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LEVI-FLAT SUBMANIFOLDS AND HOLOMORPHIC
EXTENSION OF FOLIATIONS

C. REA (*)

§ 1. Introduction.

a) It is well known that the behaviour of the Levi-form of a real

hypersurface Y of some complex manifold X can give a lot of information

about the surface, the domain that can be bounded by it and the manifold X.
The problem of translating this theory to lower dimensional manifolds

is still unsolved. (For extension of Levi-convexity see [4]).
In this paper we are involved with Levi-fiathess, i. e. with the case

that the Levi-from of the functions which define Y vanishes on all complex
vectors tangent to Y. For an hypersurface this is equivalent to require
that Y is a union of complex hypersurfaces (not necessarily locally closed).
The corresponding condition is not equivalent to Levi fatness in the lower
dimensional case. We are obliged to ask something more: precisely that at
each point y of Y, the dimension of the complex tangent space to Y (i. e.
the Cauchy-Riemann dimension of Y at y) is minimal.

Submanifolds with this property are called almost Levi-flat manifolds
because of their strong analogy with almost complex manifolds, or C. R.
manifolds. Levi-flat and almost Levi-flat submanifolds can be also intrin-

sically defined and studied looking at them as C°° manifolds with a suitable

structure that gives all the information which X gave. These are respectively
semiholomorphically foliated manifolds and manifolds with semiholomorphic
structure. The last one can be given associating to each point of Y a subspace
of suitable dimension belonging to the complexified cotangent space. The

vanishing property of the Levi form that we have for the imbedded case

Pervenuto alla Redazione il 5 Gingno 1971.
(*) Eseguito nell’ambito dei contratti di ricerca del comitato per la matematica del

C. N. R.



666

corresponds here to the Frobenius-Nirenberg integrability condition (see [3])
and means geometrically that the spaces we have chosen are tangent to
complex manifolds lying on Y, i. e. our semiholomorphic structure is actually
a semiholomorphic foliation.

b) Suppose now that Y is a Levi-flat submanifold of X. It can be

easily seen that the complex submanifolds which foliate Y are locally the
level sets of some C°° vector valued function X- (Dk. In § 5 we prove that
this function can be chosen to be holomorphic if Y is C" . The geometrical
meaning of this fact is that the semiholomorphic foliation of Y can be

holomorphically extended to some neighbourhood of Y. In § 6 we prove
with a counterexample the necessity of the Ow assumption.

Finally we remark that all this study, being purely local, could be

done replacing the manifold ~’ with an open set of Gn without any loss of
generality but also without gain of simplicity because of the essential use

that we make of local coordinates.

§ 2. Semiholomorphic structure and almost Levi-flatness.

a) Let Y be a C°° or Ow manifold, its complexified cotangent space

T Y Y at y is the complex linear space of all 1R-linear functions 

where T~ Y is the usual tangent space of Y at y.
The differentials of the coordinates span TY Y over (t.
A C°° or Oeo distribution of complex cotangent subspaces of Y is a choice

y (y), where Q (jy) is a complex subspace of Y of constant dimension

and depends C°° or Oeo on y (i. e. there is a set of C°° or Oeo complex
forms on a neighbourhood tT of each y E Y, which are a basis of Q (z), for

each z E U).

DEFINITION. A C°° or Cw semiholomorphic structure on Y is a C°° or

Oeo distribution y 1-+ Q (y) such that

The integer cod, Q def dim(¡ [D (y) f1 ti (y)] = 2 dimz Q (y) - dim1R Y is the

codimension of the semiholomorphic structure.

b) Suppose now that Y is a real submanifold of a complex manifold X,
locally given by the equations (Pi =... = øk = 0~ with A ... A d wk rp 0
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on Y (I), and consider, in the holomorphic tangent space of

X at y, the subspace

The complex dimension dimlzc ¥y of Ty Y is called Cauchy-Riemann dimen-

sion of Y at y and is equal to dim~ .~ - rk (a ~i , ... , a ~k). Hence we have

DEFINITION. The submanifold Y is said to be almost Levi-flat if

dim OR Yy = cod, Y for each y E Y. This is equivalent to the

condition

REMARK 2.1. Every real hypersurface is almost Levi-flat.

LEMMA 2.1. Y is almost Levi-flat if and only if it has no tangent 
plex submanifold, Z, with 0  code Z  cod1R Y (2).

