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EXISTENCE AND APPROXIMATION
OF WEAK SOLUTIONS OF ABSTRACT

DIFFERENTIAL EQUATIONS

by M. DJEDOUR

Let (, ) and [) )) denote the scalar product and the norm in the Hilbert
space H.

In the following we will be concerned with the differential equation:

where Al Â2, 7 "’ An are linear operators defined on the Hilbert space
H. The operators Ai’.’" An are supposed to be continuous on H except
for one of them, Ako which is generally (an unbounded operator) a closed

operator defined on a dense subset Lf)Ako o of H.
The function f (t) belongs to (R; H), the space of all H-valued strongly

measurable fonctions such that the norm II g (t) II is square integrable on
every compact subset of JR.

In Lemma 2, we show that (1) has a local solution then, with Lemma 6

(Density) and 7 (approximation) we are able to prove the existence of a

solution of (1) in the sense of Definition I below.
For convenience, let:

Pervennto alla Redazione il 14 Dicembre 1970.
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DEFINITION I

a,) For a given fu.nc~tion f ;t) E E2 ((a, b); H) we say that u (t)EL2 ((a, b) ; H)
is a weak solution of (1) on (a, b) if the following hold :

~ j Similarly we define tt (t ) E Lîoc (l~ ; ~ ) as a weak solution of (1)

hold for where f (t~ is given in (~3~).
In [1] and [2], S. Zaidman considered the following equations :

with A a closed operator with dense domain CDA in H. Upon certain con-

dition on A, S. Zaidman has shown that a weak solution u (t) 
exists in the sense of (3) for every given function f (t) in (R ; ..~ ~.

The purpose of this paper is to generalize the method of S. Zaidman

to get a weak solution of (1) in the sense of (3) for every given function

fit) in LToc (R; ..~~.

DEFINITION II : [3] Let j be a positive integer and s a positive real
and F a family of vertical lines of the complex plane given by Re A = on and

We shall say that the operators : Ai, A2, ... , Ako , ..., ~~ satisfy the
condition S on F if :

hold on every line of F except possibly for j intervals of length s.

We will say that A~ , ... are ( j, .~) bounded on F,
We will prove the following theorem : -,
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THEOREM: Let the equation (1), with A2, ... , continuous except
for Ako which is a (generally) unbounded closed operator with dense domain
and suppose moreover (A , A2 , satisfying the condition S above,
then for any given f (t) E (R; H) there exist a u (t) E ~) solution
of (3).

LEMMA I. Let the operators A 1 ... , Ako , .... A; , ... , be continuous

except for ,Ako which is closed with dense domain CJJAko and ~A~, A2 ~ ... , An)
( j, s)-bounded on the line Re A = o.

Then for every bounded interval and for 

we have :

PROOF:

From :

we deduce:

which can be written as :

Let us take the Fourier transform on both sides : we obtain:

n

where V (T) and g (1:) are the Fourier transform of V (t) and g (t).
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Let be the real axis -  + oo, from which we delete j
intervals of length s.

Then for 1: E F; by hypothesis :

has compact support in (a, b) by a result of S. Agmon-
L. Nirenberg [3], there exist such that:

Using the vector form of ParsevaPs Theorem we get:

If we suppose 6  0, we have,

Hence (7) with C = kM2.

LEmlviF, 2 (Local existence):
Under the same hypothesis as in Lemma 1, for every f (t) E L2 ((a, b); H)

there exist a function u (t) E L2 ((a, b); H) satisfying (2).

PROOF: Consider the linear subspace
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in .L2 ((a, b) ; H). We can define a linear form F’ by

1.

which is well defined by (7),
~’ is continuous since:

Hence by the Hahn-Banach theorem h’ has an extension to
and there exist u (t) E L2 (a, b) ; .~~ such that:

for every

LEMME 3 (Unicity): Let A 2 , ... , ., satisfy the condition S and

u (t) defined on (a, b) with values in D A* such that
ko

and :
&#x3E;

PROOF : We prove that u « 0 for c ~ t  b.
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For this, Iet : -.

such that:

and set:

Then equation (8) on this function gives :

The right hand side of (9) can be rewritten as :

And in behalf of (8), the right hand side of (9) can be written in the
form :

So (9) becomes :
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If we set f (t) = 0 outside (c, b). The hypothesis on u and iniply
that the equation (11) is valid for all - oo «g t ~ + oc . We can then con-
sider the Fourier transform of f (t).

