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ASYMPTOTICS FOR ~u = m2 u + G (x, t, u, ux, ut), I.

GLOBAL EXISTENCE AND DECAY (*)

by JOHN M. CHADAM

Equations of the type

are of interest inasmuch as they are mathematical prototypes of nonlinear

equations which arise in Quantum Field Theory. Classical scattering for
these equations is based on the knowledge of precise estimates for the decay

A program

of this sort has been carried out for the case G (x, t, u, u) = G (u) by
Segal [1] and Strauss [2] for m =f= 0 and m = 0, respectively. In this paper
a generalization of the method of Segal [1] will be developed and used to

obtain suitable decay for a wide class of perturbations G (x~ t~ u~ ux , u). The
technique is perturbative in nature in that it depends (in the most intere-
sting cases) on restricting the size of the Cauchy data and/or the coupling
constant. Although equation (1) is the only type treated here, the technique
can, in all likelihood, be used in studying the decay of a wider class of

equations (e. g. perturbations of the Dirac equation, evolution equations ari-

sing in fluid dynamics).
In section 1 an abstract version of the technique is outlined. It is used

in section 2 to study the decay of particular illustrative examples of equa-

tion (1) ; namely, and the linear

Pervenuto alla Redazione il 29 Settembre 1970.

(*) Research supported in part by the National Science Foundation (NSFGP 13627).
This work was presented as part of an invited address to the Research Colloquium of the
Conference on the Mathematical Theory of Scattering held in Flagstaff Arizona, July-
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case G (x, t) u. A sequel to this paper will be devoted to the abstract (clas-
sical) scattering theory for the equation 0 u = m2 u + G ut). The
corresponding theory for the above examples will also be treated based on
the decay results obtained in section 2.

1. Decay. A step-by-step outline of the approach for obtaining the de-
cay of the solutions of equation (1) will be given. The main result will be
stated as a final summarizing theorem. Only real-valued solutions will be
treated. The extension to the complex case can be easily made.

To begin, the notation is figed and some preliminary results are di-

scussed. Let A2 denote the self-adjoint realization of m2 I - LI on (real)
L2 (En). The solution spaces H (A, a), of equation (1) which are relevant in
this work are, for each a E the completions of D (Aa) (DD (Aa-1) with

respect to the inner product

where ( ., . ) is the usual inner product in .L2 (En). The norm of

will be denoted by

It is standard to treat the existence theory of equation (1) in its vector-
valued form

where ¡¡ is the mapping:

H (A, a) --~ .g (A, a) defined by

can easily be shown to be a continuous one-parameter group of orthogonal

transformations on with skew-adjoint infinitesmal generator (
That is, is a generalized solution a strict solution if is in

u2

the domain of of the vector form of the Klein.Gordon equation



35

((2) with 6~ - 0), or the free propagator. Thus the integrated form of equa-
tion (2) is

where is the Cauchy data at time to . Solutions of equation (4)

are generalized solutions of the Cauchy problem for equation (2).
General results of Segal [3, Theorem 1, p. 343] provide conditions on

Gt which guarantee the existence of unique local solutions of equation (4)
in .g (A, a). More specifically if Ct : 1R X H (A, a~) - H (A, a) is continuous

and semi-Lipschitz uniformly on each finite t-interval, there exists an interval

containing to and a (necessarily unique) solution, (u I (to) containing to and a (necessarily unique) 1/. (1B!~ ~~~) , of equation (4)
u (tl

over I (to) such that is continuous from I (to) into j~ (A, a). The

interval of existence is either all of 1R or extends to the t closest to to for

which In the present situation, a criterion for

global existence can be obtained in terms of Gt [3, Corollary 1.3, p. 347]
from

For the examples to be considered in section 2 there are no a priori reasons
for the right hand term of (5) to be bounded throughout 1R (as, for example,
in the treatment of G (u) = u3 [3, Theorem 4, p. 359]). However (5), with
other inequalities, will be used to establish global existence as well as decay
for the solutions of these equations by means of the technique to be out-
lined in the remainder of this section.

In the following it is assumed that G is sufficiently regular so that
the above discussion applies to establish the existence of a unique solution,

(U ? of equation (4) in some open interval, including t (I 00).
u 

’

A more detailed discussion of these requirements on G will be reserved for
the particular examples in section 2 in order to focus here on the proper-

ties of G which lead to the decay of the solutions. Since tbe results are

perturbative it will be necessary to distinguish the coupling constant and
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constants which depend on the Cauchy data (lower case) from those which
cannot be made small (upper case). In many instances the same upper case
letter will be used for several successive inessentially different numbers.

For notational convenience G ( ·, t, u (t) ux (t) u (t)) will be replaced by G (t, u (t)),
I I . -" B. I .

