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ON THE REFLECTIONS IN BOUNDED
SYMMETRIC DOMAINS

MAURO MESCHIARI

Summary - This paper deals with the problem of existence of reflections in bounded
symmetric domains. This problem was solved by E. Gottschling [4] for the domains
of type I =1V using Cartan’s realisation.

In this paper the same problem will be solved by an infinitesimal method,
yielding as a by-product the solution of the problem for two exceptional domains.

After recalling some introductory material in § 1, a condition which caracterizes
the existence of reflections will be established in §2. Furthermore we will find a
criterion for non-existence of reflections easier to handle and which, in § 8 and 4,
will be shown to be sufficient. The latter relation will be applied in § 8 to prove
two exceptional domains have no refiections.

I thank here professor Soji Kaneyuki and professor Edoardo Vesentini for their
invaluable help.

§ 1. Let us fix some conventions that we shall use throughout this
paper.

Let V be a finite dimensional real vector space and J a complex
structure over V (i. e. a R-linear endomorphism such that J2 J Id = 0).
We shall denote by sV the complex vector space obtained from V by
defining the following scalar multiplication

@+ ib) X = aX + b JX.

Ve will denote the complex vector space ;(V < V) where J is the com-
plex structure

J: (X, Y)l— (— ¥, X).

Porvenuto alla Redazione il 20 Marzo 1971.
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If g is a real Lie algebre and J is a complex structure over ¢ (consi-
dered as a vector space) such that

[X,JY])=J[X, Y],

78 will denote the complex Lie algebra obtained from the complex vector

space ;g with the bracket operation inherited from g. We shall denote by
g° the complex Lie algebra obtained by defining on the complex vector
space ¢° the bracket operation by [X + Y, Z 4 iT|=[X,Z| —[Y,T]+
+ i (Y, 2] + [X, T)).

Let D be a bounded symmetric domain. We shall use the following
notation :

0 is a fixed point of D.

I(D) Is the group of all biholomorphic map of D onto itself endowed with
the Lie group structure compatible with the compact open topology.

G Is the connected component of the identity (e) of I (D) and ¢ is its
Lie algebra.

K  Is the isotropy subgroup of G at o(i.e. K ={g € G/g-0=o0}) and R

is its Lie algebra.
s Is the symmetry at o.
7 Is the canonical projection G — G/K.

P Is the diffeomeomorphism ¢-K|— g-0 of G/K onto D (considered as
a real manifold).

B Is the Killing form on ¢ or its extension to g°.

Let v: V— U be a (~ map between the two C> wmanifolds. We shall
denote by T, V the tangent space of V at p, and by T, r the differential
of r at p.

Since the map S:g|—>sgs is an involutive automorphism of @, the
map T,8:¢—> g is an involutive automorphism of g (here we identify
T.G and @). The l-eigenspace of T,S is TR; we shall denote by [ the (—1).
eigenspace of T,8.

Let D be irreducible. We know that g has a one-dimensional center 3.
In 3 there exists an element Z such that

T, (pn)adZ =J, T,(p 7): G — Ty D> Cn,

Where J, denotes the complex structure of T, D given by the usual identi-
fication Tp D > C, (see [2] p. 136).
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The holomorphic and antiholomorphic tangent spaces of D at o deter-
mine a decomposition of ¢° into the direct sum

¢ =Tk -+ - + [

where [+ and [~ are abelian Ad (K) invariant sub-algebras of g°.

Let ¢ denote a maximal abelian subalgebra of TR°-C° determines the
decomposition

g'=c + 2 g%

acd
where 4 is the set of roots and

g*=1{Xeg/[Y,X]=0a(Y)X for every Y€}
The three sets :
Ot = (a€d/g* < It}
- =(acd/gec ),
V= la€d/g" c K},

determine a partition in A4 (ses [2]p. 140 =~ 141).
There exist elements X, and H, in g° such that:

1) X,€¢g* and X, 3= 0 for every « € 4,

2) Hy,=[X,, X_,]€c® for every a€ 4,
0 if a4 884, a4
Na,ﬂ Xa+ﬂ ifoc—l-—ﬁEA, oc:l:ﬁ.

[Xa ’ Xﬂ] =

The reader can find a proof of the existence of such a set in [1] p. 151.
We need later some property of the coefficients N, ; stated in [1].

§ 2. DEF. 1. A biholomorphic map w € I (D) is a reflection at pe D if
it satisfies the conditions:

1) w has finite order and w (p)=7p

2) The Jacobian matrix of w at p has just one eigenvalue different
from 1.

Since a bounded symmetric domain is homogeneous, it will be suffi-
cient to consider reflections at a fixed point of D.
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Let D be a bounded symmetric domain and
D>=D, X Dy <..x D,

a decomposition of D as a product of symmetric domains. We have a
canonical analytic isomorphism of I (D,) < ... < I(D,) onto a normal sub-
group of I (D), which we denote again by

I(D,) < ... XI(Dy).
Gottschling ([4] p. 702) has proved the following theorem.

THEOR. 1. D has reflections which are not in I(D,)>< .. X< I(D,)
if and only if at least two of the factors D,,.., D, have dimension 1.

In view of this result we can restrict our research to irreducible
bounded symmetric domains.

In the following, (except in theorem 11) every bounded symmetric
domain is, unless othervise stated, assumed to be irreducible.

Prop. 2. If D is an irreducible bounded symmetric domain there
exists a 1 to 1 correspondence between the set H = {g € I (D)/g-0 =0} and
the set of all the automorphisms ¢ : g°—> g¢ such that:

i) o(@)=¢
i) o (RY) =1k, o (%)= [~

Proof. 1) Since h € H, consider the inner automorphism of I(D) deter-
mined by A! (i.e. Ap—1: g — hgh™1).

Aj;—1 induces on 7, G (identified with g) the automorphism 7, A4,—1=
= Ad (h—1); we shall denote by the same symbol, Ad (h—'), its extension
to g°.

We shall show that Ad(h™") satisfies i) and ii). Since A;' K = K,
implies Ad(h—')g = g and therefore Ad (h—1) g°= g°. Thus i) is proved.

