Scuola Normale Superiore di Pisa

Classe di Scienze

D. D. J. HACON
 Manifolds of the homotopy type of a bouquet of spheres

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3^{e} série, tome 24, no 4 (1970), p. 703-715
http://www.numdam.org/item?id=ASNSP_1970_3_24_4_703_0

Abstract

© Scuola Normale Superiore, Pisa, 1970, tous droits réservés. L'accès aux archives de la revue «Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

MANIFOLDS OF THE HOMOTOPY TYPE OF A BOUQUET OF SPHERES

By D. D. J. Hacon

1. Introduction.

This note is concerned with manifolds homotopy equivalent to $v S_{i}$ (a bouquet of spheres of varying dimensions). In this connection a useful concept is that of thickening which is a homotopy generalization of the idea of regular neighbourhood. The reader is referred to [7] for definitions in the general case. Here we shall be concerned with the specific problem of describing the set of thickenings of $v S_{i}$ and it will be convenient to adopt a definition of thickening that differs slightly from that to be found in [6] (see § 2).

In [3] Haefliger classified thickenings of (simply-connected) bouquets of spheres subject to certain dimensional restrictions. Our purpose here is to improve on Haefliger's result in the piecewise-linear case and deal with the non-simply-connected case, reducing it to the problem of classifying concordance classes of embeddings of a number of solid tori in a certain manifold, as follows.

Denote by P^{n} the solid n-pretzel i.e. an n-ball with a finite number of 1 -handles attached orientably. Then the classification of thickenings is reduced to the classification of concordance classes of embeddings of the disjoint union of solid tori in $\hat{o} P$, which is a simpler question. For istance, if the bouquet in question is simply-connected then ∂P is a sphere and the problem is now to classify concordance classes of embeddings of solid tori in a sphere. See [3]. If, on the other hand, the bouquet consists of a circle and a sphere we need to look at knots of a solid torus in $S^{1} \times S^{q}(q$ being $\operatorname{dim} P-2$).

Suppose $f: \vee S_{i} \rightarrow W$ is a homotopy equivalence (and hence a simple homotopy equivalence since the Whitehead group of a free group is trivial). If f is homotopic to a piecewise linear embedding $g: \vee S_{i} \rightarrow W$ proceed as follows. Take a regular neighbourhood N of $g \vee S_{i}$ in Int W, the interior of
W (if $g \vee S_{i}$ meets ∂W isotop it into Int W). N is homeomorphic to W, for by the s-cobordism theorem [1], W-Int N is homeomorphic to $\partial N \times[0,1]$. We thus obtain a handlebody decomposition of W suffixed by the cell structure of $v S_{i}$.

In general, however, there exist homotopy equivalences $f: \mathrm{v}_{\boldsymbol{i}} \rightarrow W$ which are not homotopic to an embedding and consequently the above procedure cannot be followed. But a theorem of Stallings [5] allows us to factor $f: \vee S_{i} \rightarrow W$ up to homotopy through a simple homotopy equivalence $f^{\prime}: \vee S_{i} \rightarrow N$ where N is a $p_{N}+1$ dimensional polyhedron in W. We seek a simple description of N in terms of $v S_{i}$ which will (as in the case when f is an embedding) provide a handlebody decomposition of W suffixed by the cell structure of $v S_{i}$. In fact it will be shown (§3) that, if $f: v S_{i} \rightarrow W$ is a homotopy equivalence, W may be expressed as P plus handles of index two or more and that handles of sufficiently large index are attached disjointly i. e. after a certain point in the construction of W the order in which handles are subsequently attached is immaterial.

2. The main theorem.

Throughout we restrict ourselves to the piecewise linear ($P L$) category [7].

Write $\cup S_{i}$ for the disjoint union $S_{1} \cup, \ldots, \cup S_{N}$ of spheres S_{1}, \ldots, S_{N} of dimensions p_{1}, \ldots, p_{N} subject to the condition $1 \leq p_{1} \leq, \ldots, \leq p_{N}$. Let $*=(*, \ldots, *)$ be a point of $S_{1} \times, \ldots, \times S_{N}$. Then $v S_{i}=S_{1} v, \ldots, \vee S_{N}$ is the subpolyhedron

$$
\left(S_{1} \times\{*\} \times, \ldots, \times\{*\}\right) \cup, \ldots, \cup\left(\{*\} \times, \ldots, \times\{*\} \times S_{N}\right) \text { of } S_{1} \times, \ldots, \times S_{N}
$$

Let $\pi: \cup S_{i} \rightarrow \vee S_{i}$ be the obvious identification map. If we write $v S_{i}$ in the form $S^{1} v, \ldots, v S^{1} v S_{1} v, \ldots, v S_{N}$ it is understood that $p_{1} \geq 2$.

Now let M be a compact, connected, oriented manifold with nonempty boundary ∂M and such that

$$
\begin{equation*}
\operatorname{dim} M \geq \operatorname{Max}\left(6, \operatorname{dim} \cup S_{i}+3\right) \tag{1}
\end{equation*}
$$

(2) $\partial M \subset M$ induces an isomorphism of fundamental groups.