It will also be convenient, with no loss of generality, to sup-
pose that

Following Segal [1, section 3] the first component of equation (4), using
the relation (3), can be written as

where 110 (t) is the unique global solution of the Klein-Gordon equation with
the same Cauchy data at to. If G (s, u (s)) is in the domain of Ab (see as-
sumption (D2) to follow), then

Taking the Fourier-Plancherel transform of (7) one obtains

Let Et, b denote the inverse Fourier- Plan cherel transform of
- sint (~2 .+ M2)111 (i.e. b is taken greater than 1/2 throughout this work). Now
a well known variant of Parseval’s Theorem shows that the inverse Fourier

transform of the integrand is But the integrand is also
in Z2 (E3) because of the boundedness of
Thus the inverse Fourier and inverse Fourier-Plancherel transforms agree
on the integrand. Taking the inverse Fourier-Plancherel transform through
the last equation results in
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Since precise estimates on space-LP norms of Et, b are available ~1~ section

4, p. 478 and 4, section 5] and a bound on the space- jD~ norm of Ab G (s, u (8))
will be assumed (c.f. assumption (D2)), an estimate on 11 u (t) ]]r can be obtai-
ned in the form

where 1-~- r-1 --. p-1-;- q-1, All of the conditions for the validity of the
above discussion are met by making the following assumptions :

as the previous discussion suggests, will
denote throughout this paper, the space-Lq norm of the image under Ab :
L2 (E3) --~ L2 (E3) of the square integrable function G (t, u (t)). In the parti-
cular cases to be discussed in the next section bounds for 11 Ab G (t, u (t)) q
are obtained in terms of polynomials in 111, (t) (t) Ilr and || u (t) Ilr, re-

ducing to the single term in (D2) only by using (D,). Both inequalities
will follow from the use of Sobolev inequelities. The K Const. » arises in

this manner, while g is the coupling constant. Assumption (Di) used only
in a technical fashion here to simplify (D2), is necessary in a much more

essential manner in later developments.
With (D2), inequality (8) can be replaced by

Similarly, 
t
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where Ft. b is the inverse Fourier-Plancherel transform of (m2 + gj2)- (b+1&#x3E;’2
cos . Thus

where 1--f - rw = ~’-1-E- q’-J. Assuming

for 1-f - ’.~ and q’ = 2.
inequality (12) can be replaced by

. 

At this stage, if an explicit bound for I u (t) la in terms and

11 u (t) 11, were available [l, (3.13b) p 468], the coupled inequalities (9) and

(13) could be used to obtained information concerning and ~I ~~ (t) ~ r .
However, in the examples of interest here, relationships of this type can-
not be obtained in general. Instead, one further inequality coupling the

three norms y and , is sought. Specifically, from (5),
the inequalily

follows. Noticing that and making the further restric-
tion on G,

inequality (14) reduces to

Suppose t-e and t-6 , 6, e ~:&#x3E; 0, are the anticipated decays for
and . 

, respectively, - 00. Define, as usual,
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Because U (t) is a orthogonal group (A, a),

a constant which is independent of

the interval I(to) and dependent only on the Cauchy data ( Based on

the extensive available knowledge of the decay of solutions-.of the Klein-
Gordon equation [1, section 4], suppose further are chosen small

enough and the Cauchy data are chosen smooth enough so that

REMARK. It can be shown that if 89 8 £ 3/2 and ul and u2 are sufficien-
tly smooth so that for a suitably large p
then where Q (to) is locally bounded.

Similarly for r . Thus are independent of and for each finite

to can be made arbitrarily small by choosing u1 u2 small in appropriate
sense.

On multiplying (9) by (1+|t|)03B5, replacing t by t’ and taking supre-
mums over to 

Similar bounds can be obtained

~ y resumng in
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Using the known estimates [1, section 4 and 4, section 5]

the last part of (16) can be bounded by

1°hus, if min

where all of the new constants (which are independent of I (t)) are incor-
porated into C. In exactly the same fashion, the final set of coupled ine-

qualities
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can be obtained provided

The boundedness of x (t), x (t), y (t) and hence the decay
of u (t) r and (t) ]]r and boundedness of I u (t) (a will follow from the

inequalities (17) using the next technical result.

LEMMA 1.1. Suppose xi (t), i =1, ." r~, are real valued functions defined
on some interval I and satisfy

where xio are constants and hi are non-negative polynomials of n variables
(i. e. hi (xi (t), ... Xn (t))

i) Suppose Tij  1 for all i, j, then Xi (t), i = 1 ... n, is bounded on I.

ii) Suppose 1 for all i, j. If

a) xi (t), i =1, ..., n, is continuous on I,
b) for some t E I xi (t) ~ xio and
c) either x~o for all i = 1, ... , n or gij for all i, j are sufficiently small,

then xi (t), i= 1, ... , n is bounded on I.
iii) Suppose the are arbitrary non-negative exponents. If
a) xi (t), i =1, ..., n is continuous on I

b) for some t E I, Xi (t)  X¡o , and

c) gij for those i, j associated with ’lij ---1 are sufficiently small and

either

1. gij for all i, j such that ’lij &#x3E; 1 or

2. x~o for all i =1, n and gij for all i, j such that Tij  1, suffi-

ciently small,
then i =1, ... , n is bounded on I.

