .2(®) is diagonalized
at the point 2, with eigenvalues

MW=l =0 =, MW==..=1,>0,
so that

L) ()= Z I P

We now change the coordinates, first bringing 2, to the origin by a
translation and then applying the transformation z —(:

2y = i, Zpt1 = Cp
.o .o with > 0.

2 =nlyp o =ln
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In the new coordinates we get

Ms

»
L) (@)= 2 n?h; | w;|* 4 2| w; |?
]=

j=p+1
and therefore

p n
— ’ 21, 2 ' .
L@ fwy ) e)= 34 3wty ug e P S dil g

=Pl — | |)|uf?

provided u is of type (r,s) with 8 > n — p; in fact, every component Up
when J contains more than # — p indices, must have one of the indices
1,...,p among the indices appearing in J.
We can therefore find #, > 0 and ¢, > 0 such that if % > #,, then,
in the ball B(z)={(2|{;j]®<<¢), we bave for any u€ Cu 4 (U), with
i

s.> n —p,
L(D) fu, uf (&) > [u(l) 3 L€ B (2).

Now let 4 be a O function defined on IR with the properties :
W) =0, p"(t)=0, MEeER.
If we set 5-——-,u(¢) we get:

2@ = & (9 2(9) + 4 (@) | 3 52w

= u’ (D) L(D).
We thus obtain the following

PROPOSITION 1. Let @ be a C* function defined in an open neighbor-
hood U of z, in Q% and such that L2(D)(z,) has at least p positive eigenva-
lues. Then we can find

i) a neighborhood o of 2, with w < T,

ii) @ system of holomorphic coordinates ¢ in U, such that for any C=
Sfunction u: MR — R with u’ =0, u’’ =0 and any u € Cg, » (U) with s >n—p,
we have

WD) u<L@®) (wu @), o

In particular, for u(t)=1t we have

|u 2 < L(D) fu,u} (£), VL Ew.
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4. Choice of the weight functions and basic inequality. a) We assume in
this section that Q is compact, so that 8§ = 92 is a compact smooth hy-

persurface.
Let us consider a ¢ vector field (complex-valued) on U:

t=spd ysg o
B 825 B aﬂ

Setting dsz\ =de A...A c{;ﬁ Ao Ade,, dea =dz A..Ad2gh...Ad2, and dz =
B

=dzy A...Ad7,, dz = dz; A..Adz, We have the formula

d(3(— 1)1 &0 dzy A dz + (— 1) S (— 1)p-1 & dz A dea) =
B B B
= 3 (0 &F + aﬁfl’T)dzAdz_.
B

On S we define the quantity

-

5,,— (Z|asn ) <5ﬂaﬂh+£ifa;h)}.

Then we have the formula
M [ 206+ opean = [ e as,
Q ? Yol

where dS denotes the element of area on S = 942, oriented in such a way

1
[ 2 h We denote by div¢ the

1
that du = dS A dg, where g = - (2
_ J
quantity 3 (3, & + a5 &)
8

b) Given the form u€ Cn 4 () with 8 =1, we construct the vector
field on 2

0= (&,.... 9t .., "

where B
=3 3 o (351, ip) (u, 75
j A, D
(3)
nh= — 3 37 ¢?(8;u, 75) (u, ip)

j4,D
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A direct calculation establishes the following basic identity (cf. [5], p. 113).

(4) div O =e? L(D) |u, u} 4 2 ZI& Ul —e?|gul® —e?| _gdqul?,

valid for any choice of @ and for any w€ Cg, ) (£2) with s > 1.
The calculation is based on the computation of the divergence of the
vector field 6, making use of the Ricci identity (n. 2), and the identity

| 3u |2 = ZI 8 u |2 — 3 3 (3,;"‘4,]-—1)) (a;?tA_ D).

kj 4,D

LEMMA 2. If w€*TN 05, (), then the vector field © has the following
properties :

(a) fn=0 (on 8)

ffn a8 = — [64‘ ./B\(h){u, u} ds.
Q 0

1

1 —
PROOF. Let ¢ = - (2 | s [?) %. Then we have

(a) ?7n=02’7'°5 h=—ce? 3" (Zdju, 3) (X u, 3 0h)
A, D j k

=0 by formula (5) of n. 2.

(b) =c¢XEoh=ce? 3 3 3 8kh(8 U, D) (“A.E)

k k j AD

= ce? 3 2’6 (& 0, hu
j A, D k

D) (“A,j_v)

2
—ce? X 3 &
i,k A,D (92’)‘ 8z,

U, ;zU

= —¢? ./Q\(h) {u, u} (again by virtue of formula (5) of n. 2).
Making use of this lemma, and the previous basic identity (4), we obtain

PROPOSITION 2. For any u€*J(2)N Oy 4 (2), we have the following
identity :
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(6—45 L(D) fuy v} dp + [G”QZ.‘ | 85w |*du 4 /e—q’ Bw {u, u} dS =
g 2 ! 20

=fc—4’|5u|2d,u —{—je—‘Pl 0o u [ dpu.
@ @

Here we have changed the weight @ into — &, so as to have the first
term on the left with the positive sign.

¢) For the spaces
Fi= 05 (Q), Fo=044(2), Fy= 04 o1 (2)
we now select the weights as follows:
on F; we choose the weight &, = &,
on F, we choose the weight @, = @ — vy,
on F, we choose the weight &, = & — 2y,

where vy is a O function on U. From Proposition 2 we derive

PROPOSITION 3. For any u€ O 4 (2) we have the following inequality :

Q2

fe”d’ L(D) {u, u} du + /e‘dj 2| 85u [>du 4+ fe—¢ .é\(h) {u, v} dS <
P Y
2 J0

=20 Oy |y = || 3 |y +fe‘“4’ on | oy 2w [ dg.
Q2

PrOOF. We have to compare s _g with 49_g,. From formula (4) of
n. 2 we obtain

" dy
s su=e¥ g0 _g,u—(—1y1 3" X —u,
4,D j=1 0%

— ded D
'].Ddz Adz?P .

From the inequality |a + b [><<2|a|®* 4 2|b|* we derive the estimate

|eP_gu[>P<<2-¢2| 50 _g,1 >4 20| dy 2| |2

2. Annali della Scuola Norm. Sup di Pisa.
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Multiplying by e—? and integrating over £ we obtain

| 69— %20 <20 0-0,u |+ [e‘qs 2n | oy [* | uf®du.
Il
This proves Proposition 3.

b. Local estimates in the interior. Let U and £ be as before, with £
compact.

Select a function @ that is strongly plurisnbharmonic in £. Replacing
D by @ = u(P), where u: IR — 1R is ¢ increasing (u’ = 0) and convex
(0’ =0), we may assume that for every u € O, (£2) with s =1, we have

LAD) {uyu} = 2n | u |2
From Proposition 3 we thus derive the following

PROPOSITION 4. We can choose a strongly plurisubharmonic function @
on Q such that :
for any choice of a O increasing convexr function pu on R, and
o
Jor any choice of wu€ Cypy 5 (2), with s >1,
we have

[ =@ 17 (D) |02 dp < || 0y 9oyt | 0, + || 5 ooy + [ @ | gy [ ? dp.
0 o)
Here

Dy=pu(P), Py=p(@®)—vy, P =p(P — 2y

6. Local estimates at the boundary. Let U be open in C* and let Q =
= (€ U|h(xr)<< 0}, where h is 0= and dh==0 on S={x€ U|h (»)= 0}
We want to prove the following :

PROPOSITION 5. Let 2,€8 and assume that L (h)(z,) has at least p po-
sitive eigenvalues. Then there exists .

i) an open neighborhood w of 2z, in U,
ii) a system of holomorphic coordinates in U,

iii) & strongly plurisubharmonic function @ on w, such that: For any
choice of an increasing convex C = function u on R, and for any u E*T(wn Q)N
N Co, sy (0 N Q) with s > n — p, we have on o N K,
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J e~*D) p (D) | u P du —{—fe—l‘@) |u > ds <
wnR wns

<|la ¥ a,u “2—@ -+ ||5" I 2, + fo""”” [y |?|u|?du.
w2

Here D3=pu(P), Py=pu(®)—vy, @, = u(P)— 2y, and the above expres-
sion is computed in the coordinate system given by ii).

PrRoOOF. We apply Proposition 1 to the function % ; there is an open
set w32,, and there are holomorphic coordinates { on U such that, on w,

./é(h) {ryu) =] ul?

for any w€*In Oy, 4 (0N ) with s > n — p.
Now choose @ as was done in Proposition 4 (replacing £ by w there)
so that
L(P) {u,u} = 2n|u

The estimate then follows from Proposition 3.

REMARK. We may select w to be a domain of holomorphy and @
strongly plurisubharmonic in w such that the sets {wr€w | D (x) <<c] are
compact in w for every c€1R (i.e., @: w — IR is a proper map).