PROOF. If such a manifold Z exists and is tangent to Y at the point

y, then each vector Z va a a zQ which is tangent to Z at y belongs also to
azo,

l’y Y, hence dim,,, Yy = dimC Ty dimC Ty Z &#x3E; cod1R Y and Y
can’t be Levi-flat. Conversely, suppose that dimoR’Yy = s &#x3E; dima X - cod1R Y
for some y E Y, and take a basis ui , u, of Ty Y. Set m = dim(¡ X and
consider the map (~t, ..., ~~ ~ 1-+ (yl -~- ,¿ h ~h uh, Ym + I h C uh ) of D 8 «
« (~ E (t’, I ~ I  e) into X. For sufficiently small s this map represents a

complex submanifold which is tangent to Y at y. Q. E. D.

LEMMA 2.2. Let h be an holomorphic function defined in some open
subset U of X, and Y an almost Levi-flat subiiianifold of X which meets U.

If h vanishes on TI (1 Y the it vanishes identically.

(i) We shall always implicitely suppose that this independence condition is satisfied

by the fnnctions definining our submanifold.

(2) We mean that Z is tangent to Y at y E z n i if 11~ Z c 
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PROOF. We can suppose cod, Y &#x3E; 1 (otherwise the statement would

be trivial) and prove that if all derivatives of order s vanish identically on
Y, then those of order s -~-1 vanish too ; J the lemma will follow by induc-

tion starting from s = 0. Assume that g is some derivative order s of h

vanishing on Y, and that we have (agl axa)y ~ 0 for some a and y E Y. Then
the analytical space 8 = (g = 0) is a complex hypersurface in some neighbo-
urhood of y and contains the almost Levi-flat manifold Y.

Since Y is a submanifold of ~T’ n S, we can apply (2.2) to the
couple IT Y, so we have dim Ty Y h dime S - (dim1R S - dim, Y) _

cod1R Y + 1. Thus Y can’t be almost Levi-flat. That is absurd.
Q. E. D.

Suppose we have any semiholomorphic structure D’ on Y. S~’ is said

to be admissible (with respect to the complex structure of X &#x3E; Y) if, for

each co’ E S~’ (y), there exists (u E whose restriction to the tangent
vectors of Y is equal to co’. represents here the complex space span-
ned by the differentials of holomorphic coordinates of X.

PROPOSITION. 2.1. The submanifold Y is almost Levi:flat if and only if
it carries an admissible semiholomorphic structure S~ with (y) = dime X.
In that case this structure is unique and given by

PROOF. We have obviously Q (y) + Q (y) = Y, at each y E Y, and

Hence it must be

with sign  = &#x3E;&#x3E; if and only if = dim(t X - codr Y.
Since S~’ (y) c S~ (y), if dime S~’ (y) = we have the sign « === ~

in (2.6), and S~’ (y) = Q (y), for each y E Y, and Y is almost Levi-flat.

Conversely, if Y is almost Levi-flat, then we have the sign  _ &#x3E;&#x3E; in (2.6).
Hence y 1-+ Q (y) is a distribution of constant dimension and since

S~ (y) + 12 (y) = T~ Y it induces an admissible semiholomorphic structure on Y.
Q. E. D.

DEFINITION. The given by (2.4) is the induced

semiholomorphic structure on the Levi-flat submanifold Y of X.
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c) Every real vector tangent to X at x can be written, in a unique
way in the form u + u, with u E and the map

is an 1R-isomorphism. The space T~ Y is formed by the vetors u+u such
that u for j =1, ... , k.

Hence the restrictions to T~ of satisfy the equations
therefore, since they are all in Q (y), they are also in

A - s) (y) n ii (y).
We want to prove that, in the almost Levi-flat case, we have the

formula

We get from (2.0) and prop. 2.1 dime ~1 (y) = 2 dime Q (y) - dim1R Y =
= 2 dime X - codlp Y = k.

Now formula (2.8) will follow from the independence of the 
over ~.

For each u E we have hence

a o Moreover the kernel of the linear map a ~ : T~ .~ -~ ~k gi-
ven by u + U 1-+ (u ..., is the image by a of Ty Y [see (2.1)], so
its real dimension must be equal to 2 dimoR Yy = dim1R X - 2k. For the

restriction to T; Y, we have ker hence

dim, 5~ ay 0 = dim, Y - dim, ker aF ~ ~ dim, Y - dim1R X + 2k =
- - cod, Y + 2k = 7~.

