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INVARIANT SUBMANIFOLDS OF CODIMENSION 2
OF ALMOST CONTACT MANIFOLDS

SAMUEL I. GOLDBERG (1)

1. Introduction.

In his dissertation, Smyth [8] classified the complex hypersurfaces M of

the simply connected complex space forms if under the conditions that in

the induced metric they are complete Einstein spaces. M is then a totally

geodesic submanifold, or else the holomorphic sectional curvature of 1~1 is
positive and .l~ is a complex hypersphere. A local analogne for odd dimen-
sional manifolds was subsequently obtained by Yano and Ishihara [9]. They
proved that if M is an invariant submanifold of codimension 2 of a normal

contact Riemannian manifold M of constant sectional curvature and if in

the induced metric ~ is an Einstein space, then M is a totally geodesic
submanifold of M. Observe that the exceptional part of Smyth’s result does
not occur, that is positive curvature yields the same result in all cases.

Consider either a (2 n + 1)-dimensional normal contact Riemannian

manifold or a cosymplectic space and let M be an invariant submanifold

immersed as an orientable hypersurface of a hypersurface (P, i) along
which the fundamental vector field of ~ll is tangent. Then, if the induced

f-structure on P (of rank 2n - 2) is normal, or, if the unit normal field of

j (M), with respect to the induced Riemannian metric, is a Killing vector

field, M is a totally geodesic submanifold of M. This is an odd dimensional

analogue of a result on complex hypersurfaces of Kaehler manifolds obtained
in [3].

As in [3], no assumption on the metric structure of M is made. Indeed,
it is not assumed that the ambient space is a space form or that the sub-

manifold is an Einstein space.
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2. Hypersurfaces of almost contact manifolds.

Let be an almost contact metric manifold of dimension 2n + 1, n &#x3E; 2,
with fundamental affine collineation T, fundamental vector field È, compa-

~ ~

tible metric g and contact form W, where

Let k be the field of unit normals to i (P) with respect to W. Consider a

2n-dimensional hypersurface P immersed in M with immersion 
having the property 

-

(T): For each p E P, the vector Ei(P) belongs to the tangent hyperplane
of i (P).

Then,

where f and a are tensor fields on P of types (1,1) and (0,1), respectively,
i* is the induced tangent map the module of C°° vector

fields on P. Since i is a regular map, there is a vector field .E’ on P such

that 
,

Hence, by (2.1) and (2.2), fE’ = 0 and a (E’) = 0. Putting q’ = we have

~ ~ ~

Since 7jv is orthogonal to N with respect to g, it is tangent to the

hypersurface, so there is a vector field ~ on P such that

Applying to both sides of (2,1) gives f 2 . _ - -j- r’ (X) ’ -- a (.Y) A
and a ( f X) = 0.

Applying 7P to both sides of (2.6) yields fA = 0 and a (A) =1. Sum-

marizing, we have the following result established in [5].
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PitoPosii’IoN 1..Let P be a 2n-dimensional hypersurface immersed in tlae
almost contact manifold M with immersion i. Then, there exist tensor fields
f, E’, A and a on P satisfying the relations

where I is the identity trans formation of Pp , that is the induced structure on

P is a globally fra1ned f-structure of ranlc 2n - 2.
N N IV

Let í7 be the Riemannian connection of (ii, g) and let D be the induced
connection on P, that is, the Riemannian connection of (G = i* g. Then, the
equations of Gauss and Weingarten are

and

respectively, where h and H are the second fundamental tensors of the im-
mersion of types (0,2) and (1,1), respectively and

If the structure on M is normal, that is, if the almost complex struc-
ture J on M X R defined by

where Lo is a C°° real valued function and k is a C°° vector field on R,
gives rise to a complex structure on M x B, then the tensor field

(of type (1,2)) vanishes, where
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An almost contact metric structure is called quasi-Sasakian if it is nor-

mal and its fundamental form is closed, where ø (.X, Y) = Y).
1°hus, Sasakian ( ~ = d~) and cosymplectic (dn == 0) manifolds are quasi-
Sasakian [1].

The hypersurface P carries an almost hermitian structure. To see this,
we set

Then, from (2.7) (2.11 ), it is seen that J is an almost complex structure,
that is J2 = - I. From (2.1), (2.4) and (2.6), we see that

The fields E’ and A are therefore orthonormal by (2.10) and (2.11). Observe
that

By (2.1), since i# is skew symmetric with respect f is skew symmetric
with respect to G, We put F (X, Y)= Y), that is F = i- Then,
from (2.14),

from which J is skew symmetric with respect to G.