COROLLARY. Under the assumptions of Proposition 5, if v is a C=
JSunction itn @ we can choose the increasing convexr function u such that for

Dy = u (D), Dy =u(P)— vy, &, = pu(P)— 2y and for any ue*@(wn())n
N Cop, 5 (0 N 2) with s >n — p, we have

() | H2“’-+f"_¢“ |ulfdS < ||o9—asu =g+ || 9% [0 -
wns

Movreover, if w and @ are as in the previous remark, given any f€
€ Op ) (0N Q), we can select u such that

) fe—% 17 du < oo.
wnR

Proo¥F. For the validity of the inequality («), x must be chosen such
that

o= (' (D) — | oy ) =1
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or

WD) =ev + | ay [

This is possible since the second member is a bounded function on any set
kP <k+4 1} for k=1,2,...
For condition (8) it is enough to choose u increasing convex such that

er (k) > 2k [ ev lflz du.

&N QAK_SP<k41y

7. Symmetrization of the weights. Since the paper of Kohn and Niren-
berg employs only ZL?norms without weights, we show how to write the
basic estimates using only L?norms and putting an equal share of the
weight on each of the operators § and .

For notational convenience we replace the weight functions &,, @,,
b, by 20,, 20,, 20;. For any point 2, €8 where .2 () (2,) has at least p
positive eigenvalues, we can select an open neighborhood w of 2z, which is
a domain of holomorphy, a C= funtion v on w, and a strongly plurisub-
harmonic proper function @ :w—+>IR so that we have the estimate (for
20, = D, 20, = D — vy, 20, = D — 2y)

1 R/ +["—2¢3 [0 2 A8 < o, D20y # |20+ || 6% 210,
N

for all u€*T(w N Q)N Csr, 4 (0 N Q) with s > n — p.
Let us denote by D the set wn . If « and § are O functions on
D, we will use the following notation :

aé}:e“geﬂ, g =e*Vef.

We then have the commutative diagrams :

3 3 N
Ogrs—1) (D) ————— Cp 9 (D) ———> O s41) (D)

le_qb, Ilﬂ. le_m

—3,0, — B30 By

0@ s—1) (D) —————— Oy (D) ———— O syn) (D)
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and
9 0]
- 2w V28, 26V28; o
Cr,s—1) (D) <———— C, 5 (D) +— Cir. s+1) (D)
| e_Ql 6——¢’ l e—¢g
|
+ J, 1
oo ¢10— Srg o 4520— D3 o0
Cir,s—1) (D) <———— Cp, 5 (D) «———— Oy, 431 (D)

Applying the isomorphisms
¢ Oy (D) = Oy (D)
e Oy (D) — Oy (D)
€ CFupn (D) = OgTep (D)

we deduce from (1) the following inequality on D =w N Q:
@) [l [ |4 a8 < o, -, [P + 12, e u
N

This is valid for all u€*J (D) N Oy, o (D) With 8 > n — p.
Moreover, given any f€ O , (D) the choice of @ can be made such
that for f/ = e—% f we have

~

3) nww=/www<w.

D

We note that the problem of finding a solution to
ou = f when of =0
is equivalent to the problem of finding a solution to

—edam =f" when _gdq,f =0.

§ 3. Vanishing theorem for H" (D).

8. Preliminaries. a) The situaticn we are considering in the following :
On an open set U of C" we have a C> function h: U— IR; we set

Q= |xeU|hx <0}, S={xeU|h (@) =0

and we assume that dh 5= 0 on §, so that § is a smooth hypersurface.



768 A. AxprrorTr and C. DexsoN HiLL: E. E. Levi Convexity

Let 2,€8; we assume that .2(h)(2,) has at least p positive eigenvalues.

Then according to Proposition 5 we can choose the coordinates in C",
we can find an open neighborhood w of 2z, in U which is a domain of ho-
lomorphy, and we can choose a (> strongly plurisubbarmonic function
®: w— IR which is proper and such that:

for any choice of a > function v on w

for any choice of an increasing convex (= function x on IR we have
an estimate

[ w @ lupaut [ awoupas <

wnR wns

< |lo, P20 % |20, + || 9 || 220, + fe_"@’ [ow [ |w]®du
wn R

for any 4 €*J (w N Q)N Oy, 4 (0 N Q) with § > n — p.
We remark that any sufficiently small domain of holomorphy w which
contains 2, will have this property. In any case, w will be assumed bounded.

b) We fix w and set D= wN Q. Let {n,},y be a sequence of real-
valued C* functions on o such that:
i) n, has compact support in w, M v€N
ii) for any compact subset K C w there is an integer »,(K) such
that , =1 on K if v =, (K).
We choose now the function y to be C* on w and such that:

n

z

k=1

2

/L | o, P < ev

azk

for »=1,2,3, ...

This funection vy exists, since on any compact set K < w, there is only
a finite set of »’s such that [517,, [P0 on K.

We then choose the function & as stated above and we take the

weights
20, = u (D)

20, = u(P)—vy
20, = u (D) — 2y.
Let f€ Cg 5 (D) be given. Then we can select the function x in such

a way that we have, according to the corollary of Proposition 5 and (n. 7).
the
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Basic estimate on D :

[l [ upas <0 s, P+ |0, 3, u
N

Sor all w€*J(D)N Cg, 5 (D) with s >n —p;
moreover,

fﬁ@vwm=ﬁWPw<w,wmef=rﬂﬁ
D D

¢) We now define the Hilbert spaces
H, = L, o) (D, du)
H, = Liy, o (D, dp)
Hy = Ly o1 (D, dp)
where L x (D, du) denotes the closure of Cop, i (D) with respect to the
usual L?norm (without weight).

Next we define the densely defined linear operators

T: H ..—H,

S: H,..— Hj
as follows:
T is the closure of the operator

— &, 5!Fl : OU‘T:’. s—1) (D) — Hz = L(2r. s((Dy dp) s
8 is the closure of the operator
—, 08, ¢ Osr, o) (D) = Hy = Ly, 441 (D, dp).
Since
—2,08,* —2,08, ¢ Coir,s—1) (D) —> 0 € Hy,

we obtain, when closing the graphs, that

Im T < Ker 8.
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In conclusion we get a short complex of Hilbert spaces and densely
defined closed operators :

T S
H ..—H,..—— Hj.

PROPOSITION 6. For the above defined short complex we have

iy  Drn Cup sy (D) = Oy, 5—1) (D)

iy  DsN Oy s (D)= Cypr, 5 (D)

iii) D« 05,0 (D) =*T (D)0 Cig, 0 (D)

i) Ds«N 0, ) (D) =*T (D) N O, a4 (D)

v)  Dz+«0 DgN Coy, o (D)= *T(D)N Cgs, 4 (D).
ProoOF. By definition Oy, s—1) (D) € Dr and Oy, 5 (D) € Dg; hence i) and

ii) follow.

Let v€ Dr+ N Oy, 5 (D) ; this means that for every wu€ Ogp, 1) (D) we
have (Tu,v) = (u, T*v), in particular for every w € Uyy, o—y) (10)).

Now on Cg,,_1) (D) T is given by the differential operator _¢,5¢l , 80
that we have, for u € O, 51 (D), v € Oy, 5 (D),

1
() (Tu, v) = (1, $,9_g,) +/g—.;w u A *v.
8

In particular, for every u € Oy, s—) (5) we obtain

(#y 09—, v — T*v) = 0.
This shows that if v € Dy« and v € Cg,, 5 (D), we have
(8) T* = 4,0_g, v.

But then from (x) it follows that we must have

1
fez YuA*w=0 for every w€ OOC(’:, s—1) (D).
g
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According to Lemma 1, this implies that vE*J, Conversely, because of (f),

if 1:6*—9, then v€ Dp«, again by virtue of that lemma. This proves iii).
The proof of iv) is by the same argument. Finally, v) follows from ii)
and iii).

REMARK. We have shown that

(@  On *J(D)n O 5 (D) we have T* = 439_g,
)  On *J(D)N Cg. ery) (D) we have 8* = 5,0 g, .

9. Density theorem. a) Consider the densely defined operator
T*=<8: H, ..—~ H, < H,.

For € Dy« N Dy we define

1
2

et = Cll [/ 4[] 7% [* 4[| S [

as the «graph norm » for T* < §.
We have the following density theorem :

THEOREM 0. The space *J(D)N Cgp s (D) is dense in Dyx N Dg in the
graph norm.

