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ALMOST r-CONTACT STRUCTURES (*)

JI0159~ VAN017EURA

Introduction.

The almost r-contact structures introduced in the paper generalize the

almost contact structures as defined in [1] by Sasaki. Alfiiost r-contact struc-

ture is defined on a manifold of dimension 2n + r and consists of 1"

differentiable vector fields ~(1)’’’., $r&#x3E; , r differentiable 1-forms ~~&#x3E;&#x3E; , ... , r~(r~,
and a difierentiable tensor field 03A6 of type (1,1) on M2n+r such that

Very often we call it simply (0, ~~~,~ ? If moreover M2"+r admits
a positive definite Riemannian metric g such that

we speak about almost r-contact metric structure, denoting it by (Ø, ~(i) , q(il, g).
From this point of view almost-complex structures (almost hermitian struc-

tures) can be considered as almost 0 contact structures (almost 0-contact

Pervenuto alla Redazione il 10 Novembre 1970.

(*) Daring the preparation of this paper the author was supported by a fellowship
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metric structures) as well as almost contact structures (almost-contact metric

structures) can be considered as almost 1-contact structures (almost 1 con-
tact metric structures).

In paragraphs 1, 2, 3 we generalize the results of Sasaki and

Hatakeyama in [1] and [2] to the almost r contact structures. As a new

factor appears here the presence of r vector fields ~(1) instead of the

only one in the case of almost contact structures.
We denote by F the distribution generated by ~~1~, ... , ~~r~ and accor-

ding to its properties we distinguish special types of (4S, ~(i) , r¡(i)) structures.
In paragraph 4 we study some topological properties of almost r-contact

structures, giving at the same time certain classes of examples.
All structures in the paper are supposed to be C °°-differentiable. We

denote by E the distribution on lVl2n+r defined by
r~~~1 (~) _ ... = (X) = 0). If not otherwise specified the latin indices i, j, lc

take values 1 ~ ... , r.

1. Admissible Rieniannian metric.

We start with

LEMMA : Let ~(1), ... , ~~?.; and q(]) ... , be r vector fields and r 1-forms
. 

on a manifold Let us suppose that there is

Then there exists a positive definite Riemannian metric g on 11-2n+r such

that

for all i = I ... , r. Clearly with this metric ~(1),..., a nd qll) , ... , are

orthonormal vector fields and orthonormal 1-forms respectively.

PROOF : First let us take any Riemannian metric g’ on IT12,,+r. We

can find an open covering [U",) of such that on every Ua there exist
orthonormal vector fields --- a~(2,~+r) which represent a basis of .E

on Ua.. Thus on any Ua we can define a Riemannian metric ag by setting

Now in the same way as in [1] we can see that the just defined Riemann-
nian metrics coincide on all intersections Ua fl U~ and that in this way
constructed global Riemannian metric has the required properties.
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PROPOSITION 1. : Let (W, ~~;~ , be an almost r contact structure on

Then admits a positive definite Riemannian metric g such that

PROOF : According to the previous lemma we can find a metric V’
such that (X) _-_ g’ (X, ~~~~),

Then we define

The proof then proceeds as in [I ].

REMARK: First we notice that the endomorphism 4l satisfies the equa

tion ~3 ~- ~ = o. It can be easily seen that the endomorphism
is an automorphism, namely we can verify that

Moreover we can show that in case of (Ø, 03BE(i), n(i), g) - structure the au-
r

tomorphism 03A6 + n(i) and then naturally also the automorphism
I=1

is orthogonal. ’

bor a

form
, g)-structure the following skew symmetric bilinear

is important. It is called the fundltmental 2-form of the almost r-contact

metric structure. One can easily see that rank g = 2n.