We will be considering pairs $(M, f), M$ as above and $f: \cup S_{i} \rightarrow M$ homotopic to $g \circ \pi$ where $g: v S_{i} \rightarrow M$ is a homotopy equivalence. We call such a pair (M, f) a thickening.

Remarks (1). Since M is assumed connected any map $f: \cup S_{i} \rightarrow M$ factors up to homotopy through $\pi: \cup S_{i} \rightarrow \vee S_{i}$.
(2) Suppose $f: \cup S_{i} \rightarrow M$ factors up to homotopy through a homotopy equivalence $g: S_{i} \rightarrow M$. Let $g^{\prime}: v S_{i} \rightarrow M$ be any other homotopy factorization. Then g^{\prime} is also a homotopy equivalence.
(3) If S_{1}, \ldots, S_{N} are all circles then all thickenings (M, f) are equiva. lent in the sense below.
(M, f) and (M^{\prime}, f^{\prime}) are said to be equivalent if $M M^{\prime}$ are homeomorphic and the homeomorphism H can be chosen to preserve all the data i. e..
(a) H is orientation-preserving
(b) the diagram
homotopy commutes.

Remark. In the simply-connected case ($p_{1} \geq 2$) these definitions coincide with those of Haefliger [3].

Let P be the manifold defined in the introduction. That is a ball plus 1-handles. Let $\operatorname{dim} P=q$ where $q \geq p_{N}+3$ and $p_{1} \geq 2$. Any inessential orientation-preserving embedding $h:{\underset{1}{N}}_{N}^{N} \partial \Delta^{p_{i}} \times \Delta^{q-p_{i}} \rightarrow \partial P$ determines an oriented manifold of the homotopy type of a bouquet of spheres. The manifold is P plus handles $\Delta^{p_{i}} \times \Delta^{q-p_{i}}$ attached by means of the given embedding. Since the embedding h was assumed inessential we obtain a welldefined homotopy class of maps $f: \cup S_{i} \rightarrow P+$ handles. It is easily seen that this f is in fact a thickening.

Remark. The restriction that h be inessential is only a restriction if $p_{1}=2$, since $\pi_{i}(P)=0$ for $i>1$.

Suppose h, k are concordant embeddings. It is an immediate consequence of the concordance extension theorem [4] that the two thickenings defined by h and k are equivalent.

Thus there is defined a function Φ from the set of concordance classes of embeddings of solid tori in ∂P to the set of equivalence classes of thickenings of $V S_{i}$.

Here is the main result of this note.
Theorem. If, for the bouquet $S^{1} \vee \ldots \vee S^{1} \vee S_{1} \vee \ldots \vee S_{N}, \operatorname{dim} P=q \geq$ $\geq \operatorname{Max}\left(6, p_{N}+3\right)$ then
(1) Φ is surjective if $2 p_{N}-q+1<p_{1}$
(2) Φ is injective if $2 p_{N}-q+2<p_{1}$.

The proof is deferred to section 3.

3. The factorization lemma.

In this section it will be shown that any thickening $f: \cup S_{i} \rightarrow W$ factors up to homotopy through a homotopy equivalence $g: v S_{i} \rightarrow N$ where N is a subpolyhedron of Int W with special properties. But first some notation. Write X for $\vee S_{i}$ and filter X by $*=X_{0} \subset, \ldots, \subset X_{N}=X$ where $X_{i}=S_{1} \vee, \ldots, v S_{i}$ and $*$ is the base point of X. Let $f_{k}=f \mid S_{k}$. Finally, denote by Σf the singular set of f i. e. the closure of the set $\left\{x \in X \mid f^{-1} f x \neq x\right\}$.

Lemma 1. (factorization lemma) Let $f: X \rightarrow$ Int W be a thickening (or more accurately let $f \circ \pi$ be one). Suppose that f is nondegenerate and that for $k=1, \ldots, N, \operatorname{dim} \Sigma f \cap S_{k} \leq p_{k}+p_{N}-q$. Then there exist polyhedra $Y_{0} \subset Y_{1} \subset, \ldots, \subset Y_{N}$ in Int W such that
(1) $\quad f \mid X_{k} \rightarrow Y_{k} \cup f S_{k}$ is a homotopy equivalence

$$
\begin{align*}
& Y_{k+1} \text { collapses to } Y_{k} \cup f S_{k} \tag{2}\\
& \operatorname{dim} Y_{k} \cap f S_{k+i} \leq p_{k}+p_{N}-q(i>0) \tag{3}\\
& \Sigma f \cap S_{k} \subset f_{k}^{-1} Y_{k} \text { and the latter collapses to } * \tag{4}
\end{align*}
$$

REMARK 1. If the first few S_{i} of X have small enough dimension then f embeds them (by the general position hypotheses on f) and the first few Y_{i} are defined by $Y_{i}=f X_{i-1}$ satisfying conditions (1),, , (4).

