Annali della Scuola Normale Superiore di Pisa *Classe di Scienze*

D. JAMES SAMUELSON

Semi-primal clusters

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3^e série, tome 24, nº 4 (1970), p. 689-701

<http://www.numdam.org/item?id=ASNSP_1970_3_24_4_689_0>

© Scuola Normale Superiore, Pisa, 1970, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

SEMI-PRIMAL OLUSTERS

D. JAMES SAMUELSON

A primal cluster is essentially a class $\{\mathcal{U}_i\}$ of universal algebras of the same species, where each \mathcal{U}_i is primal (= strictly functionally complete), and such that every finite subset of $\{\mathcal{U}_i\}$ is « independent ». The concept of independence is essentially a generalization to universal algebras of the Chinese Remainder Theorem in number theory. Primal algebras themselves are further subsumed by the broader class of « semi-primal » algebras, and a structure theory for these algebras was recently established by Foster and Pixley [5] and Astromoff [1]. This theory subsumes and substantially generalizes well-known results for Boolean rings, *p*-rings, and Post algebras.

In order to expand the domain of applications of this extended « Boolean » theory, we should attempt to discover semi-primal clusters which, preferably, are as comprehensive as possible. In this paper we prove that certain large classes of semi-primal algebras form semi-primal clusters. Indeed, we show that the class of all two-fold surjective singular subprimal algebras which are pairwise non-isomorphic and in which each finite subset is co-coupled forms a semi-primal cluster. A similar result is also shown to hold for regular subprimal algebras with pairwise non-isomorphic cores. Moreover, we prove that the class of all pairwise non-isomorphic s-couples, as well as the class of all r-frames with pairwise non-isomorphic cores, and even the union of these two classes, forms a semi-primal cluster. Finally, we construct classes of s-couples and r-frames.

1. Fundamental Concepts and Lemmas.

In this section we recall the following basic concepts of [2]-[5]. Let $\mathcal{U} = (A; \Omega)$ be a universal algebra of species $S = (n_1, n_2, ...)$, where the

Pervenuto alla Redazione il 23 Dicembre 1969.

 n_i are non-negative integers, and let $\Omega = (O_1, O_2, ...)$ denote the primitive operation symbols of S. Here, $O_i = O_i(\xi_1, \dots, \xi_{n_i})$ is of rank n_i . By an Sexpression we mean any indeterminate symbol ξ , η , ... or any composition of these indeterminate symbols via the primitive operations \mathcal{O}_i . As usual, we use the same symbols \mathcal{O}_i to denote the primitive operations of the algebras $\mathcal{U}_1, \mathcal{U}_2, \dots$ when these algebras are of species S. We write « $\Psi(\xi,...)(\mathcal{U})$ » to mean that the S-expression Ψ is interpreted in the Salgebra \mathcal{U} . This simply means that the primitive operation symbols are identified with the corresponding primitive operations of \mathcal{U} , and the indeterminate-symbols ξ , ... are now viewed as indeterminates over \mathcal{U} . Moreover, « $\Psi(\xi,...)(\mathcal{U})$ » is called a strict *U*-function. An identity between strict \mathcal{U} functions Ψ , Φ holding throughout $\mathcal U$ is called a strict $\mathcal U$ -identity, and is written as $\Psi(\xi,...) = \Phi(\xi,...)(\mathcal{U})$. We use $Id(\mathcal{U})$ to denote the family of all strict \mathcal{U} -identities. A finite algebra \mathcal{U} with more than one element is called categorical (respectively, semi-categorical) if every algebra, of the same species as \mathcal{U} , which satisfies all the strict identities of \mathcal{U} is a subdirect power of $\mathcal U$ (respectively, is a subdirect product of subalgebras of $\mathcal U$). A map $f(\xi_1, \ldots, \xi_k)$ from A^k into A is S-expressible if there exists an S-expression $\Psi(\xi_1, \dots, \xi_k)$ such that $f = \Psi$ for all ξ_1, \dots, ξ_k in A. A map $f(\xi_1, \dots, \xi_k)$ is conservative if for each subalgebra $\mathcal{B} = (B; \Omega)$ of \mathcal{U} and for all b_1, \ldots, b_k in B, we have, $f(b_1, \ldots, b_k) \in B$. An algebra \mathcal{U} is primal (respectively, semi*primal*) if it is finite, with at least two elements, and every map from $A \times ... \times A$ into A is S-expressible (respectively, every conservative mapping from A imes ... imes A into A is S-expressible). A semi-primal algebra ${\mathcal U}$ which possesses exactly one subalgebra $\mathcal{U}^* = (A^*; \Omega)$ ($\neq \mathcal{U}$) is called a subprimal algebra. The subalgebra \mathcal{U}^* is called the core of \mathcal{U} . If \mathcal{U}^* has exactly one element, $\mathcal U$ is called a singular subprimal; otherwise it is called a regular subprimal. An element a in A is said to be expressible if there exists a unary S-expression $\Lambda_a(\xi)$ such that $\Lambda_a(\xi) = a$ for each ξ in A. An element a in $A \setminus A^*$ is said to be *ex-expressible* provided there exists a unary S-expression $\Gamma_a(\xi)$ such that $\Gamma_a(\xi) = a$ for each ξ in $A \setminus A^*$ (here, $A \setminus A^* = \{\xi \mid \xi \in A, \xi \notin A^*\}.$