Taking into account that for a (4S, 8j , g)-structure the restriction
of 0 to any Ex is a complex structure on ~x and that the restriction of g
to any Ex is a hermitian metric on Ex with respect to the just mentioned

complex structure on y we can prove, following [1]

PROPOSITION 2.: On there is 1---1 correspondence between

almost r-contact metric structures and the reductions of the structural group

of the tangent bundle of M2?1+r to the subgroup 1 x ... X 1 X (n).
rX
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REMARK : For a we can quite easily compare
the volume element d V~ of the Riemannian metric g with the (2n + r) form

1 Clearly we can :flnd an orthogonal basis of Tx (M2n+r) in
the form a.. , ~tr~, ... , Xn, ~~~ , ..., 4lXn). We denote by

its dual basis. We get

Then calculating 1j(I) A .,. A r¡(r) A gn we get

2. Normality of an almost r-contact structure.

Let us have a (0, ~(i), on a manifold M2n+r . Now follo-

wing [2] we introduce an almost complex structure J on N~2’~+e m lRr.
We denote only by (ti ... , tr) the canonical coordinates on and we

can define

where X is a vector field on M2n+r and fi are real functions on X ’Rr.
It can be easily seen that J is an almost complex structure, i. e. J 2 = - I.

In the sequel we shall study the integrability conditions of this almost
complex structure. First we calculate the components of the Nijenhuis tor-
sion of J, namely the components of the (1, 2)-tensor

Here A and B are vector fields on X mr. We denote by P and Qi
the projections of M 2n+r X 1Rr on and on the i-th factor of 1Rr res-

pectively, and we define the following four groups of tensors on 



101

Here X, Y are vector fields on M2n+r and denote the differentials

of ~’, Qi respectively. It is not very difficult to show that

where [4$, 4l] denotes the Nijenbuis torsion of 0 and L denotes the Lie

derivative. Clearly the tensors of the four groups are of types (1.2), (0.2),
(1,1) and (0,1) respectively. We notice here also that

Thus we can see that the tensor Y == [j, j ] on lRr vanish if and

only if all the four groups of tensors N1&#x3E; , N(2)7 N(3), N~4~ and all the
brackets [~~~~ , ~(j)] vanish. In the next we shall see that the vanishing of
the only tensor 1V-(’) from the first group together with the vanishing of
all the brackets [$~i), $(j)] implies vanishing of all tensors from the remaining
three groups N(2&#x3E; , N (3&#x3E; , N14) .

To prove the just announced result we use up the fact that N is a

hybrid and pure tensor, what means that we have

The first relation of (2.4) gives the following four identities
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X and Y denote again vector fields on M2n+r .
From these four identities we get applying projectors P~ and Qi the

next 8 identities

Now we use up the second relation of (2.4) thus obtaining these four iden-
tities
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Before proceeding as above we notice that the identities (2.6). and (2.6)3
are equivalent. Thus we get this time only these 6 identities

Now we shall combine the just obtained two groups of identities (2.5)]p ,...~ 7

(~.5)4~ and (2.6)lP,". , (2. 6)4Q :
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Now we are in position to prove.

PROPOSITION 3: If = 0 and all the brackets [~(a), ~~~~] vanish, then
all tensors from the three groups N (1) , _y (3) , N (4) vanish.

PROOF. : Vanishing of all N11)&#x3E; follows immediately from (2.7)3. Further
from (2.5),Q and (2.6)2Q we get NA)) (X, ~ Y) -= 0 and (i) (lK, ~~ ~)) = 0 respec-
tively, what implies immediately = 0. Finally (2.6)2p and (2.5)4P gives

and N(i) (~( ~)) = 0 from which we get again (i) = 0.

DEFINITION 1. An almost r-contact structure (0, ~(a~, ~~~~) for which the

tensor and all the brackets [~~~) , ~~ ~)~ vanish will be called a normal

almost r-contact structure.

3. Special connections on an almost r-contact manifold.

As usual here we shall try to find connections with respect to which
all tensors appearing in the definition of an almost r~contact structure are

covariant constants.