Proor. (a) Consider the sequence 7, defined in the previous section.
Let € Dy+ N Dg. Then %, u € Dp+ N Dg for each ». For this it is enough to
show that

i) if we Dg, then #, u € Dy,
ii) if w € Dy« , then #, u € Dy .
For u€ Cyy, 5 (D), we have u € Dg and
1
() S (9, u) = n, Su + e 2% omy A u.
For v € Oy, 5—y) (D), we have v€ Dy and
1

8) Twv)=n,To+e *"' on Ao

Let u€ Ds. We can find a sequence u;€ Oy, o (D) with |4 — u;||— 0 and
|| S — Suy || — 0. Then («) remains valid also in the limit; thus 5, u € Dg.
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Let w € Dr+«. Then, for any v€ Oy, s—1) (D) we have

1
(s 2, T0) == (u, 0, T0) = (u, T (9, v)) — (w, ¢ 2" 81 A D)

1
= (T*u, n,v) — (w,¢ 2° 35, A )

From this we obtain, for v€ Dy

| (2w, To) | < ¢ (w) || 0]

Hence the functional I (v)= (y,u, Tv) is continuous, extends to all of H,,
and we can write

(nv U, T’D) == (97 v)

for some g€ H,. This shows that 5,4 € Dy« (and T'* (5, u) = g).
(b) From the last argument, because of the choice of y, we have

1

(s T*u, v) — (T*n,u,0) = (u, € 2 Y o, A ),

1

e " |om|<1.
Hence there exists a constant ¢ > 0, independent of », such that

1

- Bl
o = Tt <o ([ upa) o),

supp | 37y |
for every u € Dp+ and v € Cyp, 5—1) (D).
Consequently we must have
1
K}
(») | (s T* — T*2,) llgc( f K Izdu) -
supp | 37y |

By a similar and simpler argument, we deduce from (x) that
1
F)
(9) (8 — Spy) ||gc( f |u|2d/¢> ,
supp | 37, |

with another constant ¢ >> 0 independent of ».
(¢) We now show that |||g,u — u || — 0 as » — oo.
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1. 7,4 —u— 0 pointwise on D, |gu—u?<<|u[> and ||u|?® << oco.
Therefore by the Lebesgue-dominated convergence theorem we obtain that

gt —ul|—0 as ¥y — oo.

2. | 8 () — Su|| << || 8 (1) — 4, Su|| 4+ || 7, S — Su||.

The second term on the right tends to zero by the same argument given
for 1. The first goes to zero as » — co, because vol (supp]gn,l)—}o.

5. T ) — Tl < | T* ) — T + || T — T*u ]|

Both terms tend to zero as » — oo by the same arguments as those gi-
ven in 2.

(d) We can therefore suppose that « € Dy« N Dg has compact support
in D. We want to show that we can find a sequence {uk} with

u €*T (D) N Cgpr, 5 (D)

such that |||u — ug || — 0 as k— occ.

Let D’ be a subset of D, open in D, relatively compact in D, and
such that supp w € D’. Let w” be an open set in w such that D’ = DN w’,
and therefore 1)’ = {x € w’ |k () << 0}. We now consider on D’ the system
of equations

Su =f
(€)
T*u =g,

where f= Su and g = T"« by definition. If we extend u, f, g to u, f?; on
w’ by setting them equal to zero on «’ — D’, then since u € Dy, for any
v € O s—1) (0’) We have

~

(9, ’v)w’ = (T*“’ V)p = (u, Tv)p

= (u, _45‘3451 ’L’)wf .

Now the system (¢) is of the type studied by Hormander [7](3) and
«the Cauchy data of w with respect to the operator T* vanish on h=0».

(3) Note that the system has the form
1

L
e 2 du+Bu=Ff
1

L4
e 2 Qu+ Cu=y,

with B and C of order zero with C ° coefficients that are bounded on D’; v, B, C can
be extended in a C°° fashion, keeping them bounded on '



774 A. Axpreorrt and C. DexsoNn HiLL: E. E. Levi Convexity

Therefore, we can apply to (€) the proposition 1.2.4 of his paper and deduce
that there is a sequence wu;€ Coy, 5 (D’), (k= 1,2, 3,...) such that

lle —uz ||| —0 as k— oo,

and moreover u € Dps N Oy, o (D'); 1. €., uk€ *J (D) n Coir, 5y (D’). This com-
pletes the proof of the theorem.

b) As an immediate consequence of the density theorem we derive
from the basic estimates the following important

COROLLARY 1. For the short complex of Hilbert spaces and closed den-
sely defined operators, we have a W-ellipticity estimate :

lw|P<|| T*u |4 | Su|® NV w€Dgsn Dy

whenever s > n — p.
From this corollary we obtain that if s > n — p the graph norm ||| |||
is equivalent to the « Dirichlet norm »

a@p = T+ | S

Now let us remark that under the graph norm the domain of a closed
densely defined operator is a complete space. In particular, by applying
these remarks to the operator T* < 8, whose domain is Dy« N Dg, we get
the following

COROLLARY 2. For any u€ Cop, 5 (D) set

Qo (%) = || g, D—gy 1 [P + || —3, 65, 1 |I?

B =*J(D)n Oy, 5 (D).

Then if s > n — p, the completion K of the space B with respect to the form
1

Qo (4, u)? is the space K = Dyg+«N Ds.
¢) Now let pe SN D and consider any neighborhood @’ of p in U

such that o’ N D is compact. Set D’ = D’ (p) = o’ N D.
Then from the basic estimate we deduce the following

COROLLARY 3. Let a point pe SN D and a relatively compact neigh-
borhood D’ (p) of p in D be given. Then there exists a constant ¢ (D’) > 0
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o

such that
[ |wPdS<<e(D’) Q(u,u)
§

for all we B(D’')=*J(D’)N Cgy, s (D) with s > n — p.

10. The vanishing theorem. a) We formulate the vanishing theorem as
follows :

THEOREM 1. Let U be open in C", let h: U— 1R be a 0> function
with dh=£0 on S={w€U|h(x)=0}. Let 2 €8 be a point of S at which
L (h), the Levi form of h, has at least p positive eigenvalues. Then there exists
a neighborhood W of 2z, in U such that for any domain of holomorphy w
contained in W, setting D = |x € w | h (x) << 0}, we have

H"8(D)y=0 for §$>n—p.

REMARK. What really has a geometric meaning is the number = of
positive eigenvalues of the Levi form restricted to the holomorphic tangent
space HT at z,:

n 2}, -
2> 0 b_(_z()) W; Wi
jok=1 0%; 0%k

L(h) IHT (7y) =
* ok (z,)
jf] 32’,‘

Wi = 0.

But then by replacing & by e®* with ¢ > 0 sufficiently large, we may always
achieve that .2(h)(z,) has at least = 4 1 positive eigenvalues.

PRrROOF. To prove Theorem 1 we have to show that given f€ O, (D),
with gf =0 and s > n — p, we can find a w€ Oy ,_;) (D) such that

(1) du = f.

We may assume that f is the element we have chosen in n. 8 b), so
that f’ = ¢ 2 fe L, o (D) and _g,04, f = 0. Equation (1) is therefore equi-
valent to the equation
(2) —aida, ¥ =f,

N 00

wherein we want to show the existence of a solution u’ € O, s—1) (D), kno-
wing that the compatibility condition _¢,5¢, Jf’ =0 is satisfied.
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b) Weak solution of Equation (2). Equation (2) admits an L?-solution
by virtue of Theorem B and Corollary 1 of Theorem 0. Indeed, according
to the corollary of Theorem B, we see that we can find w’ € DynIm T*C H,
and 2’ € Dy+ N Ker S € H, such that

(2) Tw=y, |/
and
W=, e =]
Sz’ = 0.
Moreover,
(3) (TT* + 8*S) 2’ = f".

Equation (2) exhibits the weak solution of Equation (2), since T' is the
closure of the operator —¢.5¢1-

¢) Regularity of the solution in the interior of D. The weak solution

we have produced is of the form u’ = T'*x’ where 2’ is a solution of Equa-
tion (3).

Now the operator TT* 4 S8*S is an extension of the (system) of partial

[e]
differential operators (defined on Oy, 5 (D))

—4515951 4510—!?2 + @20—¢3 —¢38_¢l

whose principal part is _ _
eV {69 + 09).

This is an elliptic system ; therefore, from the interior regularity theorem
for such systems, we get

& €02, (D).

d) Regularity up to the boundary. Consider the space K = Dy« N Dy
that was introduced in Corollary 2 to Theorem 0. We have

2’ €DpxN Ker S€ Dypx N Dg= K.
TFor any v€ K we also have
(f'yv)=(TT*, v) + (8*8x, v)

= (T*z’, T*v) + (Sx’, Sv).
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Thus «’ is the unique solution z’ € K of the equation
Q, (@, v) = (f', ) for all v € B,

when ¢, is extended as a bilinear form on K. (Indeed, by the W-ellipticity
inequality, ¢, defines on K an equivalent norm to the graph norm under
which K is complete).

Now we make use of the estimate given in Corollary 3 to Theorem 0
and apply the results of the paper by Kohn and Nirenberg [8]. First we
remark that their assumptions a), b), ¢) on page 451 of that paper are ve-
rified ; also their assumptions i), ii), iii) on page 452 and 453 are verified
because in our case @’ (u,v)=0. The bilinear form @, (v, v) is associated
to an elliptic system with principal part e—¥ {519 + 05—]. In w’ ccw we have
e~¥ = const. > 0. Thus the system is strongly elliptic in D’. Also 2’ € K
ag required in their Theorem 4 (page 458). Then Theorem 5 on page 459
can be applied since z’ € K and by virtue of Corollary 3 of n. 9 (%).

It follows that a’€ O, 4 (D’); this being true for any choice of D, it
follows that 2’ € O, 5 (D). But then we have

&’ € D+ N Ker SN CF 5 (D) = *J (D) N CF 4 (D) N Ker §.