But ay 0 commutes with multiplication by i, thus it extends uniquely

to a G-linear map T~ Y = T~ Y + i T~ Y- (Ik whose image has complex
dimension k.

So the formula (2.8) is proved.

REMARK 2.2. For any of class C°°, we have that dx =
_ ~a bOo A Za, with xa E T* X and that the restriction to Y commutes with

the operator d and the exterior product.
Hence, by (2.4), for each complex C°° form w on Y, such that w (y) E S~ (y),

Vy E Y, we have _ 1. aa A Coa with coll (y) E S~ (y), for each y E Y.

7. Annali dedla Scuola Norm. Sup. di Pisa.
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§ 3. Semiholomorphic foliations.

a) A Ic-codimensional foliation of class C°° on a differentiable manifold
X of dimension N is given by an atlas of C°° coordinates

such that, for every change

(x, t) I--~ (x’, t’), the t"s do not depend on the x’s. The family of the sets

t = const, contained in coordinate patches, form a basis of a new topology
(finer) on X whose connected components are called leaves of the foliation.

Two foliations which have the same leaves are identical. The leaves

are N - k dimensional submanifolds of X (not necesserely locally closed)
on which the x’s form a coordinate system. The coordinates (x, t) are called
admissible.

DEFINITION. A submanifold Y of X is a subfoliation if it is a union of

leaves of X.

REMARK 3.1. If Y is a submanif’old and, for each y E Y, the tangent space
at y to the leaf through y is contained in the tangent space at y of Y, then

Y is a subfoliation.
If the manifold X is complex and the (x, t) are holomorphic coordinates,

then the structure above is called an holomorphic foliation.

REMARK 3.2. Two holomorphic foliations which coincide on -some open
set are identical.

Now we shall describe a k-codimensional foliation on a 2n + k dimen-

sional real manifold Y whose leaves are complex manifolds of (complex)
dimension n. This is given by an atlas of coordinates (y, t) = (yl, ..., y2n,
t1 , ... , tk), such that, if we set za = ya -~- iya+n, for a =1, ... , they change
with the rule

holomorphic in the z variables.
The manifold X has no complex structure but each leaf is a complex

manifold with coordinates (x1? ... , zn). We call such a structure serniholomor-
phic foliation of (real) codimension k,
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b) Observe that a k-codimensional semiholomorphic foliation on Y

determines a k-codimensional semiholomorphic structure by setting

and we have

Let D be the vector-space of C°° (or Cw) forms c~ on Y such that co (y) E Q (y),
for each y E Y, dS~ for the space of differentials of forms in S~ and ~S~ be
the ideal generated by S~ in the exterior algebra of forms of all degrees.

N

The elements of 9Q are those of the where the are
1

any complex forms, N any integer and Take now any

We have

Hence we can state the following

REMARK 3.3. Every semiholomorphic structure which comes from any

semiholomorphic foliation, satisf ies the conditiorcs

(3.4) dS2 c,90(3.4) 
(integrability conditions)

(3.5) dA c 9A

Conversely, by the well known Frobenius-IVTirenberg theorem ([3], p. 3,
th. 1), for any semiholomorphic structure which satisfies (3.4) and (3.5) there

exists a unique semiholomorphic foliation of the same codimension with the

properties (3.1), (3.2), (3.3).
Observe that if the codimension vanishes, then semiholomorphic

structure means almost complex structure, and a semiholomorphic foliation

is a complex stucture, the condition (3.5) is unuseful because A = 0 and

the theorem reduces to Newlander-Nirenberg theorem [2].

§ 4. Levi-Bat submanifolds.

DEFINITION 4. Let Y be any locally closed C°° submanifold of X. Y

is said to be Leviflat if each y E Y is contained in some complex submanifold
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Z c Y of X, with coda Z = cod1R Y, and there does not exists any complex
submanifold of greater dimension which is tangent to Y at y (3).

Here a complex submanifold is, by definition, the image of any complex
manifold ll~ by some bolomorphic, injective map j : M-X of maximal

rank. An open submanifold of that is the image by j of some open
set of M.

PROPOSITION 4.1. If. Y is Levi-flat then it is almost Levi-flat and the

manifold Z of def inition 4. can be chosen uniquely in such a way that it is

connected and each other submanifold with the same properties is an open

submanifold of Z.

PROOF. The first part of the statement follows directly from lemma 2.1.