«) We prove now that (Ad(h—1) — Id)3 = 0. As

7 (hgh™) = hgh='-0 = hg-0 = h-px (9),

passing to the differentials we have the commutative diagram

T,
(pm) 7, D
| Ad (b1 | Ty h
4
T, (pn)

g T, D.
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Being Ty hJ,=J, Tyh, it follows from

JoToh To(pr)=TyhJ, T, (p n)
that
T,(pn)(Ad (b)) adZ — adZ Ad (h—1)) g = O.

From Ad (h—1)1R =R, it follows that Ad(h—1)3 = 3. Since 3 is one-dimen-
sional we have (Ad (h—1) — 1 Id)3= 0 for a certain A.
It follows from

T, (p n)(@adZ Ad (h—1) — Ad (h~) adZ) G = (1 — 4) T, (p 7)-
adZ Ad(h—) g = (1 — N Jy- Ty h-Ty, D =0,

that 1 =1 and then (Ad (k') — Id)3 = 0.
B) From (adZ I i Id) [+ = 0 we have:

0= Ad(h") (@dZ I i 1d) [+ = (adZ T i Id) Ad (b)) I,

and this implies Ad (h~1) [+ = [+,

2) To prove the converse, suppose that ¢ is an automorphism of
¢° satisfying i) and ii). We shall show that there exists a unique h€ H for
which ¢ = Ad (h—1).

a) From o (k) = o (RN g) € o (k)N o (g) =R* N g =K
it follows that (6 — 1 Id)3 = 0 for a convenient 2.

Furthermore the relation

0 = o (adZ — iId) |+ = (ad 6 Z — iId) ol+ = A (adZ — % Id) 1+
implies 1 =1 and therefore

(0 — Id) 3= 0.
B) The relations

imply
o) =0([3,6)=[3 o(@] =L

y) Let G’ be the simply connected Lie group which Lie algebra is g,
and let K’ be the analytic subgroup for the subalgebra TR. We can extend
¢ to an automorphism §: G’ — G’ such that S(K’)= K’. Since we have
a diffeomorphism p’: G’/K’ — D, let us define a differentiable map 8”: D—D
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such that
S,p’ﬂ,:p,ﬂ,s

(where =’: G’ — G’/K’ is the canonical map). Passing to differentials
we have:

Tp'n’(g) N Tg (p’ 71’) = TS(g) (p' 7'[')' Tg S.
Since T, (p’ #’) is an homomorphism of g on 7, D the equality
Ty 8 dJo T (p’ ') =Ty 8T, (p" 7n')-adZ = T,(p" 7’} 0 adZ ==

= Ty(p’ 7Y adZ 6 =Jy Ty 8" T.(p’ ')
implies
T8 Jy=dJ, T, 8.

Let now p=g-.0€ D with g€ G’. We have
Ty 8 dyTyg="TyS  -Tog-Jog= Ty 8(g) Ty 8 -Jy= Ty 8(g)-

o Ty 8 = Jg () Ty 8(9)- T 8 = Jg (p) Tp S8 -Ty9,
and then
T, 8 -Jy=dg @ TpS.

It follows that 8" € I (D).
6) Let us show that Ad(S’~1)= o. Since Ad (8’~!) satisfies i) and
ii), the equality

Te(p' 7"y (Ad (S — o) =T, 8" T.(p’a") — T.(p’ 7’)o =0,
implies
(4d (8"~ — o)l =0.

As R =[L, 1], it follows
(Ad(87) — o) g = (Ad(S"Ho—)- (L + =0

and then Ad(8'~!)=o: g° — ¢°.
g) To conclude the proof it is enough to show that Ad (h) = Ad (k)
implies h =k for all h, k€ H.
Let Ad (h) = Ad (k). Being G’ connected and simply connected, A, = A
and then Ap—1 = Id.

It follows that hEk—! acts over D like the identity and therefore
he—1 =e.



in Bounded Symmetric Domains 409
LrmmA 3. For every h € H the complex linear maps
Ad (b1 / o+ [t —1+
Toh: 5,7y D — 5Ty D
have the same eigenvalues.

Proof. We know {X,/o€ ®t+} is a basis of [t and {X,+ X_,,
i ( Xy — X_g) e € Pt} is a basis of L.
Thus we can define a B isomorphism 7: [+ — 1 snch that

T (X,) = Xa+ X_o and z(iX,) = i (Xa — X_a)

for every « € @t,
It is immediate to verify that z is also a € isomorphism

t: [+t — ale-

Recalling that 7.(p n)-adZ =J . T, (p n) we find that T,(p #)z: [+ — T, D
is a € isomorphism.
To prove the lemma we have only to show that

To(p 7)1+ Ad (h=1) = Ty h- T, (p n)-7.
From (v — Id) [+ €[~ we have
[D(4d (b7 — 7 Ad (b)) I+ = (Ad (A=) (z — Id) — (v — Id) Ad (b)) [+
C Ad (b (x — Id) 1+ u (v — Id) Ad (=) I+ € I

As I n I~ = o}, it follows that Ad (h—')zr =17 Ad (h~!) and To(pn) Ad (A~ 1Y)z =
= Te(pn)z Ad (1),
From ProP. 2 and LEMMA 3 it follows immediately

Prop. 4. Let D be an irreducible bounded symmetric domain. D has
reflections if, and only if, there exists an automorphism o:g°—> @° such
that

i) a(g) =g
ii) o (k) = R*, o (%) = I*.
iii) The C linear map 4/I+ has exactly one eigenvalue 1 == 1 which
is a root of 1.
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Now, let us derive from PROP. 4 a condition easier to handle. To do
this we need some more lemmas and definitions.

LEMMA 5. Let o:¢%— g% be an automorphism that satisfies i) =- iii)
of PrRoP. 4. We have

o(X)= 3 (oo, e, + 00X,
ﬂsq§+

o (Xoa)= 3 (co,05+ 00 Xy,
,8£¢+

for every o € @+, where o, are complex quantities and ¢ is an absolute
constant.