PROO}t’. c. f. Arpendix I. The « sufficiently small » is made precise by
the computations appearing there.
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For example, in the particular case considered by Strauss and Segal
[e. g. 2, Lemma 3.7, p. 437]

the specific restriction on the size of the constants is

and this results in the bound

THEOREM 1.2. Suppose equation (4) has a unique solution, in

H (A, a) for some a over some interval I (to), such that is con-

tinuous from I (to) -+ H (A, a). If assumptions (D~) .,. (D6) are satisfied and

either

or g small,
iii) a, fl, ... , #", y" arbitrary with x~, xo , y. and g small,

then the solution can be extended to all and 

PROOF. Assumptions (D1) ... (D6) imply inequalities (17) for 

Using Lemma 1.1 with

, it follows that

and for all t E I (to) where.
are locally bounded functions of to and independent of I (to). Thus the

solution exists globally and the same estimates obtain for all t E 1R.

REMARK. The above discussion is intended as the summary of a

a method which will apply to several explicit examples rather than as an

abstract result There are many minor variations of the scheme which may
be more effective in certain instances but it seems inappropriate to discuss
them in this general setting. They will, however, be pointed out in the

next section with reference to more speclfic interactions. In fact the follo-

wing results will indicate tnat simple generalizations of the above are

possible but have been purposely omitted in favor of simplicity in the
presentation of this abstract summary.
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2. Decay for specific example. In order to reduce the number of

parameters, throughout this section the number of space dimensions (n)
will be three, and only uniform decay (r = oo) will be studied. In order

that assumption (D,) be satisfied a is taken h 3 (or ~ 2 if u does not
enter the discussion) because for any

Const. ) I Const., In addition for I h 0, the
completion of D (A l) with respect to the inner product (Al. , A l.) is preci-
sely (i, e. no completion is reqnired). Thus = D (Al) E)

~ m-1 I u and I I U (t) 112  (t) 112 ~ (t) l,t. In the

case of interest in the following, a :~~! 2, the boundedness of I it (t) 1,,, thus

guarantees the boundedness of 11 u (t) 11, and 11 U (t) 112 hence the decay of

I I u (t) 11,. and I I u (t) 11, , 2~~ooy can be obtained by interpolation by
means of

In many case, (19) provides the same results as the direct approach.

(a) G (x, t, u, ux, ut) = G (u). This example is considered not only because
it is technically the most simple but also because the present method allows
the decay estimates of Segal [1, section 4, p. 478] to be generalized to the
solution where a priori boundedness of the energy is not required. First
the question of local existence is treated.

THEOREM 2.1. Suppose u1 E H (A, 2) and G (x, t, u, ux, = G (u)
,

where G E C~, 7 is real-valued and I for all

with 0 ! aj  oo. Then there is ’an interval containing to such that
the (integrated form of the) equation

with Cauchy data at to has a unique solution , in H (A, 2) over

the interval Moreover the map is continuous from 

into H (A, 2). 
’ ’

PROOF. Appealing to the previously mentioned result of Segal [3,
Theorem 1, p 343] all that requires checking is the semi-Lipschitz character
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of Gt. The continuity of Gt follows trivially from this semi-Lipschitz pro-

perty and the fact that G is not explicitly time dependent. Let

E H (A, 2). Then Const.

I G ~ v) -’ ~(~)~i,2 where is the usual norm

in the Sobolev space (ten). The last inequality follows from a result

of Calderon [5, Theorem 7, p. 36] which in this context gives C-1 ~~ ~ 
-

for k a positive integer and 1 [p  oo, where C= Cp, k .
By the mean-value theorem G (v) - G (w) = G’ (av + [v - w] where

~ ~ ~ O? ~ -t- &#x26; == 1. Thus 11
..........-

But as previously mentioned for f E D (A2),
by Sobolev inequalities

and the spectral theorem respectively. Therefore

To obtain a similar estimate for the remaining term (denoting the

partial derivative with respect to ~x6 by write [6, Lemma 1, p. 87]

the Sobolev inequality and the Spectral Theorem, the result of Calder6n

was used in the form I Since ||
, the above estimates can be combined to give

2

where C ( ~, ~ ) is bounded on bounded sets. This is precisely the statement

that Gt : .H (A, 2) --~ .g (A, 2) is semi Lipschitz as required to complete the

proof.

