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ON THE REFLECTIONS IN BOUNDED
SYMMETRIC DOMAINS

MAURO MESCHIARI

SUMMARY - This paper deals with the problem of existence of reflections in bounded

symmetric domains. This problem was solved by E. Gottschling [4] for the domains

of type I - IV using Cartan’s realisation.
In this paper the same problem will be solved by an infinitesimal method,

yielding as a by-product the solution of the problem for two exceptional domains.
After recalling some introduotory material in § 1, a condition which caracterizes

the existence of reflections will be established in ~ 2. Furthermore we will find a

criterion for non-existence of reflections easier to handle and which, in § 3 and 4,
will be shown to be sufficient. The latter relation will be applied in § 3 to prove
two exceptional domains have no reflection.

I thank here professor Soji i Kaneyuki and professor Edoardo Vesentini for their

invaluable help.

§ 1. Let us fix some conventions that we shall use throughout this
paper.

Let lr be a finite dimensional real vector space and J a complex
structure over V (i. e. a R-linear endomorphism such that J2 + Id --- 0).
We shall denote by jv the complex vector space obtained from V by
defining the following scalar multiplication

V c will denote the complex vector space J ( ~ X V ) where J is the com-
plex structure

Pervenuto alla Redazione il 20 Marzo 1971.
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If g is a real Lie algebre and J is a complex structure over g (consi-
dered as a vector space) such that

L 1 ~ L.. I -AT

jg will denote the complex Lie algebra obtained from the complex vector

space jg with the bracket operation inherited from g. We shall denote by
gc the complex Lie algebra obtained by defining on the complex vector

space oc the bracket operation by [X + iY, Z q- 11° = [X, Z] -- [Y, T] ] -F
+ i ([ y Z] + [X, T]).

Let D be a bounded symmetric domain. We shall use the following
notation :

o is a fixed point of D.

I (D) Is the group of all biholomorphic map of D onto itself endowed with
the Lie group structure compatible with the compact open topology.

G Is the connected component of the identity ~e) of 1(-D) and g is its

Lie algebra.

K Is the isotropy subgroup of G at and 1R

is its Lie algebra.

s Is the symmetry at o.

n Is the canonical projection G -+ Gjg.

p Is the diffeomeomorphism of onto D (considered as

a real manifold).
B Is the Killing form on Q or its extension to t3c

be a C°° map between the two CIO manifolds. We shall

denote by Tp V the tangent space of V at p, and by Tp r the differential

of r at p.
Since the map 8 : g I-~ sgs is an involative automorphism of G, the

map g --~. g is an involutive automorphism of g (here we identify
Te G and g). The 1-eigenspace of is 1k; we shall denote by I the (-1).
eigenspace of Te S.

Let D be irreducible. We know that g has a one-dimensional center 3.
In 3 there exists an element Z such that

Where Jp denotes the complex structure of Tp D given by the usual iclenti-
fication Tp D ~ On (see [2] p. 136).
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The holomorphic and antiholomorphic tangent spaces of .D at o deter-

mine a decomposition of gc into the direct sum

where 1+ and I- are abelian invariant sub-algebras of Q~.
Let C denote a maximal abelian subalgebra of 1kc . cC determines the

decomposition

where d is the set of roots and

The three sets :

determine a partition in L1 (ses [2] p. 140 ; 141).
There exist elements ~ and Ha in gC such that :

for every a E d,
for every ex E ii,

The reader can find a proof of the existence of such a set in [1] p. 151.
We need later some property of the coeficients stated in [1].

§ 2. DEF. 1. A biholomorphic map w E I (D) is a reflection if

it satisfies the conditions :

1) w has finite order and w (p) = P
2) The Jacobian matrix of co at p has just one eigenvalue different

from 1.

Since a bounded symmetric domain is homogeneous, it will be suffi-

cient to consider reflections at a fixed point of D.
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Let D be a bounded symmetric domain and

a decomposition of D as a product of symmetric domains. We have a
canonical analytic isomorphism of 1(-Dl) X... X I (D?.) onto a normal sub-

group of I (D), which we denote again by

Gottschling ([4] p. 702) has proved the following theorem.

TREOR. 1. D has reflections which are not 

if and only if at least two of the factors Dl y ... Dr have dimension 1.