Proof. From ii) we have

o X)= 3 aiX; o(X_= 3 afX_,
et ge ot

and then, by i), it follows that af = al.

o

To prove the lemma it is then enough to prove the first of the two
relations.

From iii), it follows that the matrix | a — 84| must have rank 1.
Thus we have af = 0, 0f + 6%, Now, let B denote the extension to g¢ of
the Killing form of g. As ¢ is an automorphism of g’ we have

B(X,,X_p) = B(o(X,), o(X_p) for every o, f € O+ ¢
and then

8= 3 (o, 0"+ 6%)(2,0” + 07) for every a,fe D+
ped
that is L
0. 0l = " ) + e, 0f + 5 0% =0.

PeED

By iii) there exists a y € &+ such that o, = 0.
We have therefore

and this proves the lemma.

o7
3 ||t — _Q,) for every € &,
pEd Q?
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LemMuaA 6. Let ¢ be the automorphism considered in Propr, 4 and
«, B, y € Ot three roots such that

i) o(X,)=X,.
ii)y B—aty and y—afdy.
Then either o (X;) = X, or ¢(X,) = X,.

Proof. Let {o_} be the set of complex numbers of lemma 5. We have
o(oy X. — 0, Xs) = 05 X: — 0, Xs
for every &, ¢€ @t. Then, since
[Q, Xp— Qs X,, X .= e, Nﬂ, —a Xﬂ—a )
it f'ollows from i) and from the hypotheses that ¢ is an automorphism, that
a(e, Npg,—a Xp—a) =0, Np—a Xp—a.

Let us suppose o(X,) == X,. We have o, == 0 and then o (Xj_.) = Xp_..
It follows from

o [Xa y Xﬂ_a] == [Xa y X'g._a] that o (Xﬁ) = Xﬂ .

The proof is completed.
DEF. 2. Let A be any subset of @+, we call closure of A the set
4= Yy 4
(where N is the set of naturals) by definition, where A, = 4 and
A= AU o € Dtja = o, + o0y —ag: oy, ay, 03 € A;: oy — ag €yl
For every o€ @t let

N ={f€PT/B —aty or f=al,
Fo={pe Dt/ —ady or f=nal.

and

DEF. 3. Let A be any subset of @+, we define the set

A= U A
1e N

8. Annali della Scuola Norm. Sup. di Pisa.
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where we have defined A = A and

A= U (47U NI N(4ASY Fa)

aedy

For the sets defined above the following lemma holds.

LemMA 7. For every 4 € &+
i) A cdf, A,
ii) If A € B then A/ C B! and A" € B*.
iii) BA U Af S (Bu A), BAyA* € (Bu ).

LemmA 8. Let 6: g°— ¢° be an automorphism that satisfies i) - iii)
of Prop. 4. If o (X,) = X, iy verified for every a« € A then it is also veri-
fied for every o € A*.

Proof. By the hypotesis of the lemma, o(X,)= X, for every ¢€ 4,.
Let us suppose that ¢ (X,) = X, for every € 4;.
If a=a, 4+ 0, —oa;€A4;;, we have
o[ Xg , [ KXoy, X

—ag

]] = [Xau? [Xaz’ X—aa]]i

that is o (X,) = X,.

By induction it follows that o (X,) = X, for every a € A;, where ¢ is
any natural number.

This relation is also verified for every « € A.

Let us suppose that o (X,) ==X, holds for every c€ Ay, If a€ Af,,
then there exists necessarily f€ A{ such that

a €A U W) N(AS U TFp)

By lemma 6 and o (X;) = X it follows that o (X,' = X, for every &€ s or
for every ¢ € F4.

In both cases we have, by the first part of this proof, o (X,) = X, .
Our lemma follows by induction starting from A = A.

LeMMA 9. Let € &+ and a €y be roots such that the a-chain contai-
ning 3 has only two roots f and 8+ a. If w: [+ —C is a C linear map,
there exists an element k€ K such that

w (Ad (k) Xj) = 0.
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Proof. For every ¢, 0 R, o =0, we have

(e X, —e 9 X_)e'R
and then
ho,o = exp g (e X, — e~0 X_,) € K.

From the relation

Ad (hye) = ctde (€0 X, —e=0x_ )

remembering that

Nayﬂ:: Na-l-ﬂ,—-a = 4 ]/

after some computation we arrive to

a(H,) a(H,)
2

=+ Xa+ﬂeie sin QV ‘2

/
Ad (hg,g) Xp == X GOSQV

It follows that

o (H o (H,,.)_

@ (Ad (he, ) Xp) = w (Xp) cos QVTG) = € w (Xayp) 8in QV 3

It is now obvious that there exist two real numbers 5,6 such that
o (Ad (hg 5) Xg) = 0.

and the proof is complete.
Now we are able to prove

Prop. 10. Let D be an irreducible bounded symmetric domain

413

such

that its Lie algebra g° (where ¢ is the Lie algebra of &) has two roots

o« € d+ and B €y such that
i) the f-chain containing « consists of two roots « and o -+ f.
ii) [a}* = &+,

Then D has no reflections.

Proof. If 3 is a reflection for D, then by PrRopP. 2 and PrOP 3 Ad(2Z)

is an automorphism of ¢°¢ which satisfies i) -- iii) PrROP. 4.
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Let w:I+—>C be any linear map such that Ker o={X¢e[+/Ad(Z—1)X=X].
By lemma 9, there is k€ K such that w (4d (k) X,) = 0.

The automorphism A—! Zh: D — D is a reflection which induces on
g° the automorphism o = Ad (h~13-1h). As o (X,) = X., we have
(6/ — Id) [+ = 0 by lemma 8, and this is a contradiction.

In the next section we shall apply Propr. 10 to the six types of irre-
ducible bounded symmetric domains.

§3. A)
D = 8U (m,n)/8 (U (m) < U(n)), 1<<m<n.

This irreducible bounded symmetric domain has Lie algebras:
! A skew Herm. m > m matrix
s A C\| B skew Herm. n >< n matrix
g =8um,n)=7 _ .
l t0 B/| C complex m X< n matrix
TrdAd 4+ TrB=0

A skew Herm. m>< m matrix
R = (A )/ B skew Herm. n > n matrix

TvA + TrB=0

(See [1] p. 348.)