REMARK. The result could be proved just as easily with the less
I _ a I

restrictive condition However this con-

dition is not sufficient for global existence and decay and so this more

general framework is omitted.
A decay result for the particular case of G (u) will now be obtained

by showing through detailed calculation that the abstract result of the

previous section is applicable.
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THEOREM 2.2. Suppose G E C2 is real - valued and

9 1 A IP-j for all A and j = 0, ... , 2, with 03B2 &#x3E; 3. If the Cauchy data |
are safficienty smooth so that condition (D4) is satisfied 3/2 then

equation (20) has a unique global solution with II 0 ( ~ I t 1-3/2) and
~c (t) I2 = 0 (1) as 1 t 2013&#x3E;- oo, provided that either the coupling constant g or
the Cauchy data, X0 + yo , is sufficiently small.

PROOF. Inequality (8), in the present situation, is

where p = q (q - 1)-1. First observe, relative to assumption (D.) that if

by means of uniform boundedness
of (private communication from W. Strauss) and Nelson’s [4, Sec-

tion 5] decay estimate The interpolating
trick at the beginning of this section gives the global estimate I

1 B1 -l

C (1 + I t )-3/q+3/2 for all t and 1  q  2. The estimate corresponding to

(D2) for similar values of q is summarized in the following

LEMMA 2.3. With the hypotheses of Theorem 2.2 and 1 ~ q ~ 2

PROOF. In view of the equivalence of weak and strong derivatives

[eg. 7, Theorem 1, p. 1031],
if the last term of the inequality is finite. In view of the growth condition

provided that ~8q &#x3E; 2, which is guaranteed by the
choice of fl and q. Next (c. f. Remark 1 to follow for first equality)

vided that 2q (~ -1) (2 - q)-1 &#x3E; 2, which again is guaranteed by the given
conditions on fl and the choice of q. The last term (c. f. Remark 1 to follow
for first inequality) The

first term can be handled in precisely the same manner as 11 di (G (u)) Ilq was
treated by replacing I For

the last term
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the last inequality following from the Sobolev inequality [8, p. 125 and

R,emark 2 to follow] 11 ai U 114 ~ C max 11 .Da u ~~2~2 II U )] 1’2 and the above trick
1=’) 

2 00

applied to
, 

I

, requiring a, which is again
satisfied.

REMARK 1. In treating terms like 11 a; G (u) llq it convenient to view

ai G (u) in the strong sense in L2 (E3) (the usual formulation of a2 as a closed
operator in L2 (.E3)). 2’he technical result of Segal [6, Lemma 1, p. 87] can
be applied 1/ u A~ u ~ ~ ) to give the desired result 9t G(1t) =

where the derivatives on either side can be interpreted as strong
.I2 (E3) or equivalently weak derivatives. For higher order derivatives, 
the desired results follow by a combination of the above reasoning along
with the Leibniz formula for weak derivatives written as follows in a form

which is most appropriate for this discussion : Suppose f1 and f2 E .L2 (En)
have weak derivatives and for all then the

product f, f2 has weak derivatives up to order j and they are given by
the Leibniz formula in terms of the appropriate weak derivatives.

REMARK 2. The very general version of the Sobolev inequalities given
by Nirenberg [8, p. 125] will be the basic tool in obtaining inequalities of
the form (D2) and (D3) for the examples to be considered. By recalling that
D (AO,) = W a, 2 and passing to the limit one obtains the specific form in

which this result will be used; namely,

PROPOSITION 2.4. Let Da f denote the a th weak derivative of f and
and define max Suppose f E D (Aa) with a h 2. Then if

10.1 = i

where p-l = j/3 + y (1/2 - k/3) for all y in the interval j/k  y ~ 1.

3. The method used in handling the term 11 appears

to be the only one available. From a technical point of view then, this term

typifies the best possible result of the form (23) that can be obtained. The
remainder of the problem in obtaining estimates of the form (23) (or more

generally (D2) and (D3~) consists of showing, by means of Sobolev inequali-
ties, that the same product also dominates the derivative terms.
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Returning to the proof of Theorem 2.2, inequalities (22), (23) and the
estimate result in

The inequality for the escalated energy norm can be obtained similarly.
Witb a = 2, inequality (14) is

Using Lemma
Thus

Using the definitions and techniques of the previous section, the analogue
of inequality (16) can be obtained in the form

In order to reduce the above to abstract inequalities analogous to (17) so that
Lemma 1.1 can be applied, the explicitly time-dependent factors must be

removed from inequalities (27). This will be done by direct checking that
condition (D6) is satisfied. Technically the arguments is to show that it is

possible to choose a q, 1 S q ~ 2, so that the equalities are satisfied with

~==3/2. It is quite simple in this case. If max (3jq-~3j2, (~3-2jq}E)=
== max (3/2, (~ - 2) 3/2) ~ 3/2 and min (3/2, (~ - 2) 3/2) = 3/2 = 8 while

