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SEMI-PRIMAL CLUSTERS

D. JAMES SAMUELSON

A primal cluster is essentially a class of universal algebras of the
same species, where each %; is primal (= strictly functionally complete),
and such that every finite subset of ~~~~ is « independent ~. The concept
of independence is essentially a generalization to universal algebras of the
Chinese Remainder Theorem in number theory. Primal algebras themselves
are further subsumed by the broader class of « semi-primal » algebras, and
a structure theory for these algebras was recently established by Foster
and Pixley [5] and Astromofi [1]. This theory subsumes and substantially
generalizes well-known results for Boolean rings, p-rings, and Post algebras.

In order to expand the domain of applications of this extended  Boo-
lean » theory, we should attempt to discover semi primal clusters which,
preferably, are as comprehensive as possible. In this paper we prove that

certain large classes of semi-primal algebras form semi-primal clusters. In-

deed, we show that the class of all two-fold surjective singular subprimal
algebras which are pairwise non-isomorphic and in which each finite subset
is co coupled forms a semi-primal cluster. A similar result is also shown

to hold for regular subprimal algebras with pairwise non-isomorphic cores.
lbloreover, we prove that the class of all pairwise non-isomorphic s-couples,
as well as the class of all r-frames with pairwise non-isomorphic cores, and
even the union of these two classes, forms a semi-primal cluster. Finally,
we construct classes of s-couples and r-frames.

1. Fundamental Concepts and Lemmas.

In this section we recall the following basic concepts of [2]-[5]. Let
(A ; D) be a universal algebra of species S = (n1, n2 , ...), where the

Pervenuto alla Redazione il 23 Dicembre 1969.



690

ni are non-negative integers, and let Q _ (01 , Og , ...) denote the primitive
operation symbols of S. Here, Ôi = ..., is of rank By an S-

expression we mean any indeterminate symbol E, n, .., or any composition
of these indeterminate symbols via the primitive operations As usual,
we use the same symbols Ôi to denote the primitive operations of the al-

gebras ... when these algebras are of species S. We write

 l’ (E, ...)U&#x3E;&#x3E; to mean that the S-expression P is interpreted in the S-

algebra This simply means that the primitive operation symbols are
identified with the corresponding primitive operations of CJ1, and the inde-
terminate- symbols $,... are now viewed as indeterminates over cY. Moreover,
« w’ (E, ...)U &#x3E;&#x3E; is called a strict cm-function. An identity between strict CJ1-
functions W, 4Y holding throughout CJ1 is called a strict U-identity, and is
written as ~’ (~, ...) = 0 (~, ...) (cM). We use Id to denote the family of
all strict C}1-identities. A finite algebra CJ1 with more than one element is

called categorical (respectively, semi-categorical) if every algebra, of the same

species as CJ1, which satisfies all the strict identities of 9~ is a subdirect

power of cM (respectively, is a subdirect product of subalgebras of Q~). A
map f (E1, ... , Ek) from Ak into A is S-expressible if there exists an S-ex p res-

,.. , Ek) such that f = !If for all E1, ... , Ek in A. A map f (E1, ... , Ek)
is conservative if for each subalgebra C)3 = (B ; Q) of CJ1 and for all b1, ..., bk
in B, we have, ... , bk) E B. An algebra cM is primal (respectively, semi-
primal) if it is finite, with at least two elements, and every map from
A X ... X A into A is S-expressible (respectively, every conservative map-
ping from A X ... X A into A is S-expressible). A semi-primal algebra CJ1
which possesses exactly one subalgebra 9~ == (A~‘ ; j0) (9= is called a

subprimat algebra. The subalgebra c2t* is called the core of 96 If CJ111 has

exactly one element, c2t is called a singular subprimal ; otherwise it is cal-

led a regular subprimal. An element a in A is said to be expressible if there
exists a unary S.expression ~1~ (~) such that da (~) = a for each ~ in A. An
element a in A B A~‘ is said to be ex-expressible provided there exists a
unary S-egpression Ta (~) such that ra (~) = a for each ~ in A ~ A’~ (here,

We now proceed to define the concept of independence. Let _

... , be a finite set of algebras of species S. We say that 

is independent if corresponding to each set ~1, ... , S-expressions
there exists a single expression P such that W =1, ... , r (or
equivalently, if there exists an r-ary S-expression P such ... , r) =
= =1, ... , r). A primal (respectively, subprimal, cluster

of species S is defined to be a class Cil = (... , ~~ , ... ~ of primal (respectively,
subprimal, semi-primal) algebras of species ~S, any finite subset of which is
independent.
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We are now in a position to state the following lemmas, the proofs
of which have already been given in [2 ; 5].