Take now a real vector u + u tangent to Z at any z E Z. Since Z is a

complex submanifold, the real vector iu - iu is also tangent to Z, in par-

ticular to Y. So we have + = iu 45j - = 0, i. e. = 0 for
- 1R .

each u + u E Tz Z 
But the space (D (z) of real vectors u + u for which that is true

contains and is actually the image of Tz Y by a [see (2.7)], hence

dim, (D (z) = 2 dimoR Y,~ = 2 2 codr Y = 2 (dima X - coda Z) =

So we get

Therefore the manifolds Z of definition 4.1 are all integral manifolds

of the real distribution y 1-+ Q (y), then the proposition follows from the

classical Frobenius Theorem ([1], 2.11. 13, p. 118)

PROPOSITION 4.2. The submanifold Y is Levi-flat if and only if the real
distribution y (y) = a Ty has costant dimension equal to dimm X - 2 codm Y
and is totally inlegrable.

(3) The last condition is « almost Levi-flatne88» and is trivially satisfied by all
hypersurfaces.
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PROOF. Thc condition on the dimension of CD (y) is trivially equivalent
to the almost Levi-flatness of Y. On the other hand, the Levi-flatness

of Y implies, by the final argument of the last proof, the total

integrability of y ~--~ CD (y). It remains to be proved that all integral mani-

folds of y i- CD (y) are complex submanifolds of X.
Take an open set S e 1R2n (2ra = dim1R X - 2 codr Y) and an injective

C°° mapi : 0 -+ X of maximal rank such that T) (jp) is the tangent space
at each point jp, i. e. an integral submanifold of class C°° of our

distribution. Claim that S admits complex coordinates such that j is holo-

morphic. Actually the map (u + u) + I (v -~- v) 1-+ (u + iv) + (u + iv) of the
complexified space 9D (y) + i 9D (y) onto Ty Y E9 Ty Y is a G-linear isomor-

phism (4), so we can identify these two spaces, and j induces a C-linear

isomorphism Tjp Y E9 Tjp Y, for each p E Q. Moreover for any two

complex vector fields u, v on X, such that u (y), v (y) 3 Ty Y, E j D, their

Lie product [u, v]q is still in Ty Y. Let us consider the complex distribution

p 1-+ j-l Tjp Y c TpC1 Q. We have TpC¡ Q = Tip Y @ Tjp Y, and, for each
couple a, b of complex vector fields on Q, with a (p), b (p) E y1 Tjp Y, §fp E S~
we have j [a, b]p = E Tjp Y, hence [a, b]p Ej-1 Tjp Y. By the Newlan
-der-Nirenberg theorem [2], this implies that the distribution p Tjp Y
determines a complex structure on Q, i. e. there are complex coordinates

’1, ... ~~ at each point of D such that

Now write j in the form

If were different from 0 at some point of Q for some a and h, we

would have at this point that

has some non zero component in Y, so j a a Ch has some non zero com-

ponent in Tip Y while j E T; Y = 0. Hence the functions (4.2) have to be

holomorphic. Q. E. D.

(4) Its inverse is
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PROPOSITION 4.3. The almost Levi-flat submanifold Y of X is Levi-
flat if and only if one of the following conditions is fulfilled :

(i) its induced semiholomorphic structure is a foliation,

(iii) there exist locally, real C°° function = 1, ..., k = codir Y,
which satisfy the tangential differential equation -

with the non triviality condition

rnoreover, if Y is the functions fj can be chosen Coo.

PROOF. Note first that, if are C°° functions on Y and

are Coo extensions to a neighbourhood, then

We prove now the equivalence between Levi-flatness and (iii).
Since Y is almost Levi flat, we have dim, 9D (y) = dim, X - 2 eodlp Y.
Hence the codimension of (D (y) in Ty 1R Y is given by dim Y - dim X+
+ 2 codir Y = cod1R Y = k.

If Y is Levi -flat, by the total integrability of the distribution (D

(prop. 4.2), we can choose, in a suitable neighbourhood lTC Y of each

point of Y, real C°° functions such that we have

and dy A ... A dy 0. So, for each flxed y E V, the set = 9’j (y) is an

integral manifold of CD in V. We take arbitrary C°° extensions of

9’1 , ... , 9’k to X.