(~ - 1) 3/2 h 3 because ~ 3.
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Thus choosing q =1, inequalities (27) can be reduced to

The degree of the non linear terms are ~ - 2 -E-1= ~ -1 &#x3E; 2 and 
_ ~8 ~ 3. Thus part ii) of Lemma 1.1 gives the desired result over I(to)
provided that either the coupling constant, g, or the Cauchy data xo + yo

is sufficiently small. The global existence of the solution8 (ll (t)) in H(A, 2),
u (t)

and the fact that the same estimates for 11 u (t) ll,, and I U (t) 12 obtain throug-
hout all of ’R follows trivially as in the abstract Theorem 1.2, thus con-

cluding the proof of Theorem 2.2.

It should be mentioned that in this simple case where the perturbation
(~ does not depend on u explicitly, the inequality associated 

can be avoided if one is only interested in the decay of 1/ u (t) 1/00. On the
other hand the above results, along with the analogue of (12),

can be used to obtain a decay result for 11 u (t) as follows. For 1  q’  2,
it can be show that (unpublished
joint work of W. Strauss and the author) and 0 ( I t as t I --+ 00 for
1  q’  4/3 [4, section 5]. But, for q’ &#x3E; 1, - (2q’ - 3)  Thus

for all t. The analogue of (27a) then is

By choosing q’ close to 1, (03B2 - 2/q’) 3/2 &#x3E; 1. Thus by a technical result of
Shenk and Thoe [9, Lemma 3.1] the integral is bounded by (1-~- ~ t 

COROLLARY 2.5. With the hypothesis of Theorem 2.2, the global solu-

tion of (20) (t) 1100 = 0 ( t - oo with 8 arbitrary but  1,
provided that either the coupling constant g or the Cauchy data xo + yo is

sufficiently small.
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(b) (~ (x, t, u, ut, uxl = (~ (ut). Decay and asymptotics for perturbations of
this type have not as yet been considered in the literature. However, in
the context of the abstract discussion of section 1, it is only a technical
variant of the preceding example. In fact, most of the basic estimates which
were proved there can be applied directly in checking the details here.

THEOREM 2.6. Suppose G E C3 (JR), is real-valued and

 g ~ I A I fl-i for all I and j = 0, ... , 3, # ~ 3. If the Cauchy data u1 E JI (A, 3)(U2
are sufficiently smooth so that condition (D4) is satisfied with I t 1-3/2 decay
then (the integrated from of)

has a unique global solution with

where E = E (P) = 3/2 for fl &#x3E; 7/2 and s (~)  3 (/3 - 1)/5 for 3 C ~  7/2,
(t) 1100 = o ( ~ t )-3) where 6 is arbitrary but  1 and (t) 13 = 0 (1) as ,

I -+. 00, provided that either the coupling constant, g, or the Cauchy
data xo + yo is sufficiently small.

PROOF. Again the existence of local solutions follows if 6~ is semi-

Lipschitz. To this end let (V) w E H (A, 3). Thenv w

As in the proof of Theorem 2.1, 11 G (v) - G (w) 2 C C ( I I A2 v I 2 +
A2w A2 (v - w) 112. -Using the procedure outlined in Remark 1

following Lemma 2.3, L1 [G (v) - G (w)~ = G’ (v) Av - G’ (w) + G" (v) (4v)2 -

+ (G" (v) - G" (,tv)) A suitable estimate for the L2 (E3y-norm of the
first two terms can be obtained as in the last paragraph of the proof of
Theorem 2.1. For the third term

4 Annali della Scuola Nonn Sup. di Pisa.
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using the notation of Proposition 2.4. The same result gives

provides a suitable bound for the third term. Finally I

As in Theorem 2.1, the above estimates can be

assembled to show that

As for the decay, the analogue of inequality (24) using Lemma 1.3, is

The inequality for the derivative, analogous to inequality (30) is

The counterpart for inequality (26) involving the escalated energy norm is

As in Theorem 2.2 only the last two inequalities are needed to obtain
global existence (i. e. boundedness (t) Is) and a decay result for

II it (t) ll,,. Using the definitions and techniques of the previous section
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In order to apply Lemma 1.1, it must be shown that q’ can be chosen so
that for arbitrary 6  1, the explicitly time dependent terms are bounded
or equivalently checking that condition (D6) is satisfied.