LEMMA 1. A primal algebra is categorical and simple.

LEMMA 2. A semi-primal algebra is semi-categorical and simple.

LEMMA 3..Let 93 = (B ; D) be a subprimal algebra of species S. Then,

(a) the core = (B* ; ,~) is primal or else is a one-element subalgebra ;
(b) each b in B* is S-expressible;
(c) each b in B B B* is ex-expressible.

2. Semi-primal Clusters.

In this section some semi-primal clusters will be found. The methods of

proof are similar to those of Foster [4] and O’Keefe [6]. We will be con-
cerned, mainly, with co-coupled families of subprimal algebras, in the sense
of the following

DEFINITION 1. A family = (Ai; Q) i E I, of subprimal algebras of
species S, with cores (At; Q), i E I, respectively, is said to be co-coupled
if there exist two binary S-expressions E X q (_ ~ ~ ~ = and and

elements Oi, 1, in Ai (0, # li), for each i E I, such that

(a) if is a singular subprimal, then

(b~ if ~; is a regular subprimal, then (2) and (3) hold in addition to

DEFINITION 2. A family z E I, of regular subprimal alge-
bras of species S is said to be co framal if there exist S-expressions
~ m q (_ ~ · r~ = and elements 0~ 1, in Ai (0~=t= li), for each
i E I, such that (2) and (4) hold in addition to

(5) n is a permutation of Ai with 0i = 1.
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REMARK 1. If i E I, is a co-framal family of regular subprimal al-

gebras, then by letting = def = (~n X 1Jn)U, where ~u denotes the

inverse 7 
it follows that (3) holds and therefore the family is also

co-coupled.

THEOREM 1..Let (Ai; S~), i = 1, ... , n, be co-coupled subprimal al-

gebras of species S. Then, if the are pairwise independent, they are inde-

.pendent.

PROOF. Assume that ... , CJ1n are pairwise independent. Then, for
any two algebras C’Jii, (where there exists an S-expression 0
such that

Let ‘ _ (At; S~~ denote the core of CJLi. If ~?,~~ is a regular subprimal
(respectively, a singular subprimal), then 1~ E Ai. (respectively, 1,6 Ai g At),
and according to Lemma 3 it is expressible (respectively, ex-expressible).
In either case, there exists a unary S-egpression (~) such that

From (6), (7), and the fact that is S-expressible, say by Aoi (~), it

follows immediately that

Define, now, a unary S expression ~~ (~), 1 n, by

where ^ denotes deletion and the (~) are associated in some fixed man-
ner. Using (8) and the co-coupling binary define an n-ary

S-expression ø (1 , ... , $n) by

the T-factors being associated in some fixed manner. It is easily checked
that 4Y (E 1 , ... , En) = Ei (~;), 1 ~ i ~ n. This proves the theorem.
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Because of Theorem 1, it is important to discuss the pairwise indepen-
dence of subprimal algebras. To do this we impose a surjectivity property
on the primitive operations.

DEFINITION 3. A subprimal algebra CJ1, with core is said to be

two-fold surjective if each primitive operation of CJ1 is surjective on both CJ1
and 

We now show that subprimal algebras which are two-fold surjective
satisfy a certain factorization property (compare with [6]).

THEOREM 2. Let CJ1 = (A ~ Q) be a two-fold surjective subprimal algebra
of species S. Then, for each unary S-expression, 1’(~), and each primitive
operation Õ, (of rank of cd, there exist unary S-expressions ~’1 (~),..., ’Fni (~)
such that

PROOF. Let A = ..., ~+1,... ~ at) where A* = Jai, ... , am) is

the base set of CJ1* (= core Clearly. r (aj) E A* for 1  j  m. Because

of two-fold surjectivity, there exist elements ---j - t, 1 ~ kS n~) of A,
with ape in A~ when 1 m, such that

Now let unary functions gi (~) , ... , Un, (~) be defined on .A. by

Since gk (aj) E A*, 1  j ~ m, each gk is conservative and hence is S-expres-
sible, say by l’k (~)- It follows that

for 1 ---j  t and (9) is verified.

From [6 ; Lemma 2.3] and Theorem 2 we immediately obtain the fol-

lowing generalized factorization property.