Putting S~ (~’, Y) = G (JX, Y), we obtain

Observe that if M is quasi-Sasakian, then the 2 form F is closed.
If the ambient space is cosymplectic, q’ is also closed. The following

result was obtained in [5].

PROPOSITION 2. If the 9pnce is cosymplectic,

When the vector bundle over P, with fibre the vector space spanned
by E 

‘ and A at each point of P, is endowed with an affine connection 7,
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it admits an almost complex structure J. If J is integrable, the globally
framed f-structure is normal [7]. By defining y in sucb a wa~y that .E’ and
A are parallel fields, it has zero curvature. The f structure is then normal

if [f,fJ + cia ~ A vanishes. The following result was also ob-

tained in [5].

PROPOSITION 3. If the ambient space is cosilmplectic, then a necessary
and sufficient condition for the induced globally framed f-structure on P to be
rcormal is that

3. Hypersurfaces of almost complex manifolds.

Let .1~ be an immersed orientable hypersurface of P. We denote by j
the immersion and by N the field of unit normals to j (M) with respect to

G (with orientation determined by P). Let V be the Riemannian connection
of (M, g), g = j* G. Then,

and

where k and .g are the second fundamental tensors of the immersion j, of
types (0,2) and (1,1), respectively, and x, y E 9C (M). We set

and

Then, 0 is a 2-form on M. If E is the contravariant form of q with respect
to g, then it is a vector field on .~ satisfying

An endomorphism g of 9( (M) is defined by the relation

Thus, 0 being a 2 form, y is skew symmetric with respect to g. Moreover,
by (3.3),
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It follows that

where I is the identity transformation field of m E M. In addition, (3.3)
and (3.7) yield

which is equivalent to

by the skew symmetry of (p. Consequently, M is an almost contact mani-

fold [2].

4. Invariant subiiianifolds of codimension 2 of a cosymplectic space.

In the sequel, M is an Invariant submanifold of that is

namely, at each point of Jil, the tangent space is invariant under the action

of 99. Then, by means of (2.1), (2.4), (2.6), (2.14) and (3.7),

and

Putting x = E, we obtain N = A. For, by (3.5), since J.E’ = A, 7

Hence, N = 1 (/* E ) A = 7’(j* E) A = A, by choosing q’(j* E) = 1, since N
and A are each of length 1. Thus, if M is an invariant subrnanifold of an
almost contact manifold with immersion t, the veotor field A coincides with
the normal field N and j* a = 0.

PROPOSITION 4. If 1~ is a cosymplectic manifold, then M is also cosym-
plectic.

~ N N I1r /V

PROOF. Since n = i* y (V x 1]) (y) + 1] (V x y) = n) (t* y) + t* y) =--
~ ~

= ii t* y). For, in a cosymplectic manifold the covariant derivative of
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the contact form is zero. From (2.12) and (3.1), we obtain

where ~(~y)==~(~~~2/). Applying (2.2) and (2.3), we get px ~ = 0 (see
also § 5).

Defining the (lyl) tensor field N’ 
I 

by h’ (x, y) = g (g’ x, y), we get

for some 1-form co on M.

PROPOSITION 5. Let M be an invariant submanifold of the cosymplectic

space fir with the immersion i. Then,

PROOF. We differentiate the function a (j. y) in the direction x, then
apply Proposition 2, formulae (2.14) and (3.7), and observe 

so

and

COIROLLARY. Under the conditions in the proposition,
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and

so M is a minimal submanifold,

PROOF. By the proposition, .g2 cp2 H’ = .g’? - (~ o H’) Q9 
But, by Proposition 2, h (X, .E’) = 0, so since G E’) = G (X, HE ) =
== G (X, Hj. E), ve get 
That M is a minimal submanifold is a consequence of the fact that the

second fundamental tensors are symmetric and ø is skew symmetric.

THEOREM 1. Let M be an invariant submanifold of a cosymplectic mani-

fold if. If M is immersed in M as an orientable of a hyper-
surface with the property (T), and if the field of unit normals N on P is a

Killing vector field, then M is a totally geodesic subrnanifold of M.