Since /§ h 3 and 3 is (taken for the best result) arbitrarily close to

1, (# -1 ) b &#x3E; 1 so that the integral in (34c) is bounded by

If q’ is chosen such that 1  q’  4/3, then the estimate in Corollary 2.5

can be used for II Ft-8, 1 Ilq’(q’-1)-~ · If it is also possible to find a q’ such
that (fl - 2/q’) 6 &#x3E; 1 then the computation in Corollary 2.5 shows that the

integral in (34b) is bounded by C (1 + t’ I )-t/q’ , and thus the whole term
is bounded by a constant if in addition llq’ h 6. Thus condition (D6) is

guaranteed if q’ can be chosen to simultaneausly satisfy 3/4  and
"1 "1"1

Witb fl &#x3E; 3, it is clearly possible them to find q’ sati-

sfying the second pair of inequalities for arbitrary 1/2  3  1. Since

large b’s are of interest, there is no problem in taking 6 &#x3E; 3/4, in which

case 1 1 then 1 automatically ;

otherwise this is an added restriction on the choice of q’ which can clearly
be realized since 6  1.

Having chosen a q’ from the non-empty set satisfying ð  1/q’ 

 mila (171 (# - 1/6)), (34b) and (34c) reduce to (after incorporating the ~ ~ 2 ~~ ~ ))~ ~ ) ~ ) ~ p g

additional constants)

But the degree of the non-linear terms 3 
- 2 jq’ + l/q’ &#x3E; 6-1 + 6 &#x3E; 1. Thus part ii) of Lemma 1.1 gives the boun-

dedness of x (t) and y (t) over I (to) provided either xo -E- yo or g is suffi-

ciently small.
In order to obtain the indicated decay of II u (t) first notice that

3/q - 3/2 &#x3E; 1 if 1 ~ q  6/5 and (,~ - 2/q) 6 ~ 4~/3 &#x3E; 1 for q ~ 6/5 and
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~3 h 3. As a result the integral in

is bounded by Const. (1 + where 0 = min (3/q - 3/2, (# - 2/q) 6). If

q is taken to be 1, then 0 = 3/2 for # &#x3E; 7/2 giving the boundedness of

x (t). For 3  7/2, taldng q = 5 (,8 + 3/2)-l implies that the second

factor is the minimum so that 8 = 3 (,~ - I) ~/5 giving the boundedness of

x (t) for this range of # and hence the indicated decay of I u (t) 1100. The

global existence of the solusions and the fact that the same estima-

tes foi ~3 obtain throughout all of 1R follow

trivially us in the abstract Theorem 1.2 thus concluding the proof of

Theorem 2.5.

REMARK 1. !~ I t I-3/2 decay for 11 u (t) (and for II it (t) 1100) can be ob-

tained as a straightforward exercise by using the escalated energy norm

11 ~~A, 4 ( ~~ !lA, 5, respectively) requiring a higher degree of differentiability for
G and leading to the technical problem of checking whether inequalities of
the form (D2) and (D3) are still available for the perturbations of interest.

This « best-I)ossible &#x3E;&#x3E; decay is not required for doing scattering theory for

this equation and hence is not pursued further.

REMARK 2. None of the examples considered thus far have required
the use of the full set of non-linear inequalities. An example weich does

is the relativistically invariant perturbation This also ty-
pifies the most difficult kind of perturbation to handle by these methods

because of the presence of both spatial and temporal derivatives. Rather

than examine this technically complicated case, an example which possesses
these undesirable features but for which the details are more simple will

be treated in the next section. The explicit presence of x and especially t

variablcs in the perturbation serve only to enhance the decay. This will be
shown by means of a simple example at the end of this section.

(c) G ut) = G’ (u) ax u. In the above expression the summation
convention is used over x = 0,1, 2, 3 whith ao u = ut. Homogeneous non-
linear terms of this sort, with further conditions on Gx to guarantee Lorentz
covariance and positively of the energy, arise from general derivative
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couplings. For this example the investigation will emphasize producing
suitable decay for scattering with the weakest conditions on the perturba-
tion, rather than the best decay for arbitrary powers as in the last example.

THEOREM 2.7. Suppose that for each x - 0,1~ 27 37 GI E (~3 (1R), is real.

valued, for all I with c for all ~ with

the Cauchy data are sufficiently smooth so that condi-

tion (D4) is satisfied, then the (integrated form of the) equation

has a unique global solution

provided that either the cou-

pling constant, g, or the Cauchy data, xo + xo + yo , is sufficiently small.