Restricted to this space, the operator 7'* = ¥ _g4,. Therefore, v’ = ¢9_g4, 2’
is in O s—y) (D). This achieves the proof of Theorem 1.

REMARK. Note that 48_g, sends *T(D)n O, (D) into *T(D)N CFF ,—y) (D).
Therefore, the solution w’ = g _g,a’ of (2’) is in *T(D)N €, (D, and the
same is true for the corresponding solution w of (2) which we have found ;
i. e., u satisfies some «natural boundary conditions ».

§ 4. Vanishing theorem for H " (D, ).

11. Basic estimate. a) For an open set Uc C”, let h: U— 1R be O,
Q={ceU|h(w)<<0} and S={x€U|h(x)=0} be smooth (dh 5= 0 on ).
We assume that
i) £ is compact;

(*) In the statement of their Theorem 5 the inequality of Corollary 8 is postulated
for all we B, But in the proof (see page 476, line 20) the inequality is only used for all
we B (D).
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ii) an open subset X of § is given, and there is a constant ¢, > 0
such that, for any € O, (£2) with s > n — p, we have:

./Q\(h) {uyu) =>¢, | ul? at any point of X,

_/Q\(h) {u,u} =0 at any point of § — 3.

Let @: Q— 1R be a fixed strongly plurisubharmonic function on £.
Then there exists a constant ¢, >~ 0 such that, for u € Oy, (2) with s =1,

we have
L(D) fu,u) =c¢y | ul?

at each point of Q. From Proposition 3, we obtain, for any we*T(Q)N
N Cq 4 (2) with s > n — p, the estimate :

oy || u ||2_4; 4o [ e | uPdS < | du ||2_4; + || 9-a u ||"1_¢.

z
Replacing @ by 20 and symmetrizing the weight (here vy = 0), we can

rewrite the estimate as

ol wlfF =+ e [l WS < || —abo u[* + | oP-a u P
3

b) Let us write u €*J(Q)n Cm sy (Q) as

with v€ J(Q2) N Co—r, n—s (£2). Then we find that

0P =|vF sothat [ulf= o]

Also, L
—g0g *v=*_gds,

45’19._¢ *_U = + *511«.

We thus obtain the following

PrOPOSITION 7. Let Q; 8, X satisfy the assumptions (i) and (ii) specified
above. Then there exists a positive constant ¢ such that, for any ve J(Q)
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N O o (2) with s <p, we have the basic estimate :
v+ [I vPFAS<c{]l o [*+ || —sPs v |?)
z

(where D is any fived strongly plurisubharmonic function on Q).

¢) Given s << p, we consider the Hilbert spaces

H, = Liy, ) (2, dp),
Hg = L%r, o (2, du),
H; = L?n s4+1) ('Q? du),

where L?h, 1 (2, du) denotes the closure of Cj ) (£2) with respect to the

usual L%norm.
We define a densely defined operator 7': H, ... — H, as the closure of

the differential operator

60—0: Tms-1) (Q) — T g (2)C H,y.

Similarly, we define a densely defined operator §: H, ..— H; as the clo-
sure of the differential operator

20—0° Ton Q) — I sty (R € Hy .

Since 40_¢ o ¢0_¢ = 0, we have Im 7 c Ker S. Thus we obtain a short
complex of Hilbert spaces and closed densely defined operators :

T s
H,..——H,.. H,.

PROPOSITION 8. For the above-defined short complex, we have
i) DrN C sy (R) = Tir, s-1) (2),
i) DsN O a(Q) =T 9 (2)
i) Dy N 0g g Q2) = Ca s (Q),
iv)  Ds«N Cglap (2 = O ap) (D),
V) DieNDsn Ol (2) =T (2

3. Annali della Scuola Norm. Sup di Pisa.
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PROOF. By definition, I, ,—1)(2) < Dr. Let w€ DrN Co,_y) (2). Then
there exists a sequence {un,) With u, € ;7 ey (2) such that | a, —u||— 0
and || 30—s tm — Tu|— 0. In particular, for any we C, (L), we must
have

(@5—45 Um 5 w) —> (Tu, w).

Since um € Iy, s—1) (2), We have fum A*w = 0; hence
8

(455—q5 Uy 5 W) = (“m y — % w).
It follows that

(o) (uy Vs w) = (Tu, w), W we 0(:,08) (Q)°

But if w€ Dpn O, ,—1) (Q), the action of T on u is the operator 20— (a8

follows from (a) by taking w € Oy, 4 (!3)). This shows that [ uA*w =0 for
N
all we Og, 5(2); hence by Lemma 1, we must have u€ I, (2). This
proves (i). The proof of (ii) is similar.
The proof of (iii) follows from the fact that, for any u € O, (£2) and
any v€ J, 41 (£2), we have

{(Tv, ) = (v, — g¥g n).

This must hold in the limit also for any v € Dy. Thus u € Dr+. The proof
of (iv) is similar. Finally, (v) follows from (ii) and (iii).

12. Density theorem. For the operator
T* < 8: Hy...— H, X Hy
defined for u € Dz+ N Dg, we introduce the graph norm
1
e flF = Cllw P I T* P A ] S [[?)2
We have the following density theorem :

THEOREM 0’. The space T 5 (L2) in dense in Dy« N Dg with respect to
the graph norm.
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PRrROOF. Let w€ Dy« N Dg. We consider in Q the system of equations

Su=f

()
T*u =g,

where f= Su and g = T*u by definition. Extend u, f, g to 17, j?,' 'J on U
by setting them equal to zero outside of Q. Since u€ Dg, for any v€
€ Cr. 341 (U), we have

(fy 0o = (Su, v)g = (1, 8*v)g = (1, —sP3 V)7 -

The system («) is thus of the type studied by Hoérmander ([5], Proposition
1.2.4). That proposition can be applied because the « Cauchy data of » with
respect to the operator 8 vanishes on & = 0». Therefore, there exists a
sequence 1 € Iz 4 (Q) such that ||| u — wu ||| — 0. Note that we have essen-
tially used the condition that S be a smooth hypersurface.

COROLLARY 1’. For the short complex defined above, we have a W-ellip-
licity estimate

lwlP<<e{l| T*|® 4[| Su [P}, % w€Dr«n Dy,

provided s < p.
Arguing as we did in 9 (b), we also deduce

COROLLARY 2’. For w€ Ty 5 (), set

Qo (v, v) = ” —o¥au H2 -+ || ¢6__,; u ||2;

B = g(j? 9 (2).
1
Then if s <p, the completion K of B with respect to the norm @, (u, u)? is
the space D+ N Dg.
Finally, from the basic estimate we derive

COROLLARY 3’. For any w€ B = Ty , (82) with 8 <p, we have

[| u [>dS < ¢Q, (u, u).
=

13. Vanishing theorem (preliminary form). Let {2 be compact in an open
subset U & " with smooth boundary S, and let 3 be an open subset of S.
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We assume that Q = (i(x)<< 0} where L is C= on U, 8= {h =0}, and
dh #4= 0 on 8. Moreover, we assume that & is chosen so that we can find a
constant ¢, > 0 with the property

2wfwuy=cluf  on Z,
2wy fu, u) =0 on §S—3

for every u€ O 4 (Q) with 8 > n —p.
o
Let us denote by Jj. ) (2 U X) the space of C> forms on QU3 which

belong to the differential ideal J, generated by h and '8h, in a neighborhood
of any point of 2. Under these assumptions, one can prove the following

PROPOSITION 9. Let feT; 5 (Q) with 0 < s < p, and suppose that 5f=0
on Q. Then we can find a g€y o) (!3U 2) such that

—5g=f.

PRrOOF. Because of the W-ellipticity estimate given by Corollary 1’ to
Theorem 0’, we can apply the corollary to Theorem A. Precisely: if f/ =

=e%f, we have f/ €9, (2) and 40_gf’ = 0. Hence we can find u’€
€ DrnIm T* «/ € Dr=N Ker S such that

Tw =f’, v =T*’, Sa' =0,
and therefore
(TT* 4 S*S)x’ = f".
Since the operator 7T7T* 4 S*S is an extension of the differential operator

455—45 —¢19¢ + ——4’045 455—¢7

whose principal part is o9 - 19—5, we obtain from the interior regularity
o
theorem for elliptic operators that a’ € O 5 (£2).
We have to prove that x’ is of class O also at points of X, and

that »’ = T*x’ belongs to the ideal generated by A and 9h at points of 3.
Consider a point 2,€ X, and let w be a small neighborhood of 2, is U
such that oN S=wn 3. We set D= w N 2 and

B (D)= 9(1', 3) @n 0&3«, 5 (0N Q).
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We have
2’ €Dp=NKerSC Dy N Dg= K,

since K = Dy« N Dg by Corollary 2’ to Theorem 0’. For any v‘E K, we have
(f7,v) = (TT*x’, v) + (S*Sx’, v) = (T*a’, T*v) 4 (Sx’, Sv).
Therefore, 2" € K is the unique solution in K of the equation
Q, @, v) = (f’,v) for all ve€B.
Now the system we are dealing with is strongly elliptic, and we have the

inequality
/‘l u > dS << ¢Q (u, n)
5

for all w€ B (D). By the theorem of Kohn and Nirenberg, it follows that
x’is 0= in D. Thus @’ € Oy 4 (IOJ U X). Therefore, u’ € Cp 5_) (!3 U ) because,
on QU 2w = _ghgpa.