THEOREM 3. Let CJ1 be a twofold surjective subprimal algebra of species
S. Then, for each expression 27 (~1 ~ ... , ~q~ and each expression e ($1 , ... , ~p) in
which no indeterminate Ei, ,1 S i S ~, occurs twice in e, there exist expres-
sion8 1J’i’... , such that
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The pairwise independence of any two universal algebras cM, 93 of species
S assures that any two subalgebras of of more than one element

each, are non-isomorphic. In establishing independence, therefore, this must

be taken as a minimal assumption.

THEOREM 4. Let CJ1 = (A ; Q) and 93 = (B ; Q) be subprimal algebras of
species S with cores =(A*; Q) and = (B* ; Q), respectively. rSuppose
that either of the following holds :

(i) is a regular subprimal and are non-isomorphic;
(ii) 93 is a singular subprimal and are non-isomorphic.

Then, there exist elements d2 irc B (d, ~ d2) and unary expressions
rt (~), r2 (~) such that

Moreover, if (i) hold8, then dt, d2 E B* and

PROOF. First, assume that (i) holds. Then 93* is primal (Lemma 3)
and hence categorical (Lemma 1). Therefore, if Id Id (~~) then

U N 93*(k) (= kth subdirect power of 93) for 1. Now k ~ 1 since
cM has a subalgebra (=}= But if k ~ 2, there exists an epimorphism
~ -~ 93*, contradicting the simplicity of CJ1. Thus, Id (~) ~ Id (93.). Simi-
larly, if Id (~~) ~ Id (T~), then since CJ1 is semi-categorical (Lemma 2),
~’~ N X (= subdirect product of subdirect powers of CJ1 and for

some Now k1-~- k2 ~ 1 since c)3*, cM are non-isomorphic and by
assumption C)311, are non-isomorphic. Thus, k2 h 2. But then there
exists an epimorphism from C)3* onto either C’J1 or contradicting the

simplicity of W. Thus Id (931&#x26;) ~ Id (9~). These two non-inclusions assure

the existence of expressions 1Fi (;i’ ... , ~p) and 1F2 (i~ , ... , ~p) such that

From (11) it follows that there exist fJp of B* for which
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Clearly, d1, d2E B*. Since fJt , .. , p E B*, there exist expressions di (), ... ,lp ()
such that (see Lemma 3)

If is defined by

from (12)-(14) it follows that I’1 (~), I’2 (~) satisfy (1°), (4°), and (5°).
Secondly, assume that (ii) holds. Using arguments similar to those

above, it can be established that Id (03) and Id (~8) ’1l Id (CJ1.).
Thus, there exist expressions (~1, .·~ , $,), 1p 2 (8~ , ... , such that ~1= ’P2 
and Y’2 (~3). Let ~1, ... , flp be elements of B for which (12) holds.
Because of Lemma 3, there exist expressions Ai (~), ..., dp (E) with

Let Ti (~), F2 (E) be defined as in (14). It is easy to verify that they have
the desired properties (1°)_(3°).

Next, we prove the following theorems.

THEOREM (A ; Q) and Cf3 = (B ; Q) be subprimal algebras
of species S satisfing either (i) or (ii) of Theorem 4. Then there exist expres-
sions (Pl (~), ..., Op (~) such that Wi (E) = ... = øp (E) and such that every
conservative unary functions on B is identical, in B, to one of ~1 (E), ..., ~p ($).

PROOF. Let the conservative unary functions on B be enumerated as

bi (~) , ... , bp (E) and let d~, d2, r1 (~), r2 (~) be as in Theorem 4. Since 03 is

semi-primal, each conservative function on B is S-expressible. Hence, there
exists an expression 4Y = 4Y (, {’ ..., Ep, $,,+,) for which

(This follows since the above equation is a conservative condition). Using
ø as a skeleton, we now define ~~ (~) , ... , tPp (~) by

From (1 °) of Theorem 4 it follows that ~; (~) _ øj (~) for all 1 S i, j !5-, _p.
If (i) holds, then from (4°) and (5°) of Theorem 4, B),
1  I  p. If (ii) holds, then (2°) and (3°) assure that Oi ($) = b; (~) ($ in B~B~).
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Moreover, in ~, ø, (~) and bi (~) are both conservative. Since B* consists
of exactly one element, say B~ _ 10), it follows that ~~ (0) = bi (0) = 0.
Hence, in case (ii) we also have Oi (~) = bi (~) (~ in B).