—1 0
The center of 1R is given by 3= iR 1
0— o I

Y

We have:
g° = sl (m + n, G).

¢° can be decomposed in the three subalgebras :

A 0 A complex m > m matrix
( A)[ B complex »n >< n matrix

1R0 =
0
TrA 4+ TrB =0

I+ = %(0 ?})[ O compley m < n ma.trixi

0
- = <g )/O complex m >< n matrix; .
tC 0
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A maximal abelian subalgebra of TR is given by.

set of purely immaginary diagonal matrices
of order m -+ n with trace = 0

¢® is a Cartan subalgebra of g°. Roots of g° with respect to c¢ are the linear
maps o, — 0. ¢°—> C, for every 1<r,s<<m-n,r==s, (where ocr(a;’)=u;).
Root spaces are g%~ “*= C E; (where E; is a (m - %) < (m 4+ n) matrix
whose elements are zero except (r, s)-element which is one)
We have the following sets of roots :

Ot = o, — os/r < m < s << m 4 n)

D = o, — ag/s < m < r << m 4 n}

v ={a,—a/ra=s:r, s<<m or mr, s<<m-| nl

Now let us see for which values of m and » the hypoteses of Pror. 10
are satisfied.

For r <m < s<<m - n, we have

Wy —ag {Or — apy &, — as/m <p<m+n, 1<<q=<"m},

Fay—ag = [tr — gy 0p — g/l < gm p<m—+tn, pFs, q=Fr|

We find
CTZar—as = 45-'—1 Cj*u,.—aQ"““ g:ar—-a‘ 9
and then
{“r - as}f\ == 7“)‘_“8 .
If m =1, we have {a, — o}i* = [y — &}. Thus {a, — ag}* = [, — o},

and the hypotheses of PrROP. 10 are never satisfied because either @+ has
only a root or {a, — as}*== P+

If m = 2, let us compute {a, — als. For every o, — g€ {a, — a}{ we
have :

%ap—aqu forr — “a;f\ = %ap—aq = o+

far — o} if m=mn =2

t:7:1.11,—¢lq U tOLr - “R}IA=
o+ if m=>=2 n>2.
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It follows that, if m = n = 2, hypotheses of PROP. 10 are never satisfied.
If m=>2, n> 2, it is {a, — )" = P+ . Observing that only «, — a, and
ar — ap are the roots in the (a, — ap)-chain containing o, — «; we conclude
that our domain has no reflections.

We know, from [4] p. 703, that D has reflections for m =1 and for
m=n=2.

B) D= 8pn,R)/Un), n=2.

The Lie algebras of this irreducible bounded domains are (see [1] p. 350)

0= %(A B) !A, B, C real n X n matrices}
h— ’

¢ —1!'A)| B, C symmetric
& __g A B /A, B real n >< n matrices
" |\—B AJ| A skew symmetric, B symmetric)’

0o I
3=R(—I 0)'

We have:

o (A B\ |A, B, C complex n ><X n matrices
© =N\ —)|B, ¢ symmetric

RO — A B\ |A, B complex n >< n matrices
~ |\—B 4)| A skew symmetric, B symmetric

A —id
+ = : )
l %(__ i A ——-A)IA symmetric compley n >< n matrix
A iA ) _
== %(iA ——A) !A symmetric complex n > n matmx% .

0 A
C= %(_ A 0) IA real diagonal n X< n matrixi

is a maximal abelian subalgebra of R, so ¢° is a Cartan subalgebra of g°.
Let a,: ¢¢— C be a linear map defined by

0 i
ow( A (a])>=ia'

— (@) o
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It is easy to verify that &+, &— and y are given by:
Dt = {a, + o/l << r << s <<},
D ={—a, — ag/1 <r<<s<n)
V=la,—asfrFs 1l<<r s<<nl

If n =2, then &+ = {2x,, a, + a,, 2a,}, and every chain containing two
roots of &+ contains all of them and the hypotheses of PRoP. 10 can never
be satisfied.

If n > 2, we have the following sets of roots :

Noyta, = {2 + 4, g + g/l < p, ¢ <<},

Faytag = (or + 05, Gp+0g/p =7, ¢==s, 1 <<p, ¢ <<nj
and then
%ar-l—as. = @+ and ga,.—{-as = gta,-_l—as .

We have
{ar + O‘:]l’\ = ga,—l—as .

and by lemma 7

{or o} = U o+ il U Fagpa, = (200 /1 <t < ).
ap+ ag € i”‘r“'“s}f

It follows
n
o+ ali 2 U, (220 = 2+
and then, noting that the («, — «,)-chain containing «, -}~ «; has only two

roots, the hypotheses of ProP. 10 are satisfied and our domain D has not
reflections.

For n = 2 D has reflections. See [4] p. 703.
C) D = 80* 20)/U (n), n=5

D has the following Lie algebras :

5 _3( A B) | A, B n < n complex matrices

—B A)| A skew symmetric, B Hermitian
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R — A B\ |A, B n><n real matrices
“\—B 4 /A skew symmetric, B symmetric

0o I
3=R <- I o) '
Then, we have :
69 = 80 (2n, C).

RO — %( A B) /A, B n > n complex matrices §

— B A)[A skew symmetric, B symmetric
i(4—"'4) ZA) / .
+ =
. g(—— 2t4 —i(A —t4) A n > n complex matrix
—_j(—ia —rta 24\ _
! _g( — 214 i(A._tA))/A"X” complex matrlx%.

A maximal abelian subalgebra of R is given by

—4 0

\

C = %( 0 A) /A diagonal real = >< m» matrix

The maps a;: ¢? — C are roots («, are linear form defined as in the previous
case) and we have the sets of roots:

Ot = (o, + g/l <7 < 8 < n},
D~ = {— o, — as/1 << r < s < nj
V= {ar — as/r=Fs, 1<r, s <nl
Let us consider now, for 1 << <{s <n,
Waytag = {0r 4 tpy %+ ag/p =7, g=Fs, 1<<p, ¢ <<n},

gar—i—a, = {0ty 4 a5, ap + ag/p, qF 71,8 1<<p, g<nl
‘We have
Naytos = Pty Fppta, = Faytag »
and
{or 4 o}l = Foytag -
In particular we have

for, + aols = [y + g, a5 + ay, g + ay, o, + ag}t D
D {oy + o)t U fog + oy} U forg + a5}t U {ay + o) = D,
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then {a, + a,}* = @+, and, as the (x3 — «,)-chain containing «, + «, has
only two roots, by Propr. 10 this domain has no reflections.