Remark 2. Lemma 1 yields a minimal handlebody decomposition for W as follows. Define inductively handlebodies H_{k} in Int $W(k=1, \ldots, N)$ by first triangulating $f: X \rightarrow W$ so that Y_{0}, \ldots, Y_{N} appear as subcomplexes (to be denoted by the same symbols). Take the barycentric secondderived suddivisions of $X, W . f$ remains simplicial being non•degenerate. Define $H_{k}=N^{2}\left(Y_{k} \cup f S_{k} ; W\right)$, the simplicial neighbourhood of $Y_{k} \cup f S_{k}$ in the second-derived subdivision of W. Then H_{k+1} is H_{k} plus a handle. For $\left(Y_{k+1} \cup f S_{k+1}\right)-\operatorname{Int} N^{2}\left(Y_{k+1} ; W\right)=f S_{k+1}-\operatorname{Int} N^{2}\left(Y_{k+1} ; W\right)$ and the latter is a p_{k+1} - disk in Int W that meets $N^{2}\left(Y_{k+1} ; W\right)$ in its boundary. This follows from condition (4).

And $H_{k+1}-\operatorname{Int} N^{2}\left(Y_{k+1} ; W\right)$ is a ball meeting $N^{2}\left(Y_{k+1} ; W\right)$ in $N^{2}\left(f S_{k+1} ; W\right) \cap \partial N^{2}\left(Y_{k+1} ; W\right)$ which is a solid torus. By regular neighbo-
uhoods theory, H_{k+1} is homeomorphic to

$$
N^{2}\left(Y_{k+1} ; W\right) \underset{\psi}{\cup} \Delta^{p_{k+1}} \times \Delta^{q-p_{k+1}}
$$

where $\psi: \partial \Delta \times \Delta \rightarrow \partial N^{2}\left(Y_{k+1} ; W\right)$ is an embedding. But by condition (2) Y_{k+1} collapses to $Y_{k} \cup f S_{k}$ and so $N^{2}\left(Y_{k+1} ; W\right)$ and $H_{k}=N^{2}\left(Y_{k} \cup f S_{k} ; W\right)$ are homeomorphic. Therefore H_{k+1} is H_{k} plus a handle and we obtain a handlebody decomposition of H_{N} (and hence of W) suffixed by the cell structure of X. Furthermore, (1) implies that the thickening $f: X \rightarrow W$ is filtered by a series of thickenings $f \mid X_{k} \rightarrow N^{2}\left(Y_{k} \cup f S_{k} ; W\right)$.

As observed in the introduction, it is possible (under certain dimensional restrictions) to find a handlebody decomposition of W in which the handles are attached independently of one another after a certain stage. To show this we need a modification of the factorization lemma.

Lemma 2. Let f satisfy the hypothesis of lemma 1. Suppose, in addition, that $p_{k+1} \geq 2 p_{N}-q+2$ for some $k(1 \leq k<N)$, and that Y_{0}, \ldots ..., Y_{k} have been found satisfying conditions (1) through (4) of Lemma 1. Then there exists a polyhedron Y in Int W such that
(a) Y collapses to $Y_{k} \cup f S_{k}$
(b) $f: X \rightarrow Y \cup f X$ is a homotopy equivalence
(c) $\Sigma f \subset f^{-1} Y$
(d) $f_{k+i}^{-1} Y$ collapses to $*$ for all $i>0$.

Remark. As before we have a handlebody decomposition of W. Triangulate $f: X \rightarrow W$ so that Y_{0}, \ldots, Y_{k}, Y are subcomplexes of W. Define
and

$$
H_{j}=N^{2}\left(Y_{j} \cup f S_{j} ; W \quad(0 \leq j \leq k)\right.
$$

$$
H=N^{2}(Y \cup f X ; W) .
$$

Then the handles $N^{2}\left(f S_{j} ; W\right)-\operatorname{Int} N^{2}(Y ; W)$ are attached independently to $N^{2}(Y ; W)$ i.e. $N^{2}\left(f S_{j} ; W\right) \cap \partial N^{2}(Y ; W)$ are disjoint solid tori $(k+1 \leq$ $\leq j \leq N$). For, by (c) of Lemma 2, f embeds

$$
\begin{aligned}
f^{-1}\left\{\bigcup_{j=k+1}^{N}\right. & \left.f S_{j}-\operatorname{Int} N^{2}(Y ; W)\right\} \text { and } S_{j}-f^{-1} \operatorname{Int} N^{2}(Y ; W) \\
& =S_{j}-\operatorname{Int} N^{2}\left(f_{j}^{-1} Y ; W\right) \\
& =S_{j} \text { minus the interior of a ball, by }(d) \\
& =a \text { ball, }(j=k+1, \ldots, N)
\end{aligned}
$$

and the ball $f S_{j}-\operatorname{Int} N^{2}(Y ; W)$ meets $N^{2}(Y ; W)$ in its boundary only, by (c). Thus $N^{2}(Y ; W) \cup f X$ is $N^{2}(Y ; W)$ plus balls $f S_{j}$ - Int $N^{2}(Y ; W)$ attached disjointly to $\partial N^{2}(Y ; W)$. This completes the proof that H is H_{k} plus disjointly attached handles.

To prove Lemma 1 and 2 we will need some general position and engulfing lemmas.

Definition. If Y_{0}, Y, Z are polyhedra in the manifold M and $Y_{0} \subset Y$, then $Y-Y_{0}$ is said to be in general position with respect to Z if $\operatorname{dim}(Y-$ $\left.-Y_{0}\right) \cap Z \leq \operatorname{dim} Y-Y_{0}+\operatorname{dim} Z-\operatorname{dim} M$.