THEOREM (A ; S~), c)3 = (B ; Q) be subprimal algebras of
species S (with cores CM* = (A~; Q), c)3* = (B*; Q), respectively) satisfying
either (i) or (ii) of Theorem 4. If 93 is two fold surjective, then for each a
in A* and each unary expression 1]1 (E) there exists an expression S = Q (e)
such that

PROOF. If a E A*, there exists a unary expression 0 (~) for which
19 = a (cM). Let 0’ ($~ , .. - , ~p) be the S-expression derived from 0 by distin-
guishing each occurrence of $ in 0. Thus, by definition, 0’ (~, ... , ~) = 0 (s).
From Theorem 3, there exist expressions 1Jfi (~) , ... , 1Jfp (~) such that

Since (~), ... , Vfp (~) are conservative in 93, by Theorem 5, there exist
expressions ~1 (~), ... , Op (~) such that

Let S~ (~) = 19’ (Øi (~), ... , øp (~)). It is easily verified that Q has the desired
property of the theorem.

If F is a family of subprimal algebras of species S let us use F, (res-
pectively, to denote the subfamily of all singular subprimal (respectively,
regular subprimal) members of F.

THEOREM 7. (Principal Theorem) Let F be a family of two fold surjec-
tive subprimal algebras of species S, each finite subset of which is co-coupled.
If, further,

(a) the members of F8 are pairwise non-isomorphic,

(b) the members of Pr have pairwise non-isomorphic cores, then F is

a subprimal cluster.
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PROOF. Because of (a), (b), and Theorem 6, for any two members

CJ1, 93 of F, there exist expressions 0, (~), S~2 (~) for which

Since each finite subset of F is co-coupled, there exists a binary S-expres-
sion E I q satisfying (3). Thus

and therefore CJ1, 93 are independent. From Theorem 1 it follows that each

finite subset of ~’ is independent, and the theorem is proved.

COROLLARY 1. Let a family of two fold surjective regular
subprimal algebras of species S satisfying (b) of Theorem 7. Suppose that

each finite subset of F is co framal. Then 11 is a regular subprimal cluster.

This follows from the above theorem, upon applying Remark 1.

We now consider special subclasses of co-coupled and co-framal sub-

primal algebras.

DEFINITION 4. An s-couple is a singular subprimal algebra CJ1 = (A. ;
X, T) of species S = (2,2) containing elements 0,1 (0 =f= 1) such that (l)-(3)
hold. An r-frame is a regular subprimal algebra CJ1 = (A; X, n) of species
S = (2, 1) containing elements 0,1 (0 ~ 1) for which (2), (4), and (5) hold.

Examples of s-couples are plentiful. Two such examples are (see [5]):
(1°) The « double groups » e = (c; x, +) of finite order n h 2 in

which ( C ; +) is a cyclic group with identity 0 and generator 1, (C g ( 0 ) ; X)
is a group with identity 1, and 0 m 6 = $ m 0 = 0 (fin C) ; and

(2°) the algebras ep = (Cp ; X +) of p elements 0,1, ,.. , ~ -1 (jp
a prime) in which -~- ~ = addition mod p, and $ m q = min (~, ~) in the

ordering 0, 2, 3, ... , p -1,1.
To establish other classes of r-frames and s-couples we need the fol-

lowing definitions and lemmas.

DEFINITION 5. A binary algebra is an algebra c)3 = (B ; X) of species
~’ _ (2) which possesses elements 0,1 (0 # 1) satisfying

The element 0 is called the null of C)3; 1 is called the identity.

8. della Scuola Norm. Sup. - · Psia.
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4. (Foster and Pixley [5]). An algebra 93 == (B ; D) of species S
is a regular subprimal if and only if there exist elements 0,1 in B (0 # 1)
and functions X (binary) and n (unary) defined in B such that (15) holds, in
addition to

(1°) C)3 is a finite algebra of at least three elements;
(2°) 03 possesses a unique siibalgebra (::J= denoted by 03* = (B*; Q)

and B* contains at least two elements;
(3°) the elements 0,1 and the functions X, n are each S-expressible -
(4°) n is a permutation of B in which 0 n =1;
(5°) for each b in B, the characteristic function bb (~) (defined below)

is S-expressib le :

(6°) there exists an element bo in B B B* which is ex-expressible.