If Y is Cw then the functions f/Jj and fj can be chosen Cw Thus con-

dition (4.4) is a consequence of (4.5). Take now some u E Ty X, with y E Y.
We have uOj ==== Oy ~ ==1~ ... ~ ~ ===&#x3E; ~ -j- ~ 6 T) (~)y iu - iu E CZJ (y) ==&#x3E;

=&#x3E; (~ -{- ~)~ = t (~ 2013 ~)j~ == 0~ = 1, ... ~ ==&#x3E; ~ = 0, j=1~.,.,k,
This proves (4.3) and the necessity of (iii) is proved. Conversely, take

ft satisfying (4.3) and (4.4), and their restrictions

... to Y. From (4.4) and (4.5) we get A ... A ~ 0.

Hence the space @(y) of real vectors of T~ Y which. vanish on 99, ... 99k
has (real) dimension equal to dimR = dimr CD (y).
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But from (4.3) we get that u 4l; = 0, j =1, ... , k implies uh = 0 j === 1~... ~ k.

Therefore, for every u -t- u E 9D (y), we have (u + = 0, j = 1,... , k. But

c tp -

Q (y) c Ty Y, so the last equation can be written (u + u) = 0, j = 1, ..., lc.

Hence Thus, by dimensional reason s CD (y) = -V y E Y.
But the distribution rJ (y) is totally integrable by construction, so the snf

ficiency of (iii) follows from prop. 4.2. We want to prove now the equiva-
lence between Levi-fiatnees and condition (ii). Take two C°° vector fields

it + U7 v + v such that u (y) + u (y) and v (y) + v (y) are in CD (y) for each

y E Y, that is For every of class C1, vanishing
on Y, we have trivially ug = vg = 0.

Therefore [u, v] Qj = u (v Tj) (u0j) = 0, which implies [u, v]y +
+ [u, v] E 9D (y), ’Vy E Y. Now, by a simple calculation, we get [u +u,v + v] =

v] + w (u, v) + [u~ v] -f- w (u, v), with w (u, v) = (ua Ba wfl - va aa 
Hence

(4.6) ~yEY-&#x3E;w(u,v)~~=o,j=1,...,k, on Y.

Thus, by the classical Frobenius theorem and proposition 4.2, we have to

prove that the condition at the right side of (4.6) is equivalent to (ii). But

Now, since and vanish on Y, the first two terms vanish

too, so we get w (u, v) øj = 2i 9m [8a 6 x ua vfl].
The form (u, v) I--~ (aa a~ on the complex space Ty Y is (t-lillear

respect to u and (p-antilinear with respect to v, hence it can’t be real

without vanishing identically. So we have proved that (ii) is equivalent to
Levi-flatness. We shall fiinally prove the equivalence between (i) and Levi-
flatness. The (real) codimension of 9D (y) in T~ X is 2k and the real forms

dØ1, ... , d ~k , i (a ~1- 8 4l~), ... , i (a ~k - ~ ~k) are independent and vanish

on 9D (y). Hence they are a basis of the subspace of w E X such that

So proposition 4.2. and the classical Frobenius theorem imply that

Levi-flatness is equivalent to the fact that the differential of each form of
k k 

-

this kind is of the type Zh ph A + i A where ph and
1

qh are real 1-forms. In other words Levi.flatness can be expressed by the

condition
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with _p;, h qj h real 1-forms. We recall the relation BY a Y Oj between
tn J 

_

the restrictions to T; Y of the forms and a so the flatness of Y
_ 

k

implies = 2 i Ih a Y Qh and, by (2.8), dy A c 9 A.
i

On the other hand the remark 2.2 says precisely that the first

integrability condition is identically verified for induced semiho-
lomorphic structures.

Conversely, if the induced semiholomorphic structure is a foliation

and Z is the leaf through the point y, by (3.4) we get

1R -

Now we apply (2.8) and obtain Ty Z == (It + u E 7ly Y, ( + n ) = 0,

j=1,...,k3. But and 

for each each u E Ty X. Hence the distribution y 1-+ Q (y) = Ty 1R Z is com-

pletely integrable and by prop. 4.2 the condition (i) implies Levi-flatness.

Q. E. D.

§ 5. Extension property of semiholomorphic-foliations.

Assume that the complex manifold X has some holomorphic foliation

of (complex) codimension k. Every almost Levi-flat subfoliation Y of X of

(real) codimension k is obviously Levi-flat.
We want now to investigate whether the semiholomorphic foliation

induced on some Levi-flat submanifold Y can be continued by any holo-

morphic foliation on a neighbourhood V of Y in such a way that Y becomes
a subfoliation of V. The answer to this question is given by the following.