In view of this result we can restrict our research to irreducible

bounded symmetric domains.
In the following, (except in theorem 11) every bounded symmetric

domain is, unless othervise stated, assumed to be irreducible.

PROP. 2. If 1~ is an irreducible bounded symmetric domain there

exists a 1 to 1 correspondence between the set and

the set of all the automorphisms 6 : gl such that :

P,roof, 1) Since h E H, consider the inner automorphism of -T (D) deter-

mined by h-I (i. e. -+ 

Ah-1 induces on (identified wjth g) the automorphism TeAh-1
= Ad (h-1); we shall denote by the same symbol, Ad (h-1), its extension

to gC.
We shall show that satisfies i) and ii). Since K,

implies and therefore Thus i) is proved.
oc) We prove now that - ld) 3 = 0. As

passing to the differentials we have the commutative diagram
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Being 1 ~ it follows from

that

From Ad (h-l) 1k = it follows that Ad (h-1) 3 = 3. Since 3 is Olae-dimen-

sional we have (Ad (h~1 ) 2013 ~ ld) 3 = 0 for a certain A.
It follows from

and this implies Ad (h-1) 1::1:: = ~±.
2) To prove the converse, suppose that c is an automorphism of

ge satisfying i) and ii). We shall show that there exists a unique hE .~I for
which 6 = Ad (h-1).

it follows that (0 2013 ~ -Td) 3 = 0 for a convenient A.

Furthermore the relation

implies A =1 and therefore

fl) The relations

imply

y) Let G1 be the simply connected Lie group which Lie algebra is g,
and let ~’ be the analytic subgroup for the subalgebra lk. We can extend
o to an automorphism S : ~’ --~ G’ such Since we have

a diffeomorphism p‘: let us define a differentiable map S’: 
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such that

G’ -~--~. G’/K’ is the canonical map). Passing to differentials

we have:

Since p’ n’) is an homomorphism of g on D the equality

implies

Let now p = g · o E D with g E G’. We have

and then

It follows that S’ E 

6) Let us show that I satisfies i) and

ii), the equality

implies

and then

8) To conclude the proof it is enough to show that Ad (h) = Ad (k)
implies h = k for all h, k E H.

Let Ad (h) = Ad (k). Being G’ connected and simply connected, Ah --. Ak
and then = Id.

It follows that hk-I acts over D like the identity and therefore
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LEMMA 3. For every hE H the complex linear maps

have the same eigenvalues.

Thus we can define a R isomorphism z : 1+ -+ I snch that

for every m E 

It is immediate to verify that r is also a C isomorphism

Recalling that we find that

is a C isomorphism.
To prove the lemma we have only to show that

From we have

As I n i- _ lo), it follows that

From PROP. 2 and LEMMA 3 it follows immediately

PROP. 4. Let D be an irreducible bounded symmetric domain. D has

reflections if, and only if, there exists an automorphiism ig: 3,1-+ ()c such
that

iii) The C linear map 0/(+ has exactly one eigenvalue A ~ 1 which
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Now, let us derive from PROP. 4 a condition easier to handle. To do

this we need some more lemmas and definitions.

LEMMA 5. Let a : gO be an automorphism that satisfies i) : iii)
of PROP. 4. We have

for every a E 0+ , where g. are complex quantities and c is an absolute

constant.

Proof. From ii) we have

and then, by 1), it follows that 9 = alfl ,

To prove the lemma it is then enough to prove the first of the two

relations.

From iii), it follows that the matrix I) aa must have rank 1.

Thus we have a£ = (!a gfl + bi. Now, let B denote the extension to gO of
the Killing form of g. As a is an automorphism of gO we have

and then

that is

By iii) there exists a y E 4Y+ such that

We have therefore

and this proves the lemma.
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LEMMA. 6. Let a be the automorphism considered in PROP.. 4 and

a, ~, y E 4S+ three roots such that

Then either a

Proof. Let It) 91 1 be the set of complex numbers of lemma 5. We have

for every 6, 8 E 4h+. Then, since

it follows from i) and from the hypotheses that a is an automorpbism, that

Let us suppose g (Xy) =~ We have e 7+ 0 and then
It follows from

The proof is completed.