PROPOSITION 4: Let V be any connection on a manifold M2n+r with a

( ~, ~ ~~) , We define a new connection ’r on M2n+r by

Then with respect to this new connection 0 is a covariant constant, i. e.

F~==0.
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Proof is the same as the proof of the corresponding proposition in [2]
(Theorem 7).

PROPOSITION 5 : Let M2n+r be a manifold with a ( 4S, ~) ~ r~~i~ , g)-structure.
If the connection F in proposition 5 is taken to be the Riemannian connec-

tion associated with g, then we have not only V 0 = 0, but also V g = 0.
Proof is the same as the proof of the corresponding proposition in [2]

(Theorem 10).

PROPOSITION 6 ; Let M2n+r be a manifold with a 

ture, and let V be a connection on such that V 03A6= 0 and Vg= 0.
Then the connection í7 defined by

leaves all the tensors (P, 97 ~(i) , r¡(i) covariant constant.

PROOF :

Here we have used the identity (0.5)
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DEFINITION 2: A connection leaving all the tensors ø, ~(i), q(i) cova-
riant costant will be called al)nost r-contact connection or simply 03BE(i) 
connection. A connection leaving moreover g covariant constant will be

called almost r-contact metric connection or simply (Ø, $ci), ~~~~, g)-connection.
Having found a connection leaving all our tensors covariant constant

we ask as usual for a symmetric connection having the same property.
We start with

PROPOSITION 7: Le M be a manifold and let 03BE(1), ...,03BE(r) and n(1),... , 97 (r) be
r vector fields and r 1-forms on M satisfying

for all i, j. Then there exits a symmetric connection leaving all ;~~) and 21(i) co-

variant constant if and only if all 1 forms are closed.

PROOF : If there exists a symmetric connection leaving all ~(i) and q(i)
covariant constant we have dr/i) = 0 by virtue of the formnla dw = A 
which holds for any h-form under the assumption that the connection V is

symmetric. A denotes here the alternation.
On the other hand because of [03BE(i) , 03BE(j)] = 0 we can according to Ishi-

hara and Obatals theorem (see [3]) find a symmetric connection V leaving
all ~(i) covariant constant. We define a new connection í7 by

First we notice that r is again a symmetric connection because of

Moreover we have
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DEFINI1.’ION 3: Let (4Y, ~(i), ql’)) be an almost r-contact structure on a

manifold M2n+r. If all the brackets [C;(i) , ~(j)] vanish we shall call this stru-
cture a commutati,ve Lie almost r-contact structure.

PROPOSITION 8 : Let (1&#x3E;, $(i) be a commutative Lie almost r contact

structure on a manifold M2n+r. If all the 1-forms r¡(i) are closed and all

the tensors vanish, then we can find a ( 03A6, (t) n(i)) -connection whose

torsion is equal to - 1 N~’~.
8

PROOF : Because all q(i) are closed and the structure is commutative

we can, by virtue of the preceding proposition, find a symmetric connection
leaving all ~~$) and q(i) covariant constant. Then, as a consequence of

vanishing of and the symmetry of V, we get (see (2.2)3)

Moreover we have the following obvious identities

We define a new connection F on M2n+r by

Now in the same way as in [2] (Theorem 12) we can prove that V4S = 0
and 1/8I&#x3E; = 0. There is also Vr¡(i) = 0 which is an immediate consequence
of the following lemma.

LEMMA : If p is a connection on M 2n+r leaving T) covariant constant,
then there egist r2 1-forms on M2n+r such that ,



108

Proof of the lemma : Applying pp on - 0 we get = 0 and from

this we conclude that there exist r2 differentiable functions 2( ~i) j) ( Y) such that
that

Similarly we can see that there are r2 differentiable functions f" (§&#x3E;(Y) such

Evidently both 21i) (Y) and (Y) are linear in Y. Finally applying Ty to
(~(j)) = 0 we get

Now to finish the proof of the proposition we must only calculate the tor-

sion of V. We get easily.

where we used two times the fact that = 0. Now the proof is finished.