THEOREM 5.1. The holomorphic extension of the semiholomorphic foliation
induced on a Levi-flat submanifold Y is unique and exists if Y is real
analytic.

In § 6 we shall give an example of a C°° Levi-flat hypersurface in G2
(or Gn) whose induced semiholomorphic foliation can2t be extended. Nevertbe-
less there are trivial examples of Levi-flat submanifolds which are not

analytic in any point and have the global extension property: take some

C°° function of f : 1R -+ 1R which isn’t analytic in any point and consider

the Levi-flat hypersurface Y of G3 given by y2 = f (x2). Its leaves are the

complex lines whose equation is z2 = x2 -I- z f (x2), for fixed x2’ and the
foliation extends to the trivial foliation of G2 with leaves z2 = const,
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LEMMA 5.1. Let Y be a Levi-flat submanifold of X and (z, t) =
~ (z1, ,.. , tt, ... , tk) complex coordinates on some open set U which naeets Y.

coordinates are admissible for an holomorphic foliation of U whiclz

extends the induced semi-holomorhic foliation of Y if and only if they -satisfy
the condition

on

Moreover each other coordinate system (z’, t’) having this property changes
with the rule z’ = z’ (z, t), t’ = t’ (t).

PROOF. Suppose first (z, t) are admissible coordinates for such an holo-

morphic foliation on U. For each (z. t) E Y, the map

is an open submanifold of the leaf through (z, t) of the holomorphic foliation,

hence, for z isufficently small it lies in Y. Thus Oj (z + z, t) = 0, for z I
small; and (5.1) follows directly.

Conversely, assume that (5.1) is fulfilled by the coordinate system (z, t)
and consider the trivial k-codimensional holomorphic foliation on U induced
by these coordinates. The leaves are the (connected components of the)
sets t = colasti hence their real tangent space is given by the vectors

_ 
n 

_

u + u where u is of the form Za ua a . Since (u + u) vanishes on

I 82~

U n Y by (5.1), those vectors are tangent to Y. Thus, by remark 3.1, un Y
has to be a subfoliation of U.

Finally, since /aza = 0 on U f1 Y, we have

But

hence by almost Levi-hatness condition (2.3), det (â (fJj/8th’) can’t vanish

on Un Y so that (5.2) implies --. o on unY. Thus, by lemma 2.2,
the holomorphic functions vanish identically. Q. E. v.

Observe now that if the submanifold Y has a covering of open sets U
of X such that U n Y is a subfoliation of U, then Y is a subfoliation of

X. From this remark and the lemma we get immediately the following
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COROLLARY 5.1. The induced semiholomorphic foliation on the Levi-flat
submanifold (with on Y) can

be holomorhically extended to some neighbourhood of Y, if and only if, at

each point of Y there are complex coordinates (Z1, ... Zn, t1, ... , tk) such that

a tPj/8za. vanish on Y, k, a ~ n. Such (z, t)’s are the admissible coordi-

nates of the holornorphic foliation.

PROPOSITION. 5.1. Let Y - ~ = ... Ok = 0) be any real almost

Levi-flat submanifold of the complex manifold X. Y is Levi-flat and its
induced semiholomorphic foliation can be extended to an holoiitorphic foliation
of some neighbourhood if and only if each point y E Y has some neighbourhood
U where there are defined holomorphic functions hi , ... , hk satisfyng the fol-
lowing conditions

at each point of Y n II.

PROOF. Suppose that Y is a subfoliation of some holomorphically
foliated open subset V of X. For each leaf Zc Y we have dimC Z =
= dima.R Y = codr Y. Thus the foliation V has complex codi-

mension k. Set n = dim~ Z and take admissible holomorphic coordinates

(ZI7 ..., zn, tt, ..., tk) in a neighbourhood II of an arbitrary point y E U. We
can now set hj and observe that (ii) is satisfied.