DEF. 2. Let A be any subset of 0+, we call closure of A the set

(where N is the set of naturals) by definition, where A and

and

DEF. 3. Let A be any subset of 4S+, we define the set

8. Annali della Scuola Norm. Sup. di Pisa.
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where we have defined Ao’" = A and

For the sets defined above the following lemma holds.

LEMMA 7. For every ~+

LEMMA 8. Let a : gc --~ g~ be an automorphism that satisfies i) 2013 iii)
of PROP. 4. If 0 (Xa) = Xa is verified for every a E A then it is also veri-

fied for every a E A ".

’ 

Proof. By the hypothesis of the (XE) = Xe for every 8 E Ao .
Let us suppose that a = Xe for every 8 E Aa .

that is o (Xa) = o

By induction it follows that o (X~) ~ Xa for every a E A.a, where i is

any natural number.

This relation is also verified for every a E A.
Let us suppose that Q ~~s) ~ ~~ holds for every s E At. If a E 

then there exists necessarily fJ E such that

By lemma 6 and a = Xp it follows that o (Xe == Xe for every e E 9ip or
for every e E 

In both cases we have, by the first part of this proof, o (X.) = Xa .
Our lemma follows by induction starting from At = A.

LEMMA 9. Let P E 4Y+ and a E tp be roots such that the oc-chain contai-

ning fJ has only two roots # and + oc. If + - C is a C linear map,
there exists an element h E .~ such that
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Proof. For every p, 8 E HI, e ~ 0, we have

and then

From the relation

remembering that

after some computation we arrive to

I~ follows that

It is now obvious that there exist two real numbers o, 0 such that

and the proof is complete.
Now we are able to prove

PROP. 10. Let .~ be an irreducible bounded symmetric domain such

that its Lie algebra gc (where () is the Lie algebra of G) has two roots

a E and fl E y such that ,

i) the #.chain containing consists of two roots oc and oc + ~.

Then D has no reflections.

Proof. is a reflection for D, then by PROP. 2 and PROP 3 
is an automorphism of gC which satisfies i) 2013 iii) PROP. 4.
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Let be any linear map such that

By lemma 9, there is h E .~ such that c~ (Ad (h) = 0. 
’

The automorphism is a reflection which induces on

gc the automorphism , we have

(6’ - Id ) 1+ = 0 by lemma 8, and this is a contradiction.

In the next section we shall apply PROP. 10 to the six types of irre-

dncible bounded symmetric domains.

This irreducible bounded symmetric domain has Lie algebras :

(See [1] p. 348.)

The center of 1k is given by

We have:

~ C can be decomposed in the three subalgebras :
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A maximal abelian subalgebra of 1k is given by.

_ 
set of purely immaginary diagonal matrices 

’

of order m -~-- ~2 with trace = 0 )

C~ is a Cartan subalgebra of g,,. Roots of g~ with respect to Cc are the linear

Root spaces are

whose elements are zero except (r, which is one)
We have the following sets of roots :

Now let us see for which values of m and n the hypoteses of PROP. 10

are satisfied.

We find

and then

If Pi =1, we have
and the hypotheses of PROP. 10 are never satisfied because either 45+ has

only a root or (ar - ø+ H

If ~n ~ ~, let us compute For every

have : a
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It follows that, if m = rc = 2, hypotheses of PROP. 10 are never satisfied.

~ 2~ ~z &#x3E; 2, it is la, - = 0+ - Observing that only ar - ag and

ocr are the roots in the (ocr - cx,)-chain containing Mr 2013 we conclude
that our domain has no reflections.

We know, from [4] p. ~ 03, that D has reflections for m = 1 and for

m ~ "n =-- 2.

The Lie algebras of this irreducible bounded domains are (see [1] p. 350)

real n X it matrices)-- 

7 - - - --- - -I I -- - -- -- - - - ’-

C symmetric 

-- 

j ’ p ,

f A7 13 matrices j
A skew syinmetiric, B symmetric ’ I

We have:

A, B7 C complex n X n matrjcesl
By C symmetric ~

B complex n matrices j
~ skew symmetric, B symmetric
A symmetric compley n matrix

.A. symmetric complex n x n matrix~ .

lA ’ real diagonal n m n matrix
is a maximal abelian subalgebra of lk, so C’ is a Cartan subalgebra of Q~.

Let ar i c -2013 C be a linear map denned by
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It is easy to verify that 0+, (P- and ip are given by :

If it = 2, then and every chain containing two

roots of 4l+ contains all of them and the hypotheses of PROP. 10 can never
be satisfied. 