109

PROPOSITION 9 : On a manifold with a commutative ( 4l, ~(i), - struc-

ture~ 7 there exists a symmetric ((P, ~tz~ , r/i))-connection if and only if the

following two conditions are satisfied
(i) all 27(i) are closed
(ii) the (4S, (i), 1](i})-structure is normal

PROOF : If (i) and (ii) are satisfied then we can find a symmetric
by virtue of the previous proposition. On the other

hand, if there exists a symmetric then all 1-forms

77(i) are closed according to proposition 7. Moreover starting from (2.2), we get

4. Soiiie topological properties.

Let M2n+r be a manifold with a (4l, ~(i)’ Considering
the vector fields (i) we can distinguish some special types of (4l, (i), 
tures.

DEFINITION 4 : Let F be the 1’-dimensional distribution on M2n+r span-
ned by the vector fields ~~).

We shall call this distribution fundamental distribution of the (d5, 03BE(i) , n(i))-
structure. If F is an involutive distribution we say that the ( 4S, 03BE(i) , 
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ture is foliated. Further, if the vector fields ~(i) form a basis of a finite
dimensional subalgebra of the Lie algebra of all vector fields on M2n+r ? we
speak about a Lie Finally if all the brackets [~(i), ~(j)]
vanish we call the ((P, 03BE(i), ~(i))-structure Lie (Ø 03BE(i) , 

In the next we shall be interested only in the topological properties
of foliated ( 4&#x3E;, ~tb) , Here we shall use very often results and

terminology of [4] and [5]. We start by giving an example of the almost
r-contact structure.

Let X be a 2n-dimensional manifold with an almost complex structure
9. Let (M2n+r , p, X) be a fibered manifold over X with fibers of dimension
r, and let ~kl), ~(r~ be vector fields on tangent to the fibers, and
linearly independent at every point of lVl2n+r . We denote by F the n-dimen-
sional distribution on lVl2n+r spanned by these vector fields. Moreover let

E be a horizontal distribution on y i. e. such a distribution that at

every point x E M2n+r we have Tx (M2n+r) = Fx E9 .Ex . We can define r
1-forms on as follows

Clearly all are differentiable 1-forms. Finally we can define on

tensor field 0 of type 1,1~ at every point maps the

tangent space 11 x (M2n+1’) into its subspace Ex. Namely we set

where p~ denotes the differential of p. For other tangent vectors is (P

defined by the linear extension.
The following proposition is trivial.

PROPOSITION 10 : Let (,IV 211+r , p, X) be a fibered manifold over a 2n-

dimensional almost-complex manifold X with fibers of dimension r. Let

~tl~, ··· , ~) be vector fields on M2n+r, tangent to the fibers, and linearly
independet at every point. Finally let E be a horizontal distribution on

Then the vector fields 03BE(i) together with the tensors and 03A6

introduced above, define on a foliated (0, ~(i) , Moreover

the involutive distribution F defines a foliation on M2n+r .
The leaves of this foliation are connected components of the fibers of

M over X and are therefore closed. The foliation F defines on the res-
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triction of the vector bundle .E to any leaf a linear connection (see [4],
p. 448), which we denote by J7. The holonomy group of J7 is everywhere
trivial. Denoting again by 0 the restriction of 0 to E over a leaf we have
03A6=0.

If there is on X also a hermitian metric, i. e. a Riemannian metric h

satisfying we can define a Riemannian metric g on

as follows

For other tangent vectors is g defined by the linear extension. It can be

easily seen that g is a differentiable tensor field. We get

PROPOSITION 11.: The just defined Riemannian metric g is an admis-

sible metric for the (09 (i)g n](i))-structure from proposition 10. Thus the

tensors 0, ~(i), define a (Ø, ~(i) , ~O~ , g) structure Denoting
again by g the restriction of g to E over a leaf we have easily pg = 0 i. e.

the metric g is bundle-like.