Now u’€ Dr; hence u’€DrpN Op ,_y) (!3 UX). Applying the argument
used in Proposition 8 (i), with w € Og, 5 ([02 Ux) we get w €I -1y (!02 u 3.
Hence v = ¢ 2 u’ € Jo oy (!OJ U ). Therefore, u has the desired properties

and is a solution of the equation ou = f; the proof of Proposition 9 is
complete.

REMARKS 1. If the assumptions of Proposition 9 are satisfied with
> =28, we get, for s < p, the vanishing theorem

H™(Q,9)=0.
2. We have the estimate
le? g|P<c*|le? S

for the solution g of the equation ou = f (with g€ I, (53 U X)) that we
have constructed.

3. We have chosen P to be strongly plurisubharmonic. However, the
only requirement we have made on & is that there should exist a constant
¢ >> 0 such that, for all u€ 05, (2) with § > n—p, we have an estimate

L(D) (e, u} =c|u? at each point of £.
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14. a) We now restrict our attention to the following situation: We
are given an open bounded set U in C" and two O function h and g on
U with the following properties :

i) on S={(x€U|h(®) =0}, dh==0, set S=8n T,
ii)on '={x€U|g(@) =0], dg==0, set '=1nT,
iii) on SNI, dhAdg = 0.
Let
D={xeU|h(x)<0}n{weU|g(x) <0}

be non-empty. Because of assumption (iii),
D=(xeU|h(@)<0)n{z€U|g(x) < 0.

We will assume that
iv) D is a compact set, and that every connected component of D
meets 8.
Let J. 4 (D) denote the subspace of O, (D) consisting of those forms
of the type ah 4 f A8k, With a€ Ci, (D) and BE€ Og oy (D). We set
itr, ) (D) = Tz, 5 (D) 0 Cogz, ) (D).

LEMMA 3. Assumptions :
o) There exists a constant ¢, > 0 such that

2wy fu,u) =0, |uf?

on SN D for all ue€ O o (U) with s >n — p.
B) L(g) is positive semidefinite.
Contention :
Let n > 0 be given, and set

D,=(h(@=0}n{g@+y<0).

Then if f€ Ty o(D), 6f =0, and 0 < s <p, we can find we I ,_;, (D,)
such that, on D, , we have

5u=f.

ProoF. Consider the graph of the function y = |t| for t€1R, and let
&£ > 0 be given. We can construct a convex funetion A, = 1, (¢), which rounds
the corner of the graph y=/|t| in the interval — ¢<<t< e We may as-
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sume that
i) 2 €0>(R),
i) A@=|t| if |t|=¢
ity A () >0,
iv) 0<<1,(t)<<1 for 0<<t<s,
v) — 1< (t)<<0 for —e<<t<<O.

Consider the function

k= 1 (h4 94+ 2 (h—9)};

o

it is a O function on U. We define
Q= {xeU|k, <0}, 02, = (v U|k, =0}
Then we have

(o) QNn{|h—g|=ef=Dn{[h—g|=¢)
Indeed, D = {w € U |sup (k, g) < 0}, and, moreover,
k.>=sup(h,g)  since A (h—g)=|h—g]|,

with the equality sign holding if and only if |h —g|=>e.
We also have
B Q.cD since k. = sup (k, g),

(¥) dk. =0 on 09, if ¢ is sufficiently small.

Indeed, if kK, =0, then h<<0 and ¢g<<0. If |h— g|=¢, then we are on
S8 (if h—g=¢) or I' (if h— g<Te); there k, equals h or g, respectively,
and dk,=4=0. If |h—g|<e then we are in the region {x€D|h < e)n
n {wef) |9 <€}, which is a mneighborhood N, of SNI. If & is small, this
neighborhood N, is small, because SN I" is compact (). Now

1
dle, = - (1 + &) dh + — (L — &) dg,

ro| =

() Let W be an open neighborhood of SN I. Consider @: U~ R given by P (x) =
= sup (k (x), g (x)). Then P (U — W) is compact and does not contain the origin, Therefore,
there exists an & > 0 such that (h < ejNfg<sjcw.
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and either 14;==0 or 1 —1;3=0. Then either dk,Adg==0 or dk,Adh==0
because, if ¢ is small, we have dhAdg 3 0 on N,.
Finally, we have

1
(0) Lk)= 5 (L 2) LG+ 1 —4) L -+ 4 (h—g)|6h — 59 7).
Since .2(g) =0, we obtain therefore that
./Q\(ke) {u, u} > % 1+ ) .,/Q\(h) {u, u} > %(1 + ) | u?

if w€Cnp g (U) and s >n — p.
Let Z,=£2.N8. We can then apply Proposition 9 to 2, and 2, as
the required assumptions are verified for ¢ sufficiently small. Moreover, for

small &, €I, (Q). We thus obtain a u, € I,_, (9, U 3,) such that
* 5%8 =f.
Now if ¢ is sufficiently small, we must have

D,€9, and 3Z.ND,=8ND,.

Restricting equation (*) to D, , we get a solution u = wu, € I, ;1) (D).
b) Let Bc A be open sets in C". We say that (4, B) is a « Runge

pair in dimensions << ¢ » if the natural map

Hi'' (B)— Hy"*(4)
is an injection for s << gq.

LEMMA 4. Assumptions :

@)
p)

y) there exist ¢, > 0, 5o > 0 such that, for 0 <e<<eg, 0 <y,
if we set

as wn Lemma 3 ;

1
B(gn) ={(h<eln —?n<g<0 ,

A ()= {h <& nfg <ol

then (A (¢), B (e, ) ts a Runge pair in dimension << p.
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Contention :
H"s(D,I)=10 if s < p.

PROOF. (x) We first consider the case s = 0. If f€ H (D, J), then f
is a holomorphic form whose coefficients vanish on SN D. Since we have
assumed that every connected component of D meets S, we deduce that
S = 0. Therefore, the lemma is true for s = 0.

() Let 0 <<s <p and f€Ir, (D) with gf =0 be given. According
to Lemma 2.1 of [6], we can find a v€ J; ,_; (D) such that all the coeffi-
cients of f — a_v vanish on SN D to infinite order. It is therefore not res-
trictive to assume that all the coefficients of f vanish to infinite order on
SnD. We extend f to :f: defined on A (¢), by defining 7 to be zero outside
of D.

Let y be a C> function on A (¢) such that

1 on {g<—n/3)

0 on {g> — y/4}.

Then xfe Cor, 5 (4 (¢)), and a—(x?) =Ex A f' has its support in the region
(h==0in{—n3<g<—n/4}c Ben.
By assumption (y), we can find a ¢ € Cy,, 4 (B (& ) such that

I Af= 9.
We define

f1="—"x7—-—(p.

Then f, has the following properties :
i) afy=20;
ii) the support of f, is compact in A (¢) and contained in D,s N B(e, );
iii) fy=/, on D,.
Let o be a O function on U with 1= ¢ =0, and

1 on {g2—n/2}

0 on {g < — 1.
Set

D (5, m) = [h<sejN{g <O}
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Then
D" (&,1) 2> DN B (e n),

D' (e, )N DD, =D,
Let # be fixed. If ¢ is sufgciently small, the hypersurface

S(en)={h=2e0

is smooth and tranversal to [. Then f, € Jyr,s (D’ (¢, 7)) and, for small g,
Lemma 3 can be applied to D’ (¢, %) and f, .

We conclude that, given f€ ;" (D) with 6 f=0, and given 7>0,
we can find u € Jy ,—y) (D,) such that

f=0duon D,.

() Now consider a sequence 7 > n, > 1, > 7, > ... > 0 with 4, — 0.
If # is sufficiently small, each connected component of D,., with ¢ <%’ <7,
meets the hypersurface S. Indeed, dg 5= ¢ on D— D, , for n > 0 small, ¢
has no local minima in D — D, . Therefore, for ¢ < 5’ <7, we have that
each connected component of D,, meets and contains a connected compo-
nent of D, . The number of connected components of D, can only decrease
as 7 tends to zero. Thus it remains constant — % when # is sufficiently
small, and, if » is small, each of these components meets S (6).
According to (8), we can find a u, € I, ,—y) (D,,) such that

Sf= 5/1, on D, .
Therefore,

0 (/’4’ - //‘v«-]) =0 on -Dn,,_l .

If s=1, then u,=u, on D, , ug = u, on D,,,.... Therefore, by set-
ting u=pu, on D, , we define an element wE€ e (D) with

(%) In fact, D is arcwise-locally connected. The same is true for 1—)” if n is small.
Thus there are finitely many components of [_)n , say Au"-’dk' Let D, D,,.. be the
connected components of D. If 4, « D;, we can fiud a path connecting a point of 4, with
a point of S in Dj. If # is small, the component 4; will contain that path.
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If s > 1, then, because of (§), we can find a

01 € Tz, s—2) (Do)
such that _
Mo — My =9 o, on D, .