So we get :

I’ being as in lemma 1, the condition on JA,, ... , An) gives for T C .

And with the same argument as in Lemma 1 :

If we suppose : o 0 and take p C a, we get :

In particular for :
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~ and ~ and « where arbitrary it fol-

lows that

A similar method using the sequence on --~ oo, gives

COROLLARY. If ( satisfy condition S, u (t) E .~~ and

Then u (t) = 0 outside [a, b].

LEMMA 4 (regularisation): Let A2 , ... , An be all continuous on H
except for some Ako which is a closed operator of dense domain in H.

Then for given,

for all 

We have for every

with

PROOF : We have by hypothesis :

Denote by ,5 the operation :
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So we have :

since

And since u «c a is infinitely differentiable in H, we get : o

So we have:
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As the operator Y A2 ... , A71 are continuous except for one of them
A which is supposed to be a closed operator, we have : 

*

1

Let now 0 (t) = v (t) V where and so we obtain:

As the are continuous.

Since (14) is valid for all it follows that
ko

And since -k.) is continuous there exists a sequence such that :

From (14) we have :
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And since Ako is closed :

so the relation (13)

LEMMA 5 (Unicity) : Let ~? ~ ..., Af satisfy condition S and (t) c
.g ~ with compact support in R be such that :

and supp f c fa, b].
Then supp u c [a, b].

PROOF : s Let ( such that (t) - 3 (the Dirac function) with

, ..,

Then by the preceding Lemma 4 we have for

by corollary of lemma :

Since u (t) has compact support (t) has compact support:
And uk (t; - u (t) in (R ; implies

DEFINITION. For T &#x3E; 0, let PT be the set of functions u (t) E L2( -- T, T ; H)
such that:
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LEMMA 6 (Density): Let JA,,..., satisfy conditon S and I

3 three arbitrary positive numbers.
Then V Ta is dense in V T2 for the i

We shall show that:

For this, let V (t) = 0 outside
Let

Then tp (t) E M [the closure in .

For if satisfies

then and

It follows that there exist a sequence
I "t .

and 11’ have their support in [- T3, T3], the limit is valid in

- 

But by the Lemma 1, the sequence (km) is also convergent in

(and hence in L2 (l~ ; H)).



475

Furthermore for any 4Y (t) E K, we have

Hence there eXiStS X (t) E .~2 (.R ; such that

And since X has compact support, it follows by Lemma 5 that X
has support in ~-- 111 , Hence there exists and X (t)
satisfies (15) :

To complete the proof, it remains to show that for h (t) E V Pt we have :

For this let {o)2013o6(°(). Then the function 1jJ * an has its

support contained in (- T2) for sufficiently large n. We have for large n :

By Lemma 4:

Then:

13 . dnnati della Scuola Norm. Sup. di Pisa.
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And since

It follows that for large 1n:

Hence :

And the Lemma is proved.

LEMMA 7. (approximation) : 1 , ... , y An) satisfy condition S and

0 [ T,  the set of functions :

such that:

is dense in for the topology.

PROOF: IJet Uo (t) E V T, and s &#x3E; o. By Lemma 6, there exists Ul (t) C 
such that :

T1

And there exist ’u2 (t) E such that

So we can find a sequence (un) un ~t) E -VT,+. such that
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and

Consider the series

this series converges in H)

and we have :

Furthermore since : uk E satisfy :

U8 satisfy the same equation for 

PROOF 0~" THE THEOREM. ~As , ... , An) satisfy condition S, and f (t) E
E (It ; H). Let fn (t) be the restriction of f (t) to (- n, + n).

Then by Lemma 2, there exist a function such

that :

Let us consider the series :

The function : 1 So by lemma 6, there exist 
such that:



478

and

Then the series :

is convergent in Lioc (R ; to a function (t) in (R ; .~) which satisfy :

for all ø E K*, i. e.7 1t (t) is a solution of (1) in the sense of (3).

Univer8ité de Montréal
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