D) D = 80, (n, 2)/S0 () > 80 (2), n=> 5.
This type of domain has Lie algebras
g = 80 (n, 2)

& — A 0\ [A, B skew symmetric real matrices
“\0 B)| A au>xn B 2>2.

0 0 0 1
3=R (0 J2> (where Jy = (_ 1 0)) .

It follows that:

'IRO%(A O)/A, B skew symmetric complex matrices% ’
0

B/[A n>Xn, B 2x2.
0 A A ?
= tA 0 0 /A complex n >< 1 matrix} ,
itd 0 0 s
0 A —1i4
[+ = t4A 0 0 /A complex n > 1 matrix} .
—it4 0 0

A4 0 /A, B skew symmetric real matrices, B is 2 >< 2.
cC= ( 0 ) / A is a m >X n matrix whose elements are zero
except the (r, s)-elements with » + s=n |1

is a maximal abelian subalgebra of 1R.
Let ap: ¢ —> € be a linear map defined by

A 0 .
ac,,:(U B)|—>fia3,’_p+1—zb.

(Where A = (aj) and B -—--( Z()) g)) .
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‘We have the root sets:
Ot = {a,/1 < r < n,
O = {— a,/1 << r << nj,
Y=o, —afr —sF0, r+sFn-+1, 1<r, s<n}

As W, = Pt — {ap_rp1} and F,, = {oty, Cn—rs1}, we have {a ) = {ar, Xu_rp1},
{ar}._," = {atyy Gn—rt1} = {o,}*, for every 1 <<r << n.

The hypotheses of PrRoP. 10 are never satisfled. We know ([4] p. 703)
that this domain has always reflections.

E) D = (€¢(—14) 5 80(10) 4+ R).

This exceptional domain has Lie algebra g°=¢;. All roots of ¢; are
obtained by the Dynkin diagram

1 1 1 1 1
o ] o] (o] [o]
%y o 2] Oy &5
(o]
o 1

From [5] p. 494, we know that the simple root in the diagram belonging
to Ot is a, or ay.
‘We have the sets of roots:

&+ = (a, oy + ay+ 205+ 0y + a,
% + o, oy oy + 20y oty + 05+
ay + oy 4 ag, oy + 20y + 2003 + oy +
o+t 5+ o %y + 205 + 205 4 @y + a5+ a,
ay + ay + oy + oy, oy + og + 203 + 20, + o5 +- o
a, + ay + ay+ o, + o o, -+ 2ay 4 20 + 200, + 005 +
oy + oy + oz + oy -+ oy, oy + 205 + 3oy + 20, + a5 + a,

o+ g+ ag 4 oy + ags + «, oy + 2oy 4+ 3ag -+ 20, + o5 4 2a),
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& = o/ —a € P},

T={i oy idg, iag, i%p i“m i(“2+ag), =+ (053_*_0‘4),

- (o 4 ag), = (x + ag), £ (@ 4 ag + og), = (ay - ag + ),

H

(25 + g + a5), £ (2 4+ a3 + a,), i(“+°‘2+“3+°‘4)9

H

(g = oy + oyt ai5)y (x4 g + oy + ag), (4 ay + oy + oy + @),

H

(@ + oy + 205 + o), == (@ + @y + 205 + ay +- x5},

Now we can consider the sets

Way = forgy 0y + 09y @y + oy + ag, oy + ag + a3+ ay o 4 oy 4 a3+ 2y,
oy oy oy g Aoy oy g oz oy 4 o5, oyt g g oy oyt
%+ ag + 205 oy + @, @y 4 oy + 205+ oy + a5 + al,

Fon = {org, &y + 2005 + 205 + oy +- 0, oy + 205 + 205 + a4 + a5 +
oy + oy + 2005 + 20, + o5 + «, @y + 205 + 205 + 204 + a5+ o
ay + 20y + Bag + 20y + 05 + o, 20 + oy + 20, + 32 + 20, + o).

It is easy to verify that O, = F,, = D+. Then, as «, and «, + «, are the

only roots in the a,-chain containing «; by Prop. 10 this domain has no
reflections.

F) D = (€7(~25), € + R).

All roots the Lie algebra ¢° = ¢, are obtained from the Dynkin diagram

1 1 1 1 1 1
[e] o o (e} (o] o]
oy Qg %3 oy %5 Og
[e]
1 o

Only « is the root in this diagram belonging to @+. (see [5] p. 494).
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We have the sets of roots:
Dt = ag, o5+ %G, oy + a5 -+ a5, & + %3+ oy + %5+ a5,
agtagtaytostag, ato,tagtoaytastog, oo tagtoatastag,
o+ xy oy + og 4 oy Ay 26, & A %y 4 225 + ay + 25+ g,
o -t oy a4 205 oy 4oy 4 ag, o+ ay + 205 - 20 - a5 f-ag,
o+ oy + oy + 2005 + 2004 + g+ g, @ oy + 2y 4 2005 4 0y a5+ g,
o+ ay 4 2oy + 20, 4 205 + 05, o 4 oy 4 xg 4 205 - 200, 4 205 + g,
o+ oy~ 2oty 2oy + 204 - 005 - 0ty % 0y + 2009+ 2o+ 20y + 2o -,
o oy 20 + Bty + 2oty a5+ g, & Aoy A 20, - Sag - 2oy A 2050t
20 + oy + 200+ Bty 200 +- a5+ g, 200+ 0y + 209+ Saug 20, 205+ 5
o -0ty - 20ty + Batg+ Bty F- 205+ oty 20 + oy 4 2oyt 3ozt 3oyt 2o -2,
20 4 oy -+ 20+ 4oy 3oy 4205+ g, 20 4 oy 3oyt 4oy 3o, |- 205+
20 + 20y + Baty + dotg +- oty + 205+ 0t}
D— = {a/—a € DF},
¥ = {set of roots of ¢;] (see the other exceptional domain).