Now we shall prove a kind of converse propositions to propositions 10
and 11. We have

PROPOSITION 10* : Let (Ø, foliated almost r-contact struc-

ture on a manifold .

Let us suppose that all leaves of the foliation are closed and that

there exists on complete, bundle-like with respect to the foliation,
Riemannian metric g (of course this metric need not be admissible for our

structure). Denoting again by V the linear connection defined by the folia-

tion on the restriction of .~ to any leaf, we shall suppose that its holonomy
group is everywhere trivial and that  = 0. Then our (03A6() -
structure is the one constructed in proposition 10.

PROOF : By virtue of the theorem 4.4 from [4], there exist a manifold
X and a projection p : M2n+r - X of maximal rank such that the r-dimen-
sional fibers of the fibered manifold (M2n+r, p, X) are precisely the leaves
of our foliation of M2n+r. E obviously a horizontal distribution on the just
eonstructed fibered manifold. Finally the vanishing of V4i allows us, using
the vector-bundle projection P.: E -+ T (X) to transfer 0 from .~ to T (X),
thus obtaining an almost-complex structure on X.
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PROPOSITION 11~ : We keep the assumptions and notations from the
preceding proposition and we suppose more that there exists on a

complete bundle like Riemannian metric g which is admissible for the con-
sidered (Ø, (i) , 17(i), g)-structure. Then the so obtained (0, (i), 1/i), g)-struc-
ture on the one constructed in proposition 11.

PROOF : Using the results of proposition 10* we must show only that
the metric g can be obtained from a hermitian metric on X. But it can be
obtained from a Riemannian metric h on X because it is bundle-like, and
this metric A is hermitian because g is admissible.

Now we shall treat the case of Lie almost r-contact structure. Let

(P, p, X) be a fiber manifold with dim P = 2n + r, dim X = 2n. Let G be
a r-dimensional Lie group operating on P in such a way that its classes

of transitivity are precisely the fibers of P over X. Moreover we shall sup-
pose that all isotropy subgroups of G are discrete. (As an example we can
take a principal fiber bundle with the bundle space P, basis X, and the
structural group G). We denote by the Lie algebra of G and we fix
its basis 3(1),..., 3(r). Let ~(1),." , ~~r) be the vertical vector fields on P ge-
nerated in a well-known way by the elements ~(~), ... , ~tr) . It can be easily
seen that ~(i),...~~ are linearly independent at every point of P. This is

an immediate consequence of the fact that G operates transitively on the
fibers and that its isotropy subgroups are discrete. Finally let JI2n+r be an
open subset of P such that p = X, let .E be a horizontal distribu-

tion on M2’i+r and let J be an automorphism of the vector bundle E such
that J2= 2013jT. 2’hen we can construct a (4l, (i), n(i))-structure on 
as follows. We restrict ~(i) to and define 1-forms n(i) by (4.1). Endo-
morphism 4Y is defined by

and for other tangent vectors is defined by the linear extension. We get
easily

PROPOSITION 12 : The above constructed (0, (i) n ](i))-structure is a Lie

almost r-contact structure. If moreover F== P is a principal fiber bun-
dle with a structure group G, and if the horizontal distribution E is a

connection on P, then its connection form
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Now again we are going to prove a kind of converse proposition to
proposition 12.

PROPOSITION 12* : Let (M2n+r p~ ~) be a fibered manifold with connected
fibers and dim M2n+r = 2n + r, dim X = 2n. Let (Ø, ~(i), be a Lie

almost r-contact structure on M2n+r such that the vector fields $(i) are tan-
gent to the fibers of over X. Let G be a connected r dimensional

Lie its Lie algebra and let 3(1),..., S(r) be a basis of E (G)
such that the linear extension 0 of the mapping --~ ~~~~ is a Lie algebra
homomorphism of -!2 (G) into the Lie algebra of all vector fields on 
Moreover let the infinitesimal G-transformation group 0 (see [5]; Def. IV,
p. 34) on be univalent (ibid., Def. VI, p. 62).’ Then the
structure on the one constructed in proposition 12.