Definition. If Y is a polyhedron and M a manifold, a map $f: Y \rightarrow M$ is in general position if
(1) f is non-degenerate
(2) $\operatorname{dim} \Sigma f<2 \operatorname{dim} Y-\operatorname{dim} M$.

Corollary to Theorem 15 [7]. If $Y_{0}, Y, A_{1}, \ldots, A_{n}$ are polyhedra in a manifold M with $Y_{0} \subset Y$ and $Y-Y_{0} \subset \operatorname{int} M$, then there exists a homeomorphism $h: M \rightarrow M$ such that
(1) $h \mid Y_{0} \cup \partial M=$ Identity
(2) $h\left(Y-Y_{0}\right)$ is in general position with respect to A_{1}, \ldots, A_{n}.

Proof. By induction on $\operatorname{dim} A_{1} \mathrm{U}, \ldots, \mathrm{U} A_{n}$.
Corollary to Theorem 18 [7]. Let $f: Y \rightarrow$ Int M be a map and Y_{0} a subpolyhedron of Y. Suppose $f \mid Y_{0}$ is in general position. Then f is homotopic to g, a map in general position, by an arbitrarily small homotopy that keeps Y_{0} fixed.

Lemma 3. If $f: X \rightarrow M, X$ a sphere-bouquet, M a manifold, then f is homotopic to $g: X \rightarrow \operatorname{Int} M$ where g is in general position and $\operatorname{dim} \Sigma g \cap$ $\cap S_{k} \leq \operatorname{dim} S_{k}+\operatorname{dim} X-\operatorname{dim} M(k=1, \ldots, N)$.

Proof. First homotop $f X$ into Int M and then use induction on N, the number of spheres in the bouquet. If $N=1$ apply the second corollary above. If not, the inductive step is proved by homotoping $f \mid S_{N}$ into general position keeping f_{*} fixed and then applying the first corollary to minimize the dimension of $f S_{N} \cap f X_{N-1}$ by putting $f\left(S_{N}-*\right)$ into general position with respect to $f X_{N-1}$ keeping $f *$ fixed.

To state the engulfing lemmas we need

Definition. A subpolyhedron C of a manifold M is called a k-spine of M if the pair M, C is k connected.

Definition. A polyhedron is called t.collapsible if it can be collopsed to a polyhedron of dimension not greater than t. The following lemma is a special case of Theorem 21 [7].

Lemma 4 (Zeeman). Let C be an $m \cdot 3$-collapsible k-spine of the manifold $M(\operatorname{dim} M$ being $m), Y$ a polyhedron in M and

$$
\operatorname{dim} Y \cap \partial M<\operatorname{dim} Y \leq k \leq m-3
$$

Then Y may be engulfed from C relative to ∂M i. e. there exists C^{+}in M such that $C \cup Y \subset C^{+},(C \cup Y) \cap \partial M=C^{+} \cap \partial M, C^{+}$collapses to C, and $\operatorname{dim} C^{+}-C \leq \operatorname{dim} Y+1$.

Addendum to lemma 4. Suppose that A_{1}, \ldots, A_{n} are polyhedra in M. By the corollary to Theorem 15 we may insist that $C^{+}-(C \cap Y)$ be in general position with respect to A_{1}, \ldots, A_{n}.

Lemma 5. Let C be an m-3-collapsible k-spine of M and D a $q-3 \cdot \mathrm{col}-$ lapsible $k+1$-spine of Q and let $f: M, C \rightarrow Q, D$ be non-degenerate and proper (i.e. $f^{-1} \partial Q=\partial f^{-1} Q$). Suppose that $\operatorname{dim}\left(f^{-1} D-C\right)=x \leq k \leq m-$ $-3 \leq q-6$ and that $\partial M \cap\left(f^{-1} D-C\right)$ is empty.

Then there exist polyhedra $C^{+} \subset M, D^{+} \subset Q$ such that
(A) $C^{+}=f^{-1} D^{+} \quad$ (i.e. $\left.\operatorname{dim} f^{-1} D^{+}-C^{+}<0\right)$
(B) $C^{+} \cap \partial M=C \cap \partial M ; D^{+} \cap \partial Q=D \cap \partial Q$
(C) C^{+}collapses to $C ; D^{+}$collapses to D
(D) $\operatorname{dim} C^{+}-C \leq x+1 ; \operatorname{dim} D^{+}-D \leq x+2$.

If, further, $A_{1}, \ldots, A_{n} \subset Q$ are polyhedra in general position with respect to $f M$, then C^{+}, D^{+}may be chosen to satisfy $(A), \ldots,(D)$ and the extra condition
(E) $D^{+}-D$ is in general position with respect to A_{1}, \ldots, A_{n}.

Proof. The proof resembles that of Lemma 63 [7]. We will define inductively polyhedra $O_{i} \subset M, D_{i} \subset Q$ such that
(a) $f C_{i} \subset D_{i}$ and $\operatorname{dim} f^{-1} D_{i}-C_{i} \leq x-i$.
(b) C_{i} collapses to $C ; D_{i}$ collapses to D.
(c) $C_{i} \cap \partial M=C \cap \partial M$; $D_{i} \cap \partial Q=D \cap \partial Q$.
(d) $\operatorname{dim} C_{i}-C_{i-1} \leq x+2-i ; \operatorname{dim} D_{i}-D_{i-1} \leq x+3-i$.
(e) $D_{i}-D_{i-1}$ is in general position with respect to A_{1}, \ldots, A_{n}.