By lemma 5.1. we have a ~1 A ... A = A... A atk with Hence

(i) is also satisfied. Conversely, if (ii) is fulfilled, we can take complex
coordinates ..., zn, ti, ..., tk) on a neighbourhood D’ of each y E Y, such
that Now, by the Rouch6 theorem, conditions (i), (ii) and almost

Levi.fiatness (2.3) imply that ahj (=at j) and are basis of the same com-

plex vector space in each point of unY. Hence vanishes on Y

for each j S k, and a ~; thus the proposition follows from corollary 5.1

PROOF OF THEOREM 5.1. Let U and IT’ be admissible coordinate

patches for two holomorphic extensions 7 and ~’ of the induced semiho-

lomorphic foliation of Y withun u’ n Both coordinate systems sati-

sfy (5.1), thus, by lemma 5.1, they change with the law (3.1), hence they
induce the same foliation on By remark 3.2 9 coincides with 9’
and the unicity is proved. We prove now the existence using prop. 5.1.

Suppose that Y is 000 and take the 000 functions f1, ... , fk given by prop.
4.3. (iii), on some neighbourhood of an arbitrary point y of Y and their
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restrictions ... , 7k to Y. From a result of Tomassini ([6]) (5) condition (4.3)
implies that ~1 ~ ... , op7, can be extended to holomorphic functions on some

neighbourhood of y. Now we observe that condition (4.3) involves only the

traces ggj of our functions (i. e. is purely tangential) hence is fulfilled by
the functions hj too. So the functions hj satisfy the condition (i) of prop. 5.1.

Finally, take the real and complex of vanishes identi-

cally on Y, so applyng (4.5) to the single function i7j we get 
... A d 45k = 0 on Y. Hence

Thus

Now we recall that fj and hj have the same trace wj on Y, from (4.4) and
(4.5) we obtain on Y. We can apply again (4.5) to
the functions E , .. , Ek and obtain that the right hand side of (5.3) cant’t
vanish on Y. This implies that h~ , ... , hk verify the condition (ii) of prop.
5.1. Thus the existence is proved too. Q. E. D.

~ 6. Counteiexaniple.

We have to construct a Levi-flat submanifold Y whiah doesn’t have
the extension property. Our Y will be a surface d5 = 0 in some open set

QC (t2, but the same construction can give a submanifold of any codimen-
sion in Proposition 5.1 shows that is sufficient to find 0, with d ~ ~ 0
on Y « ( 4Y = 0), and some p E Y in such a way that

(6.1) h holomorphic on any neigh bout hood of p, a ~ A ah = I) &#x3E; h constant.

Take the disk D = ~z1 E G,  1 ~ I and the interval I = it E 1R, I t  1 j
and consider the map

where a E C°° (1R) is a real valued function with a’ ; 2013 for so( 1 ~ 2 I~

(5) For hypersurfaces see Severi [5].
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The first three rows of the jacobian matrix of V are

hence is of maximal rank.
Moreover

Hence, if (z, , t) and (xi , t’) were distinct, by Rolle’s theorem we would get
a’ (1:) Z1 + 1= 0 for suitable III ~ 1. This is impossible because (1:) C 1/2
and I z1 ~ 1. Therefore ip must be injective.

Thus there exist a C°° and an open set Qc G2
such that Y def VJ (D x I) --- ~ ( fl = 0) and dO ~ 0 on Y,

For each y (zi , t) E Y, the complex line

lies on Y, hence Y is Levi-flat, by definition. We choose now the function
a in such a way that its zero set is the point t = 0 and a sequence

tn --~ 0 composed by infinitely many distinct points (6)
We have

Suppose now h holomorhic on some neighbourhood of the origin and
on Y, so hZ1 ØZ2- hZ2 ØZ1= 0 on Y; from (6.2) we obtain

But by (6.2) and since we have 

Thus (6.3) gives for each 

We nx now Z1 E D arbitrarely and take the function of one variable

Y ( ~) = ~) holomorphic on some neighbourhood of ( = 0. Since y (tn) = 0
and in -&#x3E; 0 has infinite distinct points, y (E) = 0. 0. Now

1

(6) For instance, take and divide the function a (t) = e 
- it 

oc (t) = 0, for t .~ 0, by the positive number 2 max a’ (t) [.
ItiSl
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the set

is an open (dense) subset of Y. Since we have seen that ~x, ~ (Y - A) ~ 0,
there exists an open subset B of A such that =1= 0 at each point of B;
B is a real hypersurface of G2. At each point t] of B, we
have by (6.3)

Since t # tn, t # 0, a (t) is different from 0 and hZ2 vanishes identically
on the real hypersurface B and hence everywhere. Thus hZ1 « 0 and

h must be constant. So (6.1) is proved.

Istituto matematico

Uttiver8it,a di Pisa.
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