Now it is easy to see that W, = T, = O+ and then | }* = O+. As
og and ag -+ a4z are the only roots of the ay-chain containing «;, by Prop. 10
this domain has no reflections.

Summing up we may sbtate the

THEOR. 11. Let D be a symmetric bounded domain isomorphic to the
cartesian product of irreducible bounded domains

D, < Dy < ... X D,.

D has reflections if, and only if, at least one of D; is one of the following
domains :
SU (1, n)/S(U (1) < 8(n)), n =1,

SU (2,2)/8(U(2) >< U (2)),
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Sp (2, R)/U (2),
80, (n, 2)/80 (n) < 80 (2), »=5.

‘We point out that the results of [4] were only used to show that
irreducible domain which do not satisfy Prop. 10 do have reflections.

However, for sake of completness, in next section we shall re obtain
Gottschling’s results.

§ 4. We prove uow that the bounded symmetric domains
SU1,n)/S(U@) X< Um), n=1;
SU (2, 2)/S(U(2) x U(2));
Sp (2, R)/U (2);
80, (n, 2)/80 (n) >< 80(2), n=5;

have reflections. To do so, we construct explicitely, for each of them, a
Lie algebra automorphism that satisfies i) = iii) Prop. 4, and then, consi-
dering the realizations of these domains as subsets of certains sets of
matrices, we give au explicit descripion of a reflection X at a fixed point o.
Furthermore we show that the set of reflections at o is given by

{h Zh—1/he K}
To prove these last statements we need a new

LemMA 12. Let (B, a,), (85, to)y <oy (Bmy @m) & finite sequence of ele-
ments in @+ < ¥ such that
i) only B; and p; -+ «; are the roots of the «; cain containing ;.
ii) fi+ aiy, ¢ O for every 0 <r<<m — .
If w: [+— C is a linear map, there exists an element k € K such that

w[Ad (k) X4] =0 for every 1 <1i<Cm.

Proof. It m = 1, the lemma is reduced to lemma 9. Let us suppose
that the lemma is true up to », where 1 <<r < m, let b’ € K be ap element
such that

w[Ad (h') Xg,] = 0 for every 1<<i<Ir.
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If @' is the linear map defined by w’ (X )= w[4d (k') X], then, by lemma 9,
there exists an element A’ € K of the form

b’ = exp o (€% Koy — e X 4. )

such that
o’ [Ad (') X,;H_l] == 0.

Since [Xia, ,,Xp]==0 by ii), we have Ad(h"/)Xz = Xp for every 1<—i<r.
It follows that

w[Ad (b’ 1) Xp]=0 for every 1 <<i<Cr 4 1.
Our lemma follows by induction.
A)) SU (1, n)/S(UQ1)>x U(n). n=1.
We have the sets of roots:
Dt ={o, — i/l <i<<n+ 1} and ¥ = (o, —ay/1 <r,s<<n-+1,r==s].
LEMMA 13. Any automorphism o’ of ¢° satisfying i)--iii) PROP. 4 is
in the set {Ad(h)o Ad (h—')/h€ K}, where o is an automorphism satisfying

i)--iii) PrROP. 4; furthermore

iV) o (Xa1~a2) =12 -Xm1 -ay ! o (X"‘i_‘“i) = Xai—ai

for every 2 <<i<<n-1.

Proof. If n =1, clearly o = o’. If n>>1, let us consider the finite
sequence (o; — g, 0y — 0), weey (06 — Oy, 0y — Oy). It satisfies hypothesis
of lemma 12, Let h € K be an element such that

w [Ad (k) Xarai] = 0 for every 3 <<i<<n -1,
(where :[+— € is any linear map such that Ker o = {X€[t/¢’ (X)= X}).
Clearly, 0 = Ad (h™') ¢’ Ad (h) satisfies i) = iii) ProP. 4 and iv). QED.
As ¢ " =CFH;, now we are led to look for an automorphism

o: 8l(n+ 1, C)— 8l (n 4 1, C) that satisfies conditions :

o (By) = AB;, o(B})=Ei, o () =1 B}, o(B)= By,
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for every 3<<i<-n -+ 1, with A*=1 and 1= 1, and such that

a(g)= g, o (R) ="R".

Put
1 0 0 0
0 i 0
T=§ 0 0 1 0
0 0 v 1
Then we have
0 a; ar,, 0 }.a; a111+1
o()=T1Ar=T G O 0 | VRGO 0
avlt+.k 0 .- 0 a;t-i-lo (]

the automorphism o satisfies all above conditions. Since exp (71 AT) =
= T-1 exp A T, o induces on SU (1,n) the automorphism S:g9-— 7-1¢9 T.
Let us consider now an explicit realization of D = SU (m, n)/8 (U (m) <

> U (m)). D is the set of m <X n complex matrices Z such that I — t77 is
definite positive, and SU (m, n) acts on it by the map

A B
¢ D

)Z::(AZ+B)(OZ+D)—’.

(See [6]). Since SU (1, n) acts transitively on SU (1,#)/S(U (1) X< U (u)) the
commautative diagram

A B\ 8 A B
J T—1
bU(],n)a(O D)———+1 (C’ D)T.

.
») 10
CroD3BD'—— BD! 0 1
defines the reflection at 0
0 (Ryy By eee s Bn) > (ARy, &g, ey ).

The set of reflections of D is

9297 g€ Gl
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A,) D= 8U (2, 2)/8(U (2) < U (2)).
We have the sets of roots
Dt = (o, — oy, 0y — oy Gy — Oy Uy — Ayl
V= {4 (2, — ap), (05 — a)}.