The induction starts with $C_{i}=C, D_{i}=D \quad(i \leq 0)$ and finishes with $i=x+1$ because then $\operatorname{dim} f^{-1} D_{i}-C_{i}<0$. Condition (E) will be satisfied because $D^{+}-D=\bigcup_{i \geq 0}\left(D_{i+1}-D_{i}\right)$ and each $D_{i+1}-D_{i}$ is in general position with respect to A_{1}, \ldots, A_{n}.

The inductive step ($i \geq 0$).

Assume that C_{j}, D_{j} have been chosen satisfying (a), ..., (e) for $j \leq i$.
By (a) $\operatorname{dim} f^{-1} D_{i}-C_{i} \leq x-i$.
By (b) C_{i} is an $m-3$-collapsible k-spine of M (since C is).
So by Lemma 4 there exists $C_{i+1} \subset M$ such that C_{i+1} collapses to C_{i}, $f^{-1} D_{i} \subset C_{i+1}, \quad \partial M \cap C_{i+1}=\partial M \cap f^{-1} D_{i}, \quad \operatorname{dim} \quad C_{i+1}-C_{i} \leq x+1-i$ and $C_{i+1}-f^{-1} D_{i}$ is in general position with respect to $f^{-1} A_{1}, \ldots, f^{-1} A_{n}$. This implies that $\operatorname{dim} f C_{i+1}-D_{i} \leq \operatorname{dim} f\left(O_{i+1}-C_{i}\right) \leq x+1-i$; also that $\partial M \cap C_{i+1}=\partial M \cap C_{i} \cup \partial M \cap f^{-1} D_{i}$. But

$$
\begin{aligned}
& \partial M \cap f^{-1} D_{i}= \\
& =f^{-1}\left(\partial Q \cap D_{i}\right) \quad(f \text { is proper) } \\
& =f^{-1}(\partial Q \cap D) \quad(\text { by }(c)) \\
& =\partial M \cap f^{-1} D \\
& =\partial M \cap C
\end{aligned}
$$

By (b) D_{i} is a $q-3$ collapsible $k+1$-spine of Q. So by Lemma 4, there exists $D_{i+1} \subset Q$ such that D_{i+1} collapses to $D_{i}, f C_{i+1} \subset D_{i+1}, \operatorname{dim} D_{i+1}$ -$-D_{i} \leq x+2-i, \partial Q \cap D_{i+1}=\partial Q \cap\left(D_{i} \cup f C_{i+1}\right)$ and $D_{i+1}-\left(D_{i} \cup f C_{i+1}\right)$ is in general position with respect to $f M, A_{1}, \ldots, A_{n}$. This implies that $\operatorname{dim} f^{-1} D_{i+1}-C_{i+1} \leq \operatorname{dim} f f^{-1} D_{i+1}-f O_{i+1}=\operatorname{dim} f M \cap\left(D_{i+1}-f C_{i+1}\right)=$ $=\operatorname{dim} f M \cap\left(D_{i+1}-\left(f C_{i+1} D_{i}\right)\right) \leq x+2-i-3$. Also we have that $\partial Q \cap D_{i+1}=\partial Q \cap D_{i} \cup \partial Q \cap f C_{i+1}$. But $\partial Q \cap f C_{i+1}=f\left(\partial M \cap C_{i+1}\right)=f(\partial M \cap C) \subset$ $\subset \partial Q \cap D$. So $\partial Q \cap D_{i+1}=\partial Q \cap D$. We have thus defined C_{i+1}, D_{i+1} satisfying $(a), \ldots,(d)$. The Λ also satisf $\Lambda(e)$; for, $D_{i+1}-\left(f C_{i+1} \cup D_{i}\right)$ is in general position with respect to A_{1}, \ldots, A_{n}; and $f C_{i+1}-D_{i}=f\left(C_{i+1}-f^{-1} D_{i}\right)$ is in general position with respect to A_{1}, \ldots, A_{n} since A_{1}, \ldots, A_{n} are (by hypothesis) in general position with respect to $f M$ and $C_{i+1}-f^{-1} D_{i}$ was chosen
to be in general position with respect to $f^{-1} A_{1}, \ldots, f^{-1} A_{n}$. This completes the proof of the inductive step and hence of lemma 5.