PROOF : X be any point, and let denote a fiber of 

over x. It can be immediately seen from the definition of univalent infini-

tesimal G-transformation group that the restriction ex of 9 to (i. e.
the mapping ~(t)2013~ restriction of ~(i) to is a univalent infinitesimal
G transformation group on Thus by virtue of the Principal Theorem
(Theorem X, p. 75) from [5], we can find a universal globalization of ex

(see [5], Chap. III, § 1). In this way we get a manifold Px of which Mx2n+r
is an open submanifold, and on which G operates in the way described in
definition II of Chap. III in [5] (p. 59). Let and let us denote

the operation of G on Px and P by gz and g respectively.
We shall provide P with a structure of differentiable manifold. We

start with introducing a topology on P, which will be done using funda-
mental systems of neighborhoods of a point. M2,,+r is a subset of P and

has its original topology. We keep this topology of i. e. we define

a fundamental system of neighborhoods of a point from to be a fun-

damental system of neighborhoods of the point under the original topology
of M2n+r . For a point a E we define a fundamental system of
its neighborhoods as follows. Then is a E Px for some x E X, and we can find

b E and 9 E G such that a = bg. If ~~?,~a ; a E I) is a fundamental system
of neighborhoods of b, then a fundamental system of neighborhoods of a is

(defined to be ~~a g ; a E I). Of course, now we must show that this way of intro-
ducing topology does not depend on the choice of band g. Clearly, it is

sufficient to show that having two and g E (~ such that

b2 = bi g~ and being fundamental system of neighborhoods of

bq , I then is a fundamental system of neighborhoods of b2 . But
this can be proved in the following way. The infinitesimal G- transformation

g. drcriah delta 8(’1wla Nurrn Sup. di Pi3a.
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group 0 on is univalent and therefore, again by virtue of the Prin-
cipal Theorem, admits a globalization. Hence we get a manifold Q of which
1I12n+r is an open submanifold and on which G operates again in the way
described in definition II of Chap. II in [5]. This operation of G on Q we
denote by g’ . It generates on Q an involutive distribution of which 
is an integral submanifold. We denote by Qx the maximal integral subma-
nifold of this distribution containing 

Such a manifold clearly exists because is connected. Using the
fact that Qx is maximal and that the group G is connected we can find

easily that Qx is G-invariant and that the restriction of g’ to Qx is a

globalization of Now using the universality of the globalization (Px, cpx)
we get a homomorphism of (P~ , gz) into (Qx , From existence of this

homomorphism we can conclude immediately that the actions Tx and q,’,
coincide on and therefore also the actions p and (p’ of G coincide

on But the action 99’ of G on Q is differentiable and of course

also continuous, and from this fact we can easily see that our topo-
logy is well defined. As the manifold structure of P is concerned, there

is no more trouble. has its original manifold structure, and this one

can be extended to P in the same way as the topology. Here we need only
to know that the action 99 of G on M2n+r is differentiable. But this fact

we have just proved above.
There is a natural projection _p : P -+ X, namely for there is

~ (a) = x. It is not difficult to see that with this projection (P, p, X) beco-

mes a fibered manifold. The action cp of G on P is differentiable as a

consequence of the fact that it is differentiable on 31 2n+r, and the 
vity classes of this action are precisely the fibers Px. Finally as the vector
fields ~(1),..., ~~r~ are linearly independent at every point, all isotropy sub

groups of G an discrete. The proof is completed.

REMARK: We notice here that if M2n+r is compact and G is taken to

be simply connected, then every-infinetesimal G-transformation group acting
on is even proper (see [5], Corollary 2, p. 82).
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