LEMMA 14. Any automorphism ¢’ of ¢¢ satisfying i)—-iii) PRoP. 4 is
an element of the set {Ad(h—')o’’ Ad(h)/h€ K}, where ¢’/ is an automor-
phism satisfyng also

iV) ¢’ (Xalsas) == Xal—as ) o’ (Xag——a,) = Xa:—cq
0” (Xag~a3) = a} Xag——aa "I_ a’; Xal—oq

6" (Xayag) = 62 Xy gy + 02 Koy,

17 G4

Proof. We consider the couple (z, — o3, a3 — ) and a linear form
o : It — C satisfying Ker w = {X¢€l+: ¢/ X = X|. Then by lemma 9, we
find a h€ K such thai the automorphism

¢/ = Ad (h—) o’ Ad (h)
satisfies i)—-iii) PROP. 4 and
0" (Xoy—ap) = Xoy—ag +
By lemma 5 we have (let us use the same notation)

Qay—az = 0
and

o’/ (Xa,—oq) =C Qag~—a4(Qa1—a4 Xal—(u +'_Qa2—03 Xag—ag + —502—04 Xag—a,) + Xa,—uu

Since [Xog—a,) Xoy—0o,] = 0 it follows

903—04 (Qal_ a4 Nal"'aﬂh ag—ay Xﬂa—aa —[— Qm—% Na?"alh ag—ay Xai—al) = 0
Since X,,_. and X, _, are linearly independent and Ng_a,, a0,
Noyoy,00—a, &= 0 we have two cases
a’) Qﬂs—% = 0
b) Q“l—aa = Qas—“a = 0.
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Case b) is impossible because it yields

.;) = X agy o’ (Xal—m) == Xal—a,'

Ence
0” [Xag—aa [Xa3—a1, ‘Xv‘ll"'ai ]] = [Xaq—ag [Xas—al 4] Xa;—ai ]]
and

”n v
Naa—ﬂl ) o—ay Nﬂx“% ,ag—ag O (A aa—a;’ - Na;;—oq , a—ay Naa—nq , ag—ag Xun—du )

ence o’ does not satisfy iii) PRoP. 4.
By lemma 5, since

Qa—az = Qaz—a, = 0

it follows that ¢’/ satisfies also iv). QED.
Lat us consider the element
/2 0 0 0
0 0 0 0
B=1o 0—i o
0 0 o —¢/2

for any f€ &t we have

Ad (exp o H) X5 = eef (H) Xy ;
in particular ‘
Ad(expo H) X, —0,= Xyg—a,

Ad (exp o H) Xgyo,= 6° Xoy—a,-

As Xy ay=1¢, E7 and Xo—ag = €y E{, it is now clear that we can find a o
such that

o= Ad (exp(—o H) k1) o’ Ad(h exp o H)
satisfies i)-=1iii) Prop. 4 and

iv')  o(B) = Es, o(B))= B, o(E{)= B/, o(B;)= By
o (Bj)=bl B; + b, By  o(Hy)= b By b2 B}
(B =0 B + V2B, o(E) =0 B =b; B
by=1b3=0

10 Annalv della Scuola Norm Sup. di Pisa,
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Conditions i)-1iii) PRoP. 4 and iv’) determine uniquely the automor-
phism of g°

/A B A
o p)T 7\ w—al

This shows that D has reflections.
It is easy to verify that o/g can be expressed by

wilg o) e B

and then its extension to SU (2, 2) by

(A B) (0 I)(Z E(o I
S: [—— _ __) )
Cc D I 0/\C D/\I 0
Now let us consider the realization of the above domain.

Let (‘é f;)esv(z, 2). Then tAA — tCC = I,'DD—'BB = I,'AB='CD.

So the commutative diagram

A

| -
er Pi

BD—1
defines a reflection at o
= 2) — (;j 2)-
The set of reflections of this domain is
92979 €8T (2, 2)}.
B) D = 8p (2, R)/U(2).
We have the sets of roots

Dt =(2¢,, o, + &y, 205} and ¥ = {+ (@, — a,)}.
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LrxMMA 15. Any automorphism o’ of g¢ satisfying i)—=iii) ProP. 4 is
an element of the set {Ad (k)o Ad (h—')/h€ K}, where ¢ is an automorphism
satisfying beside

iv) o (Xgal) = Xy, 0 (XZn,) = Xyay, O (Xa;+a,) Xal-l—az'

Proof. As {2a,}" = {2a,}" = {2a,, 2a,}, lemma 9 implies that, if o’ does
not satisfy iv), then we have

0" (Xou,) 7= Xoa, and 6" (Xpa,) = Xog, -

Since we have

2

2

2
o —az, atoag T Nog—ay, artaz = {ory — “2) (H ay—as)s

by well known properties of coefficieut Ny ,, it follows that

Z\Tar—azy artag = Na,—l—a, , — 20— Zvaz-—al )20 = & V(a1 - “2) (Har—az)

Nas—al' agtor — Yartas, —2a3 = Noyas, 20, = &y V(al — ) (IIal—an)v
where
2 22—
& =g = 1.

From

[Xaﬂ-az ’ X—-2aa] = Arax+az. —2ag Xal—as
and

[XZan X——al—uz] = N2a1. —ay—ay Xal—u:
we have

& [Xal'l‘dn X—2a2] — & [X2a1’ X—~al—'12] = 0.

Since gu—e, ge—= and ¢° are three linearly independent subalgebras of
¢Y the coefficients of X, _, and X,_, in the first members of

0" [Xoayy XKooy =0
0’ (g [ Xoytasy X—2a,] — & [Xoay) Xyma]) =0
must be zero. Therefore, by lemma 5, we have
Q?a,zzw (& Qzal_éa,-t-a, + L) 52::5 Qar—i—as) =0
¢ €(Q3ay Qs — O3 Qurba) + &1 83 020, 020 (6 — €) = 0