Proof of lemma 1. Let us write $Z_{k}=Y_{k} \cup f S_{k}$. Construct Y_{k} (and hence Z_{k}) inductively starting with $Y_{0}=Z_{0}=f X_{0}=f *$. Suppose that we have found Y_{0}, \ldots, Y_{k} satisfying conditions (1), ...,(4). By lemma 4 and the fact that $\operatorname{dim} \Sigma f \cap S_{k+1} \leq p_{k+1}-3$ there exists C_{k+1} in S_{k+1} such that $\Sigma f \cap S_{k+1} \subset C_{k+1}, C_{k+1}$ collapses to $*$, and $\operatorname{dim} C_{k+1} \leq 1+p_{N}+p_{k+1}-q$. Now Z_{k} is a $p_{k+1}-1$-spine of Int W and $1+p_{N}+p_{k+1}-q \leq p_{k+1}-2$. Therefore by lemma 4 there exists D_{k+1} in Int W such that $f C_{k+1} \subset D_{k+1}$, D_{k+1} collapses to $Z_{k}, \operatorname{dim} D_{k+1}-Z_{k} \leq 2+p_{N}+p_{k+1}-q$ and $D_{k+1}-$ - ($\left.Z_{k} \cup f C_{k+1}\right)$ is in general position with respect to $f S_{k+1}, \ldots, f S_{N}$. This and condition (3) imply that for $i>1$

$$
\begin{aligned}
& \quad p_{N}+p_{k+1}-q \geq \\
& \geq \operatorname{dim} f S_{k+i} \cap\left[D_{k+1}-\left(Z_{k} \cup f C_{k+1}\right) \cup Z_{k} \cup f C_{k+1}\right] \\
& \geq \operatorname{dim} f S_{k+i} \cap D_{k+1} .
\end{aligned}
$$

Now $f_{k+1}: S_{k+1}, C_{k+1} \rightarrow W, D_{k+1}, C_{k+1}$ is a $p_{k+1}-2$-spine of S_{k+1}, D_{k+1} is a $p_{k+1}-1$-spine of Int W and $\operatorname{dim} f_{k+1}^{-1} D_{k+1}-C_{k+1} \leq p_{N}+p_{k+1}-q$. So, by lemma 5 , there exists Y_{k+1} in Int W such that Y_{k+1} collapses to D_{k+1}, $f_{k+1}^{-1} Y_{k-1} \quad$ collapses to *and $\operatorname{dim} f S_{k+i} \cap\left(Y_{k+1}-D_{k+1}\right) \leq p_{N}+p_{k+1}-q$ ($i>1$). It follows that $\operatorname{dim} f S_{k+i} \cap Y_{k+1} \leq p_{N}+p_{k+1}-q(i>1)$. Thus Y_{k+1} is defined and satisfies (2) (3) and (4).

The proof of the induction step will be complete once it has been shown that $f \mid X_{k+1} \rightarrow Z_{k+1}$ is a homotopy equivalence. First triangulate $f: X \rightarrow W$ and pass to the barycentric second derived triangulations of $X, W . f$ remains simplicial.

We showed that $f_{k+1}^{-1} Y_{k+1}$ collapsed to $*$. Thus $N^{2}\left(f_{k+1}^{-1} Y_{k+1} ; S_{k+1}\right)=$ $=f_{k+1}^{-1} N^{2}\left(Y_{k+1} ; W\right)$ is a ball.

Further, $\Sigma f \cap S_{k+1} \subset f_{k+1}^{-1} Y_{k+1}$ and so f_{k+1} maps

$$
S_{k+1}-\operatorname{Int} N^{2}\left(f_{k+1}^{-1} Y_{k+1} ; S_{k+1}\right)
$$

homeomorphically onto $Z_{k+1}-\operatorname{Int} N^{2}\left(Y_{k+1} ; W\right)$.
To prove that $f \mid X_{k+1} \rightarrow Z_{k+1}$ is a homotopy equivalence, we show that
(*) $f \mid X_{k+1} \rightarrow N^{2}\left(Y_{k+1} ; W\right) \cup f S_{k+1}$ is a homotopy equivalence.
(**) $N^{2}\left(Y_{k+1} ; W\right) \cup f S_{k+1}$ collapses to $Y_{k+1} \cup f S_{k+1}$.

Composing (**) with (*), we obtain a homotopy equivalence :

$$
X_{k+1} \xrightarrow{f \mid} N^{2}\left(Y_{k+1} ; W\right) \cup f S_{k+1} \supset Y_{k+1} \cup f S_{k+1} .
$$

Proof of (*). f maps the pair $X_{k+1}, X_{k} \cup N^{2}\left(f_{k+1}^{-1} Y_{k+1} ; S_{k+1}\right)$ into the pair $f S_{k+1} \cup N^{2}\left(Y_{k+1} ; W\right), N^{2}\left(Y_{k+1} ; W\right)$.
$f \mid X_{k} \rightarrow N^{2}\left(Y_{k+1} ; W\right)$ is a homotopy equivalence because $f \mid X_{k} \rightarrow Z_{k}$ is one and $N^{2}\left(Y_{k+1} ; W\right)$ collapses to Z_{k} via Y_{k+1}.

Let us write $U()$ for «universal cover of». All spaces to which $U($) is applied will have isomorphic fundamental groups for [by Remark (1) following Lemma 1] p_{k+1} may be assumed to be greater than one. Therefore the map $f \mid X_{k+1}$ induces homology excision isomorphisms between $H_{*}\left(U\left(X_{k+1}\right), U\left(X_{k} \cup N^{2}\left(f_{k+1}^{-1} Y_{k+1} ; S_{k+1}\right)\right)\right.$ and

$$
H_{*}\left(U\left(f S_{k+1} \cup N^{2}\left(Y_{k+1} ; W\right)\right), U\left(N^{2}\left(Y_{k+1} ; W\right)\right)\right) .
$$

So, by the 5-Lemma and Whitehead's theorem, the map $f X_{k+1} \rightarrow N^{2}\left(Y_{k+1} ; W\right)$ U U $f S_{k+1}$ induces isomorphisms of homotopy groups in all dimensions and is thus a homotopy equivalence.