Let 7, be C* on D with
Lonjg=<—n
==+ 257

T, =
1 0 on

Then t, o, is compactly supported in D, , and we have
ps = py — 0 (v, 0,) = p, on D, .
Thus we can replace u; by u;. Again, we can find a

02 € Jrs—2) (D)
such that
M3 — Pz =080y on Dy, .
Let 7, be 0* on D with

1 on [g < — 1)
s

To =
2 0 on

Then 7, o, is compactly supported in D, , and

i = ps — 8 (vy05) = i on D,,.
Proceeding in this way, we may successively replace u, by u,, and we
will have

f=20u, on D,,

w=p_1 on D, _,.
Setting u = u, on D,
which

_,» We get a well-defined element u€9qs—1) (D) for

op=f
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This achieves the proof of the lemma.

15. The vanishing theorem. We formulate the vanishing theorem as
follows :

THEOREM 2. Let U be open in Q", let h: U— R be a C> function
with dh 3= 0 on S=|{x€ U |h(x)=0}. Let 2,€8 be a point on S at which
L(h), the Levi form of h, has at least p positive eigenvalues. Then these
exists a fandamental sequence of open neighborhoods {w) of 2, which are do-
mains of holomorphy, and such that, for D = {x € w | h (x) << 0}, we have

H"*(D,I)=10 for s<p.

Note that a remark similar to the one made after Theorem 1 applies
here also.
In the proof, we will make use of the following criterion for Runge pairs.

CRITERION : Let X, Y be complex manifolds with ¥ < X. Suppose that,
for every compact set K cY, we can find a O function ®: X— R with
the following properties :

i) for all c€ 1R, the sets {x€ X | D (x) << ¢} are compact;
ii) at every point of X, L2(P) has at least p positive eigenvalues ;
iii) K c{wre X| D (r)<<sup P} c Y.
Then for any locally-free sheaf F, the natural map

H{ Y, F)— Hi (X, F)
is injective if s <<p.
For the proof of this criterion, we refer to [5] (Lemma 29, p. 122).
The statement can also be derived via Serre-duality from Theorem 12 of
[1] (p. 248).

PROOF OF THE THEOREM. It is enough to find a sequence {w} of Stein
neighborhoods of 2, such that the corresponding D satisfy conditions (a),
(), and (y), as required in Lemma 3 and 4.

(x) By a suitable choice of local holomorphic coordinates at z,, we
may assume that z, is the origin and

1
2

Mo =+ 2 a5 2 2R (s Fay5) +
2

) n
+ 2454+ 2 wlalP+0(]2]}
2 41
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where 1; > 0, ;€ 1R, a, €IR, and where the matrix
(112 Qg .- Q1p

A = a/21 12 .0

apl 0 ..Zp

is hermitian and positive definite.
We set z; = a; | iy;, © <<j << n. Since (0h/ox,),,= 1 == 0, we may solve
the equation h (2) = 0 with respect to x, in a meighborhood W of z, by

Xy =0y, %2

The Taylor expansion of 6 at the origin begins with second order terms

950@/3-}—3/121%6(22?«';2,-) +2Re(§si,~zizj)—{—§lij Z,EJ—I—O(IZP).

From h(8,y,, 2, ,2,) =0, we deduce that ¢4 a,, = 0, aj — i ay; = 0,
8$ij — 0, and lij + 6,-]‘ Aj =0 or lij —|— 6,']‘ Mj == 0. It follows that

—0=0Q4 2 w|zP+0(|z[)
»+1
where

n —_
Q=ay 91 + 2Regi4‘/1§“u’ #

¥4
—I—f/b'lzil2

is positive and non-degenerate (indeed, we have @ = (24'2)|,—). In a
neighborhood of the origin, we may replace h by x, — 0; note that the
region {h << 0} corresponds to {x, < 6).

(B) Consider the last » — p coordinates as parameters: ( =
= ({pq1y o0 s Ln) = (Bpt1 9 o0 5 2n) We let

gr (C) = {zp—i—l = Cp—i—l y ey B = Cn}

denote the p-dimensional space through the point (0, ) which is parallel to
the coordinate space of 2, ,..., 2,. On B?(0), we have — 0, = — 0 (y,2,0)=
Q Yy s @y 25y ey Xy, Yp) + 0 (|2 °). Thus — 6 has a non-degenerate critical
point with positive definite Hessian at the origin. A C* change of coordi-

P
Nates Y, , &y, Yoy o, &p, Yp Would give to — 6, the form — 9, =y; + > wf —+
2

4
+Z‘yf . This shows that we can find an ¢ > 0 and a 6 > 0 such that, for
2
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any ¢ with 0 <7’ <9, Vo= {r, < 6.} N {x, = — 8’} is compact, connected,
and contained in

r
PAESIPTEY

n{z, > — é).
Moreover, dx, Ad0 == 0 on {z, = 6,}n {z, = — ¢’}
Let W be an open bounded set in C?(0) containing V,, and let 6> 0
n
be chosen so that, on the closure of W><§ 2| |2<o§, 6 is well-defined.
p+1

We claim that there exists an 5 with ¢ > 5 > 0 such that (§ >x,=>—4d’}n
n C?() is compact in W < C#({) if

S |GE<n.
p+1

If this were not true, we could find a sequence {*— 0 and, for each », a
point 2* €8 W such that 0 (2”, (") >, (2*,{”) = — ¢’. Since 9 W is compact,
by selecting a subsequence we may assume that 2 — z€0 W, so that, in
the limit as » — oo, we get 6 (2,0)>x,(2,0)=— 4" and 2€0 W, which
is absurd.

(y) Consider the function

g’:—xi—}—KZ |C]]2-
p+1

In the (2,() space, we clearly have L(g’)= 0 if K > 0. Let m > 0 be such
n

that 6 << m for all points in W % 2 |GPE< 17}. Select
1

1{226—"’;—’”.

Then the region
v, < O)n g’ <0}, for 0 <,

is compact because it is closed and contained in the compact set
nnl 2 el
p=e,=—n) 3 |GE=<4nl.
p+1

If 5 is sufficiently small, the piece of hypersurface

8= o, = 0] n [g” < 4]
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is non singular, and ¢’: S;— 1R is C* on Ss. The set of critical values
of ¢’ i8 of measure zero. Therefore, we can select 6’ with 0 << 6’ << J such
that, setting

we have

on the set

1
(5) We take U= W ZIC]|2<?7]E, h=x1_97 g=9"‘“5';

D={zeU|h(@<0}n{reU|g ) <0}

It follows from (y) that D is compact. Moreover each connected component
4 of D meets S8 = {h(x) = 0]. For otherwise we would have k (x) <0 on 4
and 4 would be open with a compact closure 4. Then, since g (x) tends to
zero at each point of 4 — 4, g must have a minimum at a point x,€4;
there dg = 0. But this is impossible because dg/5r, = — 1.

Thus D satisfies the conditions specified at the beginning of n. 14 a).
Moreover, by a linear change of coordinates we may assume (cf. Proposition 1)
that assumption «) of Lemma 3 holds. We have also seen that ¢ satisfies
assumption f) of Lemma 3.

(€) It remains to show that assumption y) of Lemma 4 also holds.
For this we will apply the criterion for Runge pairs given at the beginning.
Let

1
B(u,0) ={h<<pu}n —»70<y<0

with 0 < u<<py, 0 <o<<0%, and u, and o, sufficiently small so that
B (py, o) € U.
Consider the three functions

pp=h—pu

1 2
‘Pzzg_"F%

1 é" 2 1
‘7"3=_9+F7lzll —9
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Then on C?((), L(¢,), L(py), L(ps) are all positive definite. Set

By = {SUP (P15 P2y Pg) < 0}.
We have
By © By, for all Nei
BN cB (,u, o)

}{,’ By = B (u, o).

Let K be compact, K € B(u, o). Then for some large N,

K c By,.
Set
a, = inf ¢;, (pizwzo
By, | a;|
gso that
By, = {sup (9, , Dy, ¢y < 1}
We define

1
A, =07 4 &7 L &y <1 ——, v
4

Then we have
A,c 4,41, UA, = By,

and, moreover .2(®) 4+ &, + P;) <0 on C?((). Hence we can find a », such

that K € 4,,.
Let
9, = sup h, é, = sup g.

%0 Yo

Select u (t) and o () to be increasing convex C* functions such that

p(t)y=0if t <19, 6(t)=0ift£51
lim p(t)= 4 co lim o () = - oo.
t— u t— 0

Note that A4,, € B (u, o), so that 9, < u and 6 < 0. Consider the function.

1

14

v v v 1 p,
v, =puh) 409+ P+ P2+ Py + -1—7%121-[2.
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We have
{w, < const} cc A (u) = {h < u}n {g < 0}.