PROOF. By Proposition 2, h (X, fY) + h ( Y, f X ) = 0 which is equivalent
to the statement that H commutes with f. Applying this to the vector field

j x, we get 
oy-w’ -r-rl r&#x3E;.

For,

and

Applying Proposition 5, K = 0 and H’ = 0, the latter being due to the
Corollary to Proposition 5.

COROLLARY. Under the conditions in the theorem, the hypersurface
P is a Kaehler manifold.
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PROOF. Since H and f commute DA A HfA = 0. Applying
Proposition 3, the induced globally framed structure on P is normal. Hence,
J is integrable (see [6]). By (2.15), P is Kaehlerian if q’ and oc are closed.

That q’ is closed is immediate since 27 is closed. That a is closed is a con-

sequence of the fact that A is a parallel field. To see this, we express
any C°° vector field on P as for some and C°° function

fl on P, and show that (Dj*x a) ( j~ y), (Dj*x a) (A), a) (E’), (DN a) (i, y),
(DN a) (E’), and (DN 0:) (A) vanish. That this is the case follows from

Proposition 2, the vanishing of g’ and the fact that j* a is zero.

If the induced almost complex structure tensor J is integrable there
exists an affine connection D on P such that DJ = 0. If this is the Rie-

mannian connection induced by g, then the geometrical condition on N

may be replaced by the condition that J be integrable. For, then by [4],
Proposition 20, K and T commute.

5. Invariant submanifolds of codimensione 2 of a Sasakian space.

Theorem 1 has an analogue for normal contact metric spaces, that is
for Sasakian manifolds, To this end, we state the appropriate analogue of

Proposition 2 (see [5]).

PROPOSITION 6. Let Sasakian manifold. Then, the relations

hold on P.

Observe that E’ is a killing vector field.

REMARK. We have shown (Proposition 4) that an invariant submani.

fold of a cosymplectic manifold with the immersion t is also a cosymplectic
manifold. A more general statement can be made, namely, y an invariant
submanifold of a quasi-Sasakian manifold with the immersion i is a quasi-
Sasakian manifold. To see this, observe that 0 = i* since 0 =j* Q,

2r¡’ A a and j* is a ring homomorphism. Moreover, the condition

[~, ~] + (&#x26; E = 0 implies [99, 99] + dq (D E = 0. However, Theorem 1 and



386

Theorem 2 (below) do not extend to quasi-Sasakian spaces in general.
The key statement required is that if A is a Killing vector field, then H’
and 99 commute. Observe also that

This is an identity if the ambient space is either cosymplectic or Sasakian

(see Proposition 8 for the latter) since vanishes in the former case,

and although this is not so for normal contact manifolds (~~~)~===
= ~ (N ) i~ X - g (i. X, N) E = 0 by virtue of (2.3).

For quasi-Sasakian manifolds of different 99H’ unless

the immersion is further restricted (see [11, Proposition 5.1).

PROPOSITION 7. If 2 is a Sasakian  manifold then M is also a 

kian 

PROOF. The structure tensors of M are related by

which says that M is a Sasakian manifold.

Observe that the above proof also yields the formulae

and

Hence,

PROPOSITION 8..Let M be an invariant submanifold of the Sasakian

marcifold 1V1 with the immersion t. Then,

Hence, Since M is invariant
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COROLL.ARY. Under the conditions in the proposition,

and

so M is a minimal submanifold.

The proof of Theorem 2 below parallels that of Theorem 1, Proposi-
tions 2 and 5 being replaced by Propositions 6 and 8, respectively. ,

The following fact is also required.

If the ambient space is a normal contact manifold, then H’ E
vanishes.

PROOF. By Proposition 6, h ( j~ x, E’) = 0 since j* a = 0. The remain-
der of the proof may be found in the proof of the Corollary to Proposition 5.

THEOREM 2. Let M be an invariant hypersurface of a Sasakian mani-

fold If M is immersed in if as an orientable hypersurface of a hyper-
surface with the property (1’), and if’ the field of unit normals N on P is

a Killing vector , field, then M is a totally geodesic submanijold of M.

COROLLARY. The hypersurface P is a non-Kaehlerian hermitian ma,nifold.
J is integrable by Theorem 10 of [5] and Theorem 1 of [6].
That P is not Kaehlerian is a consequence of the fact that q’ is not

closed. For, by Proposition 6, if 1]’ were closed, then ~’ would vanish and
this is not possible.
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