’

If n &#x3E; 2, we have the following sets of roots :

and then

We have

and by lemma 7

It follows

and then, noting that the (ot 2 -- C1)chain containing ai + cx3 has only two

roots, the hypotheses of PROP. 10 are satisfied and our domain D has not
reflections.

For n = 2 D has reflections. See [4] p. 703.

D has the following Lie algebras :

j X n complex matrices j
j A skew symmetric, B Hermitian
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Then, we have :

A maximal abelian subalgebra of lk is given by

The maps as: c’O -~ C are roots (a; are linear form defined as in the previous
case) and we have the sets of roots :

Let us consider now, for 1 ~ r ~ s C ~~,,

We have

and

In particular we have
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then + oc2" = 4S+, and, as the a3 - a2)chain containing at + a2 has

only two roots, by PROP. 10 this domain has no reflections.

This type of domain has Lie algebras

A. B skew symmetric real matricesi

It follows that :

A, B skew symmetric complex matrices)

A complex n X 1 matrixl , I

~ /A complex X 1 matrix?

A, B skew symmetric real matrices, B is 2 X 2.

A is a n X n matrix whose elements are zero

except the (r, s)-elements with r + s == + 1

is a maximal abelian subalgebra of JR.
Let Cc - C be a linear map defined by
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We have the root sets :

’ 

The hypotheses of PROP. 10 are never satisfied. We know ([4] p. 70p3~
that this domain has always reflections.

This exceptional domain has Lie algebra g° = C6. All roots of e6 are

obtained by the Dynkin diagram

From [5] p. 494, we know that the simple root in the diagram belonging
to ø+ is "’1 or !X5.

We have the sets of roots :
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Now we can consider the sets

It is easy to verify that Then, as a1 and aq + are the

only roots in the CX2-ehaiia containing a, by PROP. 10 this domain has no

reflections.

All roots the Lie algebra = e7 are obtained from the Dynkin diagram

Only M6 is the root in this diagram belonging to 0+. (see [5] p. 494).
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We have the sets of roots :

Q = (set of roots of (see the other exceptional domain).

Now it is easy to see that 9la6 = 9ae=== 0+ and then ~a6~" = ~+. As
and IXS + 1X6 are the only roots of the cx,-chain containing OC6, by PROP. 10

this domain has no reflections.

Summing up we may state the

THEOR. 11. Let D be a symmetric bounded domain isomorphic to the

cartesian product of irreducible bounded domains

D has reflections if, and only if, at least one of Di is one of the following
domains :
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We point out that the results of [4] were only used to show that
irreducible domain which do not satisfy PROP. 10 do have reflections..

However, for sake of completness, in next section we shall re obtain

Gottschling’s results.

§ 4. We prove uow that the bounded symmetric domains

have reflections. To do so, we construct explicitely, for each of them, a
Lie algebra automorphism that satisfies i) ; iii) PROP. 4, and then, consi-

dering the realizations of these domains as subsets of certains sets of

matrices, we give au explicit descripion of a reflection ’-F at a fixed point o.
Furthermore we show that the set of reflections at o is given by

To prove these last statements we need a new

a finite sequence of ele-

i) only Pi and + ai are the roots of the i cain containing 

If w : 1+ -+ C is a linear map, there exists an element such that

Proof. It m =-- 1, the lemma is reduced to lemma 9. Let us suppose
that the lemma is true up to r, where 1 C r  m, let h’ E ~ be and element

such that
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If c~’ is the linear map defined by c~’ (~ ) = m [Ad (h’~~ ~~, then, by lemma 9,
there exists an element h" E 1~ of the form

such that

It follows that

Our lemma follows by induction.