Proof of (**). $N^{2}\left(Y_{k+1} ; W\right) \cup f S_{k+1}$ collapses to $Y_{k+1} \cup f S_{k+1}$ because we may factor the collapse from $N^{2}\left(Y_{k+1} ; W\right)$ to Y_{k+1} through $Y_{k+1} \cup$ $\cup N^{2}\left(Y_{k+1} \cap f S_{k+1} ; f S_{k+1}\right)$. This proves (**) and completes the proof of Lemma 1.

Proof of lemma 2. Suppose polyhedra Y_{0}, \ldots, Y_{k} have been found satisfying conditions (1), ...,(4) of Lemma 1. Recall that for $i>0$ dim $\Sigma f \cap S_{k+1} \leq p_{N}+p_{k+i}-q$ and $\operatorname{dim} f_{k+i}^{-1} Z_{k} \leq p_{N}+p_{k}-q$. So by Lemma 4 there exists C in $S_{k+1} \cup, \ldots, \cup S_{N}$ such that $\left(\Sigma f \cup f^{-1} Z_{k}\right) \cap\left(S_{k+1} \cup, \ldots, \cup S_{N}\right) \subset C$, C collapses to *and $\operatorname{dim} C \cap S_{k+i} \leq p_{N}+p_{k+i}-q+1$. Now Z_{k} is a $p_{k+1}-1$-spine of Int W and by hypothesis $1+2 p_{N}-q \leq p_{k+1}-1$. Therefore by Lemma 4 there exists D such that $f C \subset D, D$ collapses to $Z_{k} \operatorname{dim} D-Z_{k} \leq 2+2 p_{N}-q$ and $D-\left(f C \cup Z_{k}\right)$ is in general position with respect to $f S_{k+1}, \ldots, f S_{N}$.

Then

$$
\begin{aligned}
\operatorname{dim} f_{k+i}^{-1} D-\left(C \cap S_{k+i}\right) & =\operatorname{dim} f S_{k+i} \cap\left(d-\left(f C \cup Z_{k}\right)\right) \\
& \leq p_{k+i}+2+2 p_{N}-q-q \\
& \leq p_{k+1}-3 .
\end{aligned}
$$

Now $C \cap S_{k+i}$ is a (collapsible) $p_{k+1}-2$ spine of S_{k+i} and D is a $p_{k+1}-$

- 1-spine of Int W and so there exists Y in Int W such that Y collapses to $Z_{k}, \Sigma f \subset f^{-1} Y$, and $f_{k+i}^{-1} Y$ collapses to $*(i>0)$. The proof of lemma 2 is completed by showing that (as in lemma 1) $f: X \rightarrow Y \cup f X$ is a homotopy equivalence.

It remains to prove the theorem of § 2.
Proof of theorem. (1) Surjectivity of Φ. If $f: X \rightarrow W$ is a thickening, homotop f into general position in the sense of lemma 3 and use lemma 2 to obtain a manifold W_{0} in Int W such that $f X \subset$ Int W and $f: X \rightarrow W_{0}$ is a thickening representing an element in the image of Φ. See Remark after lemma 2. The S cobordism theorem provides us with an equivalence between the thickenings $f: X \rightarrow W_{0}$ and $f: X \rightarrow W$ and so Φ is surjective.
(2) Injectivity of Φ. Consider the special case $X=S^{1} v, \ldots, v S^{1} \vee S^{p}$; the proof for more spheres is similar.

Let $*$ be the barycenter of the simplex Δ. Let h_{0}, h_{1} be two embeddings of the solid torus $\partial \Delta \times \Delta$ in $\partial P(\operatorname{dim} \partial \Delta=p-1$ and $\operatorname{dim} \partial \Delta \times \Delta=\operatorname{dim} \partial P)$. Let the handlebody corresponding to h_{i} be $H\left(h_{i}\right)=P \bigcup_{h_{i}} \Delta \times \Delta(i=0,1)$. Let $\delta_{i}: \Delta \times \Delta \rightarrow H\left(h_{i}\right)$ and $p_{i}: P \rightarrow H\left(h_{i}\right)$ be the associated embeddings (thus $p_{i}^{-1} \delta_{i}=h_{i}$ i. e. $\left.\forall x \in \partial \Delta \times \Delta, \delta_{i} x=p_{i} h_{i} x\right)$. Suppose that $h_{0} h_{1}$ determine equivalent thickenings (the equivalence being a homeomorphism $G: H\left(h_{1}\right) \rightarrow$ $\rightarrow \boldsymbol{H}\left(h_{0}\right)$. Then a relative version of the proof of surjectivity shows that there exist embeddings

$$
\begin{aligned}
& \alpha: \Delta \times \Delta \times\left[\begin{array}{ll}
0 & 1
\end{array}\right] \rightarrow H\left(h_{0}\right) \times\left[\begin{array}{ll}
0 & 1
\end{array}\right] \\
& \beta: P \times\left[\begin{array}{ll}
0 & 1
\end{array}\right] \rightarrow H\left(h_{0}\right) \times\left[\begin{array}{ll}
0 & 1
\end{array}\right] \text { such that }
\end{aligned}
$$