Also L(y,) >0 on Q7 (). Finally, since u(h)=o0(9)=0 on K, we get
K c{y, <1} if » >, is sufficiently large. But {y, <1} c€ 4, € By, o).
Therefore, the criterion is applicable and we conclude that (4 (u), B (u, o))
is a Runge pair for all dimensions < p.

This proves that condition y) of Lemma 4 is satisfied.

Note that U can be taken to be an arbitrarily small domain of holo-
morphy, by taking and J sufficiently small. Then

w={xeU|g ) <0}

is also a domain of holomorphy, since L(g)=0. We set D= N {h << 0},
and the proof of the theorem is complete.

16. Now we combine Theorems 1 and 2 with Theorem 7 of [6]. We
obtain the following conclusion in which the eigenvalues of the Levi form
are computed on the holomorphic tangent space. '

Let U be an open set in C* and »: U— 1R can be a (= function
such that, on 8= {w€ U|h(x) =0}, dh == 0. We set

Ut=(xeU|h@)=0}, U—={xecU|h(x) <0}

Let z,€ S and consider
n 2 _
> M W W
Jy k=1 82_,‘ 0%k
.Q(h) IHT(ZO) =
n oh
> 8—(20) wj = 0.
j=1 (92]

We assume that .2 (h)|mr(z,) has p positive and q negative eingenva
lues, p + qg<<n — 1; then

THEOREM 3. There exists a jfundamental sequence of neighborhoods
[@))y e o 7 in Q" such that each w, is a domain of holomorphy and mo-

reover, setting
w, =w,NUT, of =w,N T+

we have
[s>n—q—1 s>n—p—1
Hné(w}) =10 fm" H"s(w;)=0 fors
. or or
v even ’ y odd (
0<<s<yp 0<s<Tgq

4 Annali della Scuola Norm. Sup di Pisa.
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ProoF. We may replace h by e* — 1, with ¢ > 0 sufficiently large,
so that L2 (h)(z,) has p + 1 positive eigenvalues at 2,. Then we select the
sequence w, So that each w, is a domain of holomorphy of the special
type described in Theorem 2.

By Theorem 1 we bave:

H"*(w;)=0 for s >n—(p-+1)=n—p—1
From Theorem 2 we also have:
Hr* (w7, J)=0 for s <p -+ 1.
Now by Theorem 7 of [6] we have the isomorphism
Hn et (w7, T) > H*(w}) for s =1,

Hence we obtain :
H™? (wf) =0 for 0 <s<p.

Changing the sign of k permutes w} with w;, and p with ¢. In particular
we have
Hné(wf)=0 for s >n—q—1.
From this the first half of the statement now follows, taking a sequence

w, where » runs through the even numbers.
The second half of the statement is proved in the same way.

REMARKS : 1. For all €} we have H"*(w;)=0 if s>n—q¢q—1
and H"*(w;)=0 if s >n—p — 1. We do not know that we can find a
sequence w, such that, for all », H"*(0}) =0 if 0 < s < p and H™*(w]) =0
if 0<<s<yq.
2. For s =0, we have
H"(w,) = H"° (w}) for » even if p >0

H"(w,) = H"*(w]) for » odd if ¢ > 0.

This is an immediate consequence of Proposition 4.3 of [6].
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3. When the Levi form of § at 2, is nondegenerate (i. e., when
q¢=mn—p — 1), then

H"s(wf)=0 for s = 0,p (v even)
H"*(w;)y=0 for s 0,q¢ (v odd).

§ 5. Concluding remarks.

17. Construction of non-vanishing cohomology classes on S. a) We consi-
der in Q" — {0} the differential forms

— - > -
S(— 1)z dzf A Adefia . ade®
(I)a = J

(Z 57 &
J
w=dz, A..Adz,
where (o, y...y0,) €N We set a« + 1 =(a; +1,..., a0 4 1).

LEMMA 5. Let U be an open set in C" — {0} (n = 2) containing a closed

half sphere
S=1(2eQ"|Z|z|*=¢€ Re z, = 0}.
J

Then the forms wey, for o€IN™ represent linearly independent classes of
H"1(U, O) over Q.

PRrROOF. Let 5 = 2 ¢, wot1 be a finite linear combination of those forms
with ¢, € ¢, and suppose that there exists a differential form u of type

(0,n — 2) such that 5 = 6_;4 on U.

Let 6 >0 be so small that the part §, ={X|2;|?=¢ Rez, > — o}
of the sphere 8 ={X|z|>=¢} is contained in U. For any function f
holomorphic in ¢* we have

ffw/\n = (_(27!92 5 e 99 1)

n—1) & * dz°

5
ffa)/\n_—_—[fw:\?? po= fd(fwA,u):ffwA,u,
5, s, S, 35,

g

therefore

21" |a|
Zxtliz S o= [ronut [roan.

35, s—s,
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For 6 > 0 the domain of integration of the right hand integrals is
compact and contrained in D= {3 |z|2 e+ )N %Re 2 < -%%. If B is

the ball, centered at the origin of radius —Z—, then B and D are Runge

domains in C" and they are separated by Re (zi -+ —;—) Hence BUD is a

Runge open set in C". Let g be any holomorphic function in B and let &
be a compact subset of B containing the origin in the interior. We can
find a sequence {f,} of holomorphic functions in €" such that f,—g¢
uniformly on K and f,— 0 uniformly on 48,U (8 — 8,. This gives, for
any g, the relation

@ai) o adg
(n—1)175 Oa g o (0) = 0.

This relation is only possible if all ¢,’ s are zero.

b) We resume the notations of n. 16. We have on an open set U
in C*(n > 1) a C= function h: U— IR such that on

S={weU|h(x)=0}, dh==0.

Let 2,€ 8 and consider the Levi form of h restricted to the holomor-
phic tangent space to S at 2;:

n 2 —
) 9 h(_z_o) wW; Wy
Jy k=1 BZJ 82’]‘;
B(k) IHT () = "
T 0h(z)
2 wW;: = ().
= ey 00

We assume it to be non-degenerate with p positive and g=n—1—7p
negative eigenvalues. Then we have the following

THEOREM 4. Under the above assumptions, there exisis a neighborood W
of z, in U such that for any domain of holomorphy w3z, with w < W, the
groups

Hm?(@wt), H"9(w™), H»? (SN w), I™7(SN w)

are all infinite dimensional over C

PROOF. (a) We first assume that p =n — 1, ¢ = 0. It is enough to
prove the statement of the theorem for the case r = 0. Replacing & by
¢* — 1 with ¢ > 0 sufficiently large, we may assume that .2(h) at z, is
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positive definite. In a convenient neighborhood W of z, we can introduce
holomorphic coordinates (with the origin at z;) such that

h(z)=Rez + 3 agziz+0(|z[),

with 2 a; z,;, positive definite. Now the hypersurface § is strongly convex
in the elementary sense. For @ = (a,, ..., a,), set B(a,€)= (z€C"| Z2; — a;|* <¢€}.
If € is sufficiently small, say € < €, with €, > 0, then

0 B(0,€)N U+ contains a closed half sphere.
Then we can find a d(€) > 0 such that if |a | << d(€), then
0 B(a,€)N U+ also contains a closed half sphere.

Consider the coordinates (, = 2, — @, , «. , {n = %y — @y, and
the forms 1,41 (£). These forms are regular in wrutaw it

[e]
a € U~ ; moreover, by the above lemma, they define linearly independent

cohomology classes in H"~' (B (a,€)n U, O) provided € <€,, a€ 107—, and
|a| < 6(€).

Given a domain of holomorphy o with w3%,, we can find € and a as
above such that B (a, €) < w. Consider the commutative diagram

“ .
Hv1 (W+, 0)—— H"1(B(a,€) 0 U+, O)
e
N
H1(wn U, O)

Since the image of « is infinite dimensional, then dimg H*!(wn U, O)
must be infinite.
This achieves the proof since the rest of the contention is trivial. The
statement for S follows from the Mayer-Vietoris sequence (cf. Theorem 1 of [6]).
(b) In the general case, we may take coordinates in a neighborhood
W of 2, such that

h(z2) = Rez, + a,, |2 |* + 2 Re (z, z ajzj)+

p+1 n
+ 2 4|yl — 2wy 402
2 p+2
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with 4; >0, u; < 0 and
b2 S pt1
ayy |2 [* -+ 2 Re (ziz “fzj)"‘ 3 il &4P>0
2 2

if (2yy s 2p1) =10, ..., 0).
By restricting W if necessary we may assume that

WA (e = oo =241 = 0] N U+ = [2,].
Also, we can find a sequence

¥ = (@®,..,al,0,..,0), k=1,2 ..,

such that
i) a® € U—
ii) lim a® =z,
k —+ oo
i) Wnie, =al, ..,z =al }nU+=g.

Set B(a,€)={2€CQ"| 2|2 —a;>? <&, where a=(a,,...,a,). For € <€y,
with €, > 0 conveniently chosen, we will have that § B (0,€)N U+ N {zp4 =
= ... =2, = 0} must contain a closed half sphere. Also we can find a
0 (€) > 0 such that if |a®| < J(€), then 6B (a®,6)N UT N (2ppa = ... =2, =
= 0} contains a closed half sphere.