We have the sets of roots : 1

LEMMA 13. Any automorphism g’ of gc satisfying i) -:- iii) PROP. 4 is

in the set ~Ad (7t) a Ad E where a is an automorphism satisfying
i) : iii) PROP. 4 ; furthermore

Proof. If 1 17 let us consider the finite

It satisfies hypothesis
of lemma 12. Let h E .~ be an element such that

is any linear map such that I

now we are led to look for an automorphism
that satisfies conditions :
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for every 3 c i - n + 1, with 16’~ = 1 and À. # 1, and such that

Put

Then we have

the automorphism a satisfies all above conditions. Since exp
== T-1 exp A T, a induces on n) the automorphism 1

Let las consider now an explicit realization of 5

X U(n)). D is the set of 1n X n complex matrices such that -

definite positive, and n) acts on it by the map

(See [6]). acts transitively on ~’ U (l, rc)~~’ ( ~T ( 1 ) X ~T (~)) the

commutative diagram

defines the reflection at 0

The set of reflections of D is
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We have the sets of roots

LEMMA 14. Any automorphism ~’ of gc satisfying i) 7- iii) PROP. 4 is

an element of the set (h-l) a" Ad (h)lh E K), where a" is an antomor-

phism satisfyng also

Proof. We consider the couple (al - a3l M3 - M4 ) and a linear form

m : 1+ -~ C satisfying Kern c~ = ~~- ~ o’ X = .~~. Then by lemma 9, we

find a h E K such thai the automorphism

satisfies PROP. 4 and

By lemma 5 we have (let us use the same notation)

and

it follows

Since are linearly independent and j

we have two cases
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Case b~ is impossible because it yields

Ence

and

ence a" does not satisfy iii) PROP. 4.

By lemma 5, since

it follows that a" satisfies also iv).
Lat us consider the element

for any fJ E (+ we have

in particular

satisfies i) ~ iii) PROP. 4 and

10 Annalt della Scuola Norin S’up. di Pisa.
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Conditions i) - iii) PROP. 4 and iv’) determine uniquely the automor-

phism of t3,1

This shows that l~ has reflections.

It is easy to verify that can be expressed by

and then its extension to 2) by

Now let us consider the realization of the above domain.

So the commutative diagram

defines a reflection at o

The set of reflections of this domain is

We have the sets of roots
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LEMMA 15. Any automorphism u" of satisfying i) :- iii) PROP. 4 is

an element of the set (Ad (h) a Ad E K ), where a is an automorphism
satisfying beside

Proof lemma 9 implies that, if a’ does
not satisfy iv), then we have

Since we have

by well known properties of coefficient it follows that

where

From

and

we have

Since and Cl are three linearly independent subalgebras of

in the first members of

must be zero. Therefore, by lemma 5, we have
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These relations are satisfied if and only if

and

Let h be

where

and

We have

Let us define the linear map m :

we have Ker

Now it is only a matter of trivial computation to verify that

It follows that

satisfies i) 2013 iii) PROP. 4 and the first two relations of iv), ence, it sati-

sfies also the third of them by iii) PROP. 4. QED.
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Since we have the following root spaces

our automorphism must satisfy i) -=- iii) PROP. 4 and iv’)

wbere A =F 1 and Ân 1.

These conditions determine uniquely the automorphism given by

Consider now

It is easely cheaked that a (X) = T-l X1.’ for every X E It follows that

the extension of a to Sp (n. R) is given T.

The domains of type Sp (n, R)/ U (n) can be realized as subsets of matrix
spaces considering all the complex n X n symmetric matrices such that
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JT 2013 tZZ is definite positive. Sp (n, R) acts on D by the mapping

The commutative diagramm

shows that all reflections are obtained by

LEMMA 16. If there exists any automorphism o’ of gc that satisfies

i)2013iii) PROP. 4, then it is in the set

an automorphism snch that

To prove this statement we need only to apply lemma 12 to the finite

sequence a1- an_1), ., . (az , V-1 - a2) for a suitable linear map and

remember lemma 5. QED.
The root spaces are given by

where ~~, is a complex x 1 matrix whose elements are



433

Thus we are led to look for an automorphism of g~ that satisfy
i)2013ui) PROP. and

for every

and the complex conjugate relations,

To prove v), procede as in considering the element

Conditions i) 7 iii) PROP. 4, iv’) and v) determine uniquely the auto-

morphism o of gC given by

where T the matrix
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Clearly (J can be extended to an automorphism of 8°0 (n, 2) wich is expressed
by S : g - TgT.

We can consider D as the set of complex n X 1 matrices Z satisfying
the two conditions

(n, 2) acts on D by the relation (see [6])

From the commutative diagram

(where T’ is the n x n diagonal matrix obtained from T by suppressing
the last two rows and columns) we find that the set of all reflections is

where .2 is the reflection
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