1)

$$
\begin{aligned}
& \alpha(x, 0)=\left(\delta_{0} x, 0\right) \\
& \alpha(x, 1)=\left(G \delta_{1} x, 1\right) \\
& \beta(x, 0)=\left(p_{0} x, 0\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \beta P \times\{1\}=G p_{1} P \times\{1\} \\
& \alpha^{-1} \operatorname{Im} \beta=\partial \Delta \times \Delta \times[0,1]
\end{aligned}
$$

Thus we have a concordance $\alpha^{-1} \circ \beta \mid \partial \Delta \times \Delta \times[01] \rightarrow \partial P \times[0,1]$ between h_{0} and $\lambda \circ h_{1}$ where $\lambda: P \rightarrow P$ is a self equivalence (i. e. an orientation preserving homeomorphism homotopic to the identity). We need to show that $\lambda \circ h_{1}$ and h_{1} are concordant.

First we choose λ of a special type. Let $I^{1}=[-1,+1]$ and $I^{k}=I^{1} \times$ $\times \ldots \times I^{1} \subset \mathbb{R}^{k}$. Then if $q \geq 3$ we take $P^{q}=P^{3} \times I^{q-3} \cdot P^{3}=B \cup H$ is the union of a 3 -ball B and disjointly-attached 1-handles.

Let C be the union of the set of cores of these handles. Then the reader may verify the following.

Proposition. Any self-equivalence $\lambda: P^{3} \times I^{k} \rightarrow P^{3} \times I^{k}$ is concordant to one of the form $\mu \times \mathrm{Id}$, where $\mu \mid B \cup C=\mathrm{Id}$. As for h_{1}, we may clearly assume that $\operatorname{Im} h_{1}$ lies in $\operatorname{Int} P^{q} \times\{-1\} \subset \partial\left(P^{q} \times I^{1}\right)$. It will suffice then to prove the following.

Lemma. If $\lambda: P^{q} \rightarrow P^{q}$ is a self-equivalence and $\Sigma^{p} \subset \operatorname{Int} P$ a sphere ($p \leq q-3$) then λ is concordant to λ where λ^{\prime} fixes (pointwise) a neighbourhood of Σ in P.

Proof. By the proposition above choose $\lambda=\mu \times \mathrm{Id}$, with $\mu \mid B \cup C=\mathrm{Id}$. Thus $\lambda \mid B \times I^{q-3} \cup C \times I^{q-3}=I d$. The result of [2] is easily generalized to show that Σ can be compressed (by an ambient isotopy) into $B \times I^{q-3} U$ U $C \times I^{q-3}$ [the intersection of Σ with $C \times I^{q-3}$ being a set of disjoint
 show that after an isotopy λ fixes not only Σ but some neighbourhood of Σ in P.

Let \widetilde{P} be the universal cover of P with covering projection $\pi: \widetilde{P} \rightarrow P$. Since Σ is inessential in P choose a connected component $\widetilde{\Sigma}$ of $\pi^{-1} \Sigma$; thus $\Sigma, \tilde{\Sigma}$ are homeomorphic via π. Furthermore, in a neighbourhood of $\tilde{\Sigma}$, π is (1-1). Let $\tilde{\lambda}: \widetilde{P} \rightarrow \widetilde{P}$ be the lift of λ that fixes $\widetilde{\Sigma}$ pointwise i. e. $\pi \circ \widetilde{\lambda}=\lambda \circ \pi$ and $\tilde{\lambda} \mid \widetilde{\Sigma}=\mathrm{Id}$.

Since $\lambda \mid B \times I^{q-3}=\mathrm{Id}$ there is a q-ball R in \widetilde{P} with $\tilde{\lambda} R=R$ and $\tilde{\Sigma} \subset \operatorname{Int} R$.

It follows from Lemma 59 of [7] that $\tilde{\lambda}$ is isotopic (fixing $\widetilde{\Sigma}$ to $\Lambda: \widetilde{P} \rightarrow$ $\rightarrow \widetilde{P}$ that fixes R pointwise. Projecting down by π we see that there is an ambient isotopy of P that takes λ to λ^{\prime} where λ^{\prime} is the inclusion in a neighbourhood of Σ. This completes the proof of the lemma and hence of the theorem.

REFERENCES

[1] D. Barden; Thesis, Cambridge.
[2] D. D. J. Hacon : Knotted spheres in Tori, Q. J. M. Oxford (2) 20 (1969), 431 §445.
[3] A. Haefligfr: Enlacements de sphères en codimension supérieure à deux. Comm. Math. Helv. 41 (1966) 51-72.
[4] J. F. P. Hudson and W. B. R. Lickorish : Extending PL concordances, to appear.
[5] J. Stallings: The embedding of homotopy types into manifolds, to appear.
[6] C. T. C. Wall : Classification problems in differential topology, IV, Topology 5 (1966) 73-94.
[7] E. C. Zeeman : Seminar on Combinatorial Topology I. H. E.S. (1963), revised 1966).