CC P24, Q2a, (81 Q2a; Laytay + €y Q2a, Qaﬁ—ag) + ((} €y Q2a3 Ooy+ay + Cé&y Q2y eal‘i’“ﬂ) =0.
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These relations are satisfied if and only if

| 020y | = | 92a2|
and
1 —e & .
arg Qga, -+ ATg 04, — 2 4T Quypa, + —, — & = 2N 7.
Let & be
h=expt(e?¥ Xpy0, — €0 X, ) € K,
where
1 3 —¢
0=~ (a.rg 02, — ATE Qoyta, + 2 ! n)
and
V2| 02a
t= ! arc sin l L “ | =
VZ (ory —ocz)(Hal_a,) Vl Qa1+ag| +2 IQZaII
0<t ﬁ(ai — 0tg) (Hay—ay) < 71/2.
‘We have
1
Ad (h) X, =3 (1 -} cos ty2 (ot — 0tg) (Hay—ay)) Xoay +

e |
+ & D) sin tV2 (0(1 — 0‘2) (Hal—az)) Xal+¢2+

&, & 6% /
+ — (—1 4 cost |2 (a; — &) (Hoy—ay)) Xous-

Let us define the linear map w: [—— C by

(’lti Xmx ““ Uqy Xa1+a,+ Uy X‘Zaz) = Uy Q2a + Uy Qar+az '{"' Ug O2agy

we have Ker v = (X €[t+/o’ (X)= X}.
Now it is only a matter of trivial computation to verify that

o [Ad (h) Xgq,] = 0.
It follows that
o= Ad (h~) o’ Ad (h)

satisfies i)~ iii) PRoP. 4 and the first two relations of iv), ence, it sati-
sfies also the third of them by iii) ProPp. 4. QED.
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Since we have the following root spaces

g“r"‘“s — C ( -E:+ E: —1 (E: + E:))
— (B + By — (B + E)

g“‘ar_"’s: ¢ < E:“*_ E: @(E:—}—E:))
i(Bs+ BY) — (H; 4+ E)

our automorphism must satisfy i)-=iii) ProP. 4 and iv’)

a b —ta — b a Ab i@ — Mb
I+ .b .c — b — e ‘a—w> )fb .c —Mb — e
—ia —ib —a — Db —ta4 — b — a — b
— i —de — b — ¢ —Ab — ¢ — Ab — ¢
a b i b a b ia 2ib
M ib ic N b K Aib K
i@ b —a — Db ia Ab — — b
b t¢ —b —e¢ Aib e —1b — ¢

where A54=1 and A" = 1.
These conditions determine uniquely the automorphism given by

a b ¢ d a b ¢c —d
I A T
t I —a —e t — 1 —a e
Ilm —b —f —1 m b —f

Consider now

1 0 0 0
0 —1 0 0
T=1, 0 1 0
0 0 0 1

It is easely cheaked that ¢ (X )==T-1 X7 for every X ¢€gc. It follows that

the extension of ¢ to Sp (n. R) is given by p:g91— T-1 g T.
The domains of type Sp (n, R)/U (n) can be realized as subsets of matrix
spaces considering all the complex n ><X n sSymmetric matrices such that
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I —tZ7Z is definite positive. Sp (n, R) acts on D by the mapping

A B _
"\ Z=(4Z7 B)(BZ A)L,
(B A) (AZ \ B)(BZ + 4)

The commutative diagramm

(2 2) L (4 B)a
B A B A
pni Ipn

_ > /1 0) - (1 0
—1 —1
BA |——> lo —1, BA (0 ‘_1)

shows that all reflections are obtained by
a b a —Db
2'(1) c)-—>(_b c).
D) 8, (n, 2)/80 (n) >< 80 (2).

LemMA 16. If there exists any antomorphism o’ of g° that satisfies
i)+ iii) ProP. 4, then it is in the set {Ad (h)o Ad (h—1)/h€ K}, where ¢ is
an automorphism such that

iv) o (Xa) = Xar for every 2<r<n—1
o (,Xai) = a; Xai -+ al Xa,
0 (Xa,) = a Xo + al X,

To prove this statement we need only to apply lemma 12 to the finite
sequence (on—1, &y — Gu_y), . (&g, &y — ) for a suitable linear map and

remember lemma 5. QED.
The root spaces are given by
0 A, —id, 0 4, id,
o= 4, 0 0 ), gF=|1@4 o o0
—it4, 0 0 itd, 0 0

where A4, is a complex n >< 1 matrix whose elements are a, = ¢j—+ i0n—p4; -
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Thus we are led to look for an automorphism of @g° that satisfy
i) = iii) Prop. and

0

A, —iA, 0 4, —id,

iv’) o t4, 0 0 | = t4, 0 0

—it4, 0 0 —itd, 0 0

for every 2 <<p<n—1,

0o A, —iA, 0 A, —id, 0 A, —iAd,
o t4, 0 0 | =0bi t4, 0 0 |+0b t4, 0 0
—itd, 0 0 —itd, 0 0 —itd, 0 0
0 A, —id, / 0 A, —iA, / 0 A, —id,
o tA, 0 0 |=10 t4, 0 0 |4 03 t4, 0 0
—itd, 0 0, —itA, 0 0 —itd, 0 0

and the complex conjugate relations,
v) —ibs€R and — ib) = 0.

To prove v), procede as in A,) considering the element

f—) (B —EY 0 0
i
== 0 0 — jec¢t
H 5 |ec
0 -2 0

Conditions i) +iii) PRoP. 4, iv’) and v) determine uniquely the auto-
morphism ¢ of g° given by

4 ¢ A4 ©
"(to 1;>‘='T(to B)T

where T the (n 4 2) < (n 4 2) matrix
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Clearly o can be extended to an automorphism of 80, (n, 2) wich is expressed
by §: g— T9¢T.

We can consider D as the set of complex n >< 1 matrices Z satisfying
the two conditions

227 <14 |1ZZ2; |'Z2Z| < 1.
80, (n, 2) acts on D by the relation (see [6])

A B 1 (2241 o ZE 4 1)
(o D>Z=<AZ+?B(NZZ_@')><(1 B 02450 “D<uzz-—i)> ‘

From the commutative diagram

A B A B
(0 D)‘ T(O D)T

p7 I b
+

|
O S W (R

(where T’ is the n < n diagonal matrix obtained from 7 by suppressing
the last two rows and columns) we find that the set of all reflections is
{9 2 9g=1/g € 80, (n, 2)} where I is the reflection

(et 2, L) = (—2t, 2%, .. ).

University of Modena
Italy
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