PROOF. As in Theorems. 2.1, and 2.6 the existence of local solutions

is established by checking the semi-Lipschitz character of Gt. It will be

convenient in the argument to use the summation convention over 1, 2, 3.
This will be indicated by the use of Roman letters; i. e. Gk (u) ak (~c) +

A suitable estimate for the first term can be obtained by observing that it is

bounded by (v - w) (~2 + ) ) Gk (w) ax w 112 + II GO (v) (v - u’) 112 +
(GO (v) - 6~ (w)) w 112}. Each of these terms can be estimated as in Theo-

rems 2.1, and 2.6. A similar estimate can be obtained for the second term
is inequality (37) along the lines of the proof of Theorem 2.6. Since the

details are extremely tedious but entirely straightforward they will be

omitted.
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Continuing, then’ to the decay result, if, 1  q  2, then

An estimate like (D2) for the term under the integral is summarized in

LEMMA 2.8. With Gx and a, as in Theorem 2.7,

PROOF. Appendix II.

REMARK. The estimates in Lemma 2.8 are slight generalizations of

those in assumption (D2) and (D3) in that they are linear combinations of

the terms appearing there. However, the general method of section 1 applies
to this situation as well as can be seen from the subsequent discussion of
of this example. The appearance (a) in the above inequality will

demand that the full set of coupled inequalities be used.
Thus if 6 (3ax - l)-l - q!E::-: 6/5, inequality (38) can be replaced by

Similarly, using the estimate of Corollary , and
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And finally the appropriate inequality for the energy is

Taking q, so that all can be treated simultaneously,
and

then the inequalities (39) imply, as in (16),
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Because a’ h 2, it is straightforward to check that all the integrals con-
verge and cancel the appropriate powers of (1 -~- ~ ) to give

Part ii) of Lemma 1.1 again applies to give the desired conclusion of Theo-
rem 2.7.

(d) G (x, t, u) = gG (x, t) u. This linear example is included mainly
to indicate, in this simplest possible situation, how the abstract method of
section 1 may be trivially modified to handle perturbations which are ex-

plicitly dependent on t. It is also interesting in several other technical

respects; namely, it is an example which is most profitably treated by
using (4) to obtain a bonnd for u rather than (5) and working with

y (t) = sup I u (t) la which necessitates the use of part iii) of the basic Lem

ma 1.1. The decay of G (x, t) used in the subsequent discussion is that sugge-
sted by taking G (x, t) = (v (x, t))2 where v is a solution of the .g - G equa-
tion with smooth Cauchy data so that it is differentiable to high order
with respect to x and t and it and its derivatives decay in the uniform

norm like t y3~2 . This corresponds mathematically, to the first variational

equation for 0 u = m2u + gu3 or, physically to the simpliest equation pro-
posed for the weak interaction of the field with an external meson field.

The basic estimate, which in this linear case will suffice for both the

local existence theorem and the decay theorem, can be summarized in the
following

LEMMA 2.9. If, for all t, G (., t) is an element of the Sobolev space

W2,p(E3) for jp=l and oo (or equivalently for all 1 and w E D (A3),
then for any 1 q -~,- 2

(using the notation of Proposition 2.4).
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PROOF. Because

6"(’~ ~ and all their weak derivatives are in the Leibniz formula

may be applied to the last term to obtain

The result then follows from

which are particular cases of Proposition 2.4.

THEOREM 2.10. Suppose that for all t,
and|| is a continuous function of uni-

formly bounded in t and
, ,

chy data are sufficiently smooth so that condition (D4) is sa-

tisfied with E = 3/2, then (the integrated form of)

has a unique global solution with

6 arbitrary but  1, and I u (t) 13 == 0 (1) - oo provided that the

coupling constant is sufficiently small.

PROOF. For this linear equation, a simplier version of Segal’s Theorem

[3, Corollary 1.2, p. 346] can be used to get the local (in fact global) exi -

stence of solutions. All that is required is that Gt : .g (A, 3) --~ H (A, 3) has
locally bounded operator bound. This follows directly from Lemma 2.9 and
the hypotheses because

As for the decay result, only the inequalities involving and

are need. As usual, with
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Ilowever the usual approach for (t) 12 3 inequality is avoided in order

to get a better result. For if the standard approach was used then (using
the notation of section 1) the degree of the terms on the right hand side
of the inequalities for x (t) and y (t) would be a and a" + ~" respecti-
vely where a + 2# = 1 and a" + = 2. This implies that a =

=1/2  1 since a  1 is some terms while a" + /~ = 1 + a"/2 h 1 ne-
cessitating the ultimate use of part iii), c), 2) of Lemma 1.1. This in term

requires that both the coupling constant g and the Cauchy data 
are sufficiently small. The approach here will instead be directed to getting
the expouents a -~- ,~ = a’ + f3’ = oc" + fJ" =1 thus by part iii), c) requi-
ring only that 9 be small. To this end consider equation (4). A straight-
forward calculation gives

Now for

A bound for all of the terms involving
in (44a) and (44c) can now be obtained by using the continuity (hence lo-

cal boundedness) of || G ( .t)||2 , p and the t 1-3 decay rate as / t 1-+ 00 of
....