LEMMA 5 (Foster and Pixley [5]). An algebra cl3 = (B ; Q) of species S
is a singular sitbprimal if and only if there exist elements 0, 1, 1° in B

(0 ~ 1) and two binary functions Xi T defined in B such that (15) holds in

addition to

(1 °) 93 is a finite algebra of at least two element
(2°) c)3 possesses exactly one one-element subalgebra 93* = (B* ; Q) and

no other subalgebra (# 
(301 the element 0 and the functions X, T are eacla S.expressible;
(4°) each ~ in B and 1T10=10T1=0;
(5°) for each b in BBB’~~ the characteristic function 6b (~) is S-expre-

ssible ;
(6°) there exists an element bo in B B B’~ which is ex-expressible.

REMARK 2. If ~n is a permutation on a set, we use ~u to denote its
inverse. Moreover, for each positive integer s we define :

~’e define ~U8 similary. Note that if ~n is a permutation on a finite set,
then there exists an integer s such that n8= 6 . Hence, any (n, 
ssion is just a (n)-expression.

The following theorems provide large classes of r-frames and s-couples,

THEOREM 8. Let 03 = (P; X, n) be a primal algebra for which
(1°) (P; X) is a binary algebra (with null 0 and identity 1); and
(2°) n is a cyclic permutation on P with on = 1. If Pm = P U ~~i ~ ... ~ AM)
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where li q P, 1 ~ i  m, then the operations x and n can be extended to Pm
such that Cf3m = (Pm ; X, n) is an r-frame with core 93.

PROOF. Let n = (0,1, ... , in P. Because of primality, there exists

a unary (M, n ).expression L1 (~) such that

We extend the definitions of X and n to P~ as follows :

(i) in P define $ X n and $n in just as in P;

(v) ~ X Ai and li x ~ (~ in P) are defined arbitrarily for other ~.
Each characteristic function ~(~ r6~ y is (X, n)-expressible since the fol-
lowing identities hold in P~ (for a product of more than two terms, assume
that the association is from the left):

In the above, $U denotes the inverse of ~n. Since Pm is finite, ~u is
a (n)-expression. Moreover, ... , fJn are (X, n).expressible ... , I,n
are ( M , n )-ex.expressible, since

Clearly, c)3 is the unique proper subalgebra of cB,,, . The conditions (1°)_(6°)
of Lemma 4 are verified. Thus, cB,,, is a regular subprimal algebra and,
indeed, even an r-frame. The theorem is proved.

THEOREM 9. Let (B ; X) be a finite binary algebra. Then a binary ope-
ration ~ can be defined on B such that (B ; X, ~’) is an s-couple.
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PROOF. For the two-element binary algebra ((0, 1) ; X) it is easily
verified that conditions (1°)-(6°) of Lemma 5 hold if $ T 17 is defined by

and 1 T1= 0. Let, then be the base

set of a binary algebra of order m + 2, where m 2 1. Consider the cases

(I) m 2 2 and (II) m = 1. For (I), define T on B such that

is defined arbitrarily for other ~, ~ in B;

hold, while for (II), define T on B such that (16) and (17) hold in addition to

In either case (I) or (II), let ~n = ~ T E. In the characteristic function bi (~)
is (X, T)-expressible then bbl (E), ..., bb. (E), I’1 (E), and 0 are (X, T)-expres-
sible since

In case (1), 61 (~) = ~ T ~n, while in case (II), 6, (~) = ~2, (~ T ~2)2, or ~n T(~ 
according as b 2 = 0, 1, or respectively. In each case, it is clear that

(0) is the unique subalgebra of (B ; X, T ). The conditions (1°) - (6°) of Lemma 5
are verified. Thus, (B ; X, T) is a singular subprimal algebra and, in fact,
an s-couple.

We conclude with the following easily proved corollaries of Theorem 7.

COROLLARY 2. Any subfamily of the family Fs0 of all pairwise non-iso-
morphic s-couples forms a singular subprimal cluster.

COROLLARY 3. Any subfamily of the family Fro of all r frames with

pairwise non isomorphic cores forms a regular 8ubprimal cluster.

COROLLARY 4. Any subfamily of the family U Fro is a subprimal
cluster.

The algebras given in Theorems 8 and 9 apply, of course, to these

corollaries.

Note Added in Proof. Theorem 8 was obtained independently by A.
L. Foster, Monatshefte fiir Mathematik 72 (1968), 315-324.
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