Introduce the coordinates

(k) (k)
Zi =8 — Q1 ey £p+1 =2pf1— Qpi1, Cp+2 = Rp 42y eeey ln="2n.

We consider the forms y,q;, in the coordinates {,, ..., {411, as forms in W.
Because of iii) the forms w,y, are regular on W+ = Wn U+. By Lem-
ma 5 they define linearly independent elements in H? (W +,0), since their
restriction to H? (W +n {e,4;=... =2, = 0}, O) are such. The same is true
for H? (B (a®,e)n U+, O, for € <€, and |a®| < d(€).

Arguing as before, we obtain the desired conclusion; the proof of the
theorem is complete.

¢) Nonvalidity of the Poincaré lemma for 8,. Let us consider an in-
teger p such that H"? (SN Q,) == 0 for a fundamental sequence of neigh-
borhoods 2, of a point z,€8, »=1,2,3,....
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Consider the following diagram

Ty
Znr (@0 8) — > 272 (2,n 8)

T, T,

? %

TV
Br? (20 8) —_3 Bn#{Q,n 8)

T T
|

0 0

where Q = Q, and
Z"? = ket (35: Qu, 5 (2N 8) = Qu, p41) (2 N 8)},

B"? =im {53: Qir, p—1) (8, N 8) — Qpr, py (2, N S)}.

We remark first that
Qr,py (2,0 8) =[0 (2,0 )] »

—1
where « (r, p) = ( Z ) (n » ) . When r = 0, for example, we have
Q(o,p) (Q,, n S) = > Qg .. .a, Wag Ao AWy with Qg .. a € (R (Qy n S), and
a,<..<ap 1 ‘D 1 ¥4 1 'p

where @, , .., wn—3, 00 i8 a basis for C> (0, 1)-forms along 8. Thus
Q. (2,0 8) is a Fréchet-Schwartz space. Moreover, the maps 1, j, 4y, j»,
r, are continuous. Also, Z"?(£2,N 8) is a closed subspace of Q. » (£, N 8)
and therefore also a Fréchet-Schwartz space. The image B"?(2n §), being
the image of a Tréchet space, is of the first category, as B"?5=Z"? by
assumption. The sets r, i, (BmP(R2,n8)c Z"?(2nS) have the following
property :

r71i (Br? (Q N 8))=ir1(B"? (2 n8)).
Therefore,



802 A. Axprrorrr and C. DensoN HiLr: E. H. Levi Convexity

o) either they coincide with the whole space Z"? (2N 8),
B) or else they are of the first category,
because they are the continuous images of the spaces v+ (B"? (2 n8§)),
endowed with the quotient topology of Q. ,— (£2, 0 8).
Now if the Levi form of z,, restricted to the holomorphic tangent space
to S at z,, is nondegenerate and has either p positive or p negative etgenvalues,
we have constructed elements ¢, € Z™? (20 8) such that

7y (py) € iy (B72 (2,0 8)).

This rules out possibility («). Therefore, under the conditions specified above,
rti (B?(£2,n8)) is of the first category. Hence 91 r71i (Bm?.(2,n8)

is of the first category. This means that there exists a geZ"2(2n{Y)
such that, for every », the equation

8su, =g
cannot be solved in every (,, although the integrability condition

39=0 on 2n§
is satisfied.

CoNoLUSION. Let S be a hypersurface in Q" such that, at z,€ S, the Levi
form of 8 is nondegenerate with p positive (and g megative) eigenvalues (along
the holomorphic tangent space to S at z,). Then for the complex of sheaves :

Q0(8)— Q1(8) = ... = Q1(8) — 0,

the Poincaré lemma is not valid in dimensions p and q, but it holds in any
other dimension.

Note that the nonsolvability in the example of H. Lewy, as discussed
in [6], is included as a special case of the above result.

18. Global theorems of finiteness. Let X be a complex manifold of com-
plex dimension », and let h: X — IR be a C> function on X. We set

U-={xeX|h(x)<0}
and we assume that:
i) U— is a compact set
ii) on §= @€ X|h(x)=0], we have dh==0, so that U— — U~ =
=8=9U—
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iii) at each point 2z,€ S8 the Levi form .2(k)|mr(2,) (the Levi form of
h restricted to the holomorphic tangent space to S at z;) has at least p
positive and at least ¢ negative eigenvalues (p +g<<n —1).

THEOREM 5. Under the above assumptions we have
Hrs(U-)~H* (U, Q)

for s < q and s >n—p—1.

Proor Using the customary argument via the bump lemma (ef. [1], p.
237) one establishes the existence of an € > 0 such that, if we set

U= {xeU|h) <g,
we have that in the range s<{q and s >n — p — 1, the restriction maps
He (U, @) — H (U~ @)
H*(Ue, &)— H™*(U")

are surjective. The first of these facts is proved in [1] ([1], Propositions 16
and 17). The second is proved in the same way, because at each boundary
point we have the local vanishing theorem given by Theorem 3, or the
extension theorems of Remark 2 to Theorem 3.

Moreover from [1] we also have that

H*(Ue, Q) — H*(U—, Q)

is an isomorphism ([1], Propositions 21 and 22). But this restriction map
factors as follows :

He (U, @) ——s H+ (U, @)
N Pl

BN Sy
H?,s(U—).

Since g is surjective and o« is an isomorphism, y must be injective.
But y is also surjective. This proves our contention.

COROLLARY. Under the same assumptions, and in the same ranges for s,
we have
dimg H"* (U ~) < oo.
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[¢]
Indeed the groups A*(U —, Q") are finite dimensional ([1], Theorem 11).
In a similar way, using cohomology with compact supports, one can
prove the following

THEOREM 6. Under the above assumptions we have
Ho (U=, 9) B (-, 0

Jor s<p+1 or s >n—gq. In particular, for s in this range, these coho-
mology groups are finite dimenstonal.

REMARK. Of course we also have vanishing theorems for H™®(U —) or
H"¢(U—,Y) whenever the corresponding cohomology groups (according to
o
Theorem 5 and 6) of U— vanish. For instance; if h is such that .2(k) has
]
at least p + 1 positive eigenvalues in all of U—, then we have

H»*(U-)=0 for s>n—p—1
H"s(U—,9)=0 for s<p-+1.

Consider in particular the case where, at every point z,€ S, the Levi
form L2(h)|ar(2,) is non-degenerate with a fixed signature, say, p positive
eigenvalues and ¢ = n — p — 1 negative eigenvalues.

Then we get that H™*(U—) is finite dimensional for s == q. Moreover
we have

THEOREM 7. Under the assumptions specified above,
dimg H" 4 (U ~) = oo.

ProoF. We can find an € > 0 sufficiently small for which the restri-
ction map
(e}

g: H1(U;, 2y — HI(U—, Q)
has a dense image (cf. [1], Proposition 19 and [3], Proposition 7). Moreover

by [2], Theorem 2 we have that dim Hq(lc}—, Q)= oo and that H‘I(ZOT—, Q)
is a separated (Hausdorff) topological space ([4], Corollary 37 and the re-
mark on page 82). Now g factors as follows:

He(U., @) 706, @)
N A
AN Sy
Hn»1(U-).
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Thus the image of y is dense in Hq(ﬁ—, Q). If dimg H™¢(U~) were finite,
then Tm y would be a finite dimensional subspace of a separated topological
vector space. Therefore Im y would be closed. But then it could not be

dense because dimg H? (ﬁ—, §) = oco. This shows that we must have
dimg H" (U ~) = oo.

19. Global Cauchy and Riemann-Hilbert problems. Let X be a complex
manifold of complex dimension n. Let h: X — IR be a ¢ function on X
such that dh == 0 on S = {x€ X |h(x)=0}. We set

U-={xeX|hx < 0} and U+t={xeX|h@ =0}

We shall say that the
Riemann-Hilbert problem is almost always solvable in dimension g, if

the natural map
fo: H'o(U+) @ H1(U~)— H1(8)

has finite dimensional kernels and cokernels.

‘We shall say that the

Cauchy problem is almost always solvable in dimension ¢ from the side
U —, if the natural map

Bg: H9(U—)— H 1(8)

has finite dimensional kernels and cokernels (analogous definition for U ).

Assume now, for instance, that X is compact and that at every point
2,€8 the Levi form .2(h)|gr(z,) is nondegenerate, with p positive and
g =n — p — 1 negative eigenvalues. Then we have the following situation:

H#(U™) is finite dimensional except for s = q, where it is infinite di-
mensional,

H*(U+) is finite dimensional except for s = p, where it is infinite di-
mensional.

Using the Mayer-Vietoris sequence for X = U— U U+ ([6], Theorem 1)
and the standard finiteness theorems for a compact X, we obtain further that :

If p==q, then the Cauchy problem is of interest in dimension q from
the side U—, and tn dimension p from the side Ut ; in these dimensions it
is almost always solvable.

Ifp=gq=—

(n must be odd), then the Riemann-Hilbert problem is

n—1
2

of interest, and it is almost always solvable in dimension p = q =

University of Pisa
and
Stanford University
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