Thus using and inequalities (44a) and

(44c) reduce to
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Clearly the terms on the far right of expressions (45a) and (45c) are boun-
ded and hence part iii), c) of Lemma 1.1 gives the global existence and
desired decay for 11 it (t) ll,, and 13 provided the coupling constant, g, is
sufficiently small.

The cited decay for ||u (t) 1100 can be obtained as a consequence as fol-

fows. If 1  q’  4/3,

Since all the exponents of 1 + I s I in (46) are [ -1, the technical result

of Shenk and Thoe [9, Lemma 3.1] can be used to give the cited decay of

||
REMARK 1. This example is interesting from a technical viewpoint in

that it shows how the abstract theory of section 1 can be generalized in
several directions ; specifically, y i) the inclusion of a time-dependent factor
in (D2) and (D3)~ ii) a linear combination of similar terms in (D2) and 
and, iii) an alternative for (5) as an inequality for the escalated energy.

REMARK 2. As was pointed out previously, y Theorem 2.10 is suitable

for treating the equation proposed for the weak interaction of the u field

with en external meson field (i.e. G (x, t) = (v (x, t))2 where v satisfies the

K - G equation). Coupled interations of this sort can be treated by a va-
3

riant of this method. However perturbations of type ~ G ~ (z, t) &#x26;x u + G4 (x, t) u,
k=0

which are mathematical generalizations of the equation governing the inte-
raction of a meson field u with an external electromagnetic field, require
more severe damping in the Gx’8 than is suggested by the physical problem.
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It seems then that in these linear cases the damping of the time-dependent
required to make this method work is fairly stringent. On the other hand
when G (x, t, == ~ G (x) u other methods [10] (which can presumably

be generalized to treat ) are available for treating

the asymptotics of the perturbed equation. 
’

The scattering theory for equations of this type, in the abstract as well
as for the particular cases discussed in section 2, will be presented in a

sequel to this paper.

APPENDIX I. Proof of Lemma 1.1.

Consider the individual terms in the polynomials hi.

where Thus

and hence.

where Suppose, with no loss of generality, that each polyno-

mial has no more than N terms

Thus

But, 1 implies that and hence
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Since the same bound as above obtains for

each xi (t).
ii) Choose z &#x3E; max Let 0 ~ 0 be arbitrary.

Tus

Appealing to a result of Segal and Strauss [e. g. 2, Lemma 3.7, p 437]

The last inequality can be achieved by using the renaining hypothesis,
ii), c). First, holding the gij fixed, since zo can be niade arbitrarily small

independent of 0, the left side of the inequality is 0 as

0 -~ 0. Thus the left side can be made sufficiently small by choosing zo
and 0 small provided that the exponent ’Cij (r; - Tii)-l - r (r - l)-l &#x3E; 0 for
all i, j. This condition is identical to

which is clearly the case. If zo is to remain fixed then the left side can

be made small by first choosing 0 large so that zo 02013~2013~’~ is small and

then taking so that gij 0 "i i is small.

iii) By repeating the calculations in i),
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If the gij for those i associated with ~~~ = 1 are chosen so that

I then the above implies

where

Repeating the argument of ii), the boundedness of z (t) on I is established if

which is possible by taking and 0 small or the g;;’8 associated with

1 small and 0 large.

REMARK. Notice in the proof of iii) that if all za3 ~ 1, the boundedness
of z (t) depends only on the smallness of gij for those i,j for which 
(Compare with part i))

APPENDIX II. Proof of Lemma 2.8.

First write (suppressing the s-dependence)

where Gk’ and G k" denote the first and second derivatives of Gk. Each
term is now examined in order. The same constant, C, is used for inessen-

tially different numbers and the sum over lr is understood in each term.

For Lemma 2.8 the appropriate estimates are as follows.
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by the estimates of leading to (23) and
from Proposition 2.4 provided (

as in (23) provided

as in (23) provided using

as in (23) provide using I

as above provided

as above provided (
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provided 

provided

provided

All that remains then is to check that if 6 (3C(k - 1 )-1 q  6/5 then
all the above inequalities involving q and are satisfied. The fifth and

last are the worst and as such are the ones which defermines the con-

dition in the hypothesis of Lemma 2.8. Clearly the condition is not

satisfied unless q:::;;: 6/5, and if this so, 6q (6 - 5q)w ~ 2 (ak - 2) is

equivalent to 6q (a~ - 2) ~ 2 (6 - 5q) or q ~ 6 (3ock -1)-1. The other

ineaualities follow directly from from the condition q &#x3E; 6 (3ak - 1)-1 :

For part ii) all but the sixth, eighth, ninth and tenth are valid for

ak &#x3E; 2 and q = 2, and contribute to the first term in the inequality. For
those listed above the estimates can be made in a sightly different many
ner to obtain the desired result
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since Finally
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