We now proceed to define the concept of independence. Let $\{\mathcal{U}_i\} = \{\mathcal{U}_1, \dots, \mathcal{U}_r\}$ be a finite set of algebras of species S. We say that $\{\mathcal{U}_i\}$ is *independent* if corresponding to each set Ψ_1, \dots, Ψ_r of S-expressions there exists a single expression Ψ such that $\Psi = \Psi_i(\mathcal{U}_i)$, $i = 1, \dots, r$ (or equivalently, if there exists an r-ary S-expression Ψ such that $\Psi(\xi_1, \dots, \xi_r) = \xi_i(\mathcal{U}_i)$, $i = 1, \dots, r$). A primal (respectively, subprimal, semi-primal) cluster of species S is defined to be a class $\widetilde{\mathcal{U}} = \{\dots, \mathcal{U}_i, \dots\}$ of primal (respectively, subprimal, semi-primal) algebras of species S, any finite subset of which is independent.

We are now in a position to state the following lemmas, the proofs of which have already been given in [2; 5].

LEMMA 1. A primal algebra is categorical and simple.

LEMMA 2. A semi-primal algebra is semi-categorical and simple.

LEMMA 3. Let $\mathcal{B} = (B; \Omega)$ be a subprimal algebra of species S. Then,

- (a) the core $\mathfrak{B}^* = (B^*; \Omega)$ is primal or else is a one-element subalgebra;
- (b) each b in B^* is S-expressible;
- (c) each b in $B \setminus B^*$ is ex-expressible.

2. Semi-primal Clusters.

In this section some semi-primal clusters will be found. The methods of proof are similar to those of Foster [4] and O'Keefe [6]. We will be concerned, mainly, with co-coupled families of subprimal algebras, in the sense of the following

DEFINITION 1. A family $\mathcal{U}_i = (A_i; \Omega)$ $i \in I$, of subprimal algebras of species S, with cores $\mathcal{U}_i^* = (A_i^*; \Omega)$, $i \in I$, respectively, is said to be *co-coupled* if there exist two binary S-expressions $\xi \times \eta$ (= $\xi \cdot \eta = \xi \eta$) and $\xi T \eta$, and elements 0_i , 1_i in $A_i(0_i \neq 1_i)$, for each $i \in I$, such that

(a) if \mathcal{U}_i is a singular subprimal, then

$$(1) \qquad \qquad \{0_i\} = A_i^*;$$

(2)
$$0_i \times \xi = \xi \times 0_i = 0_i; \quad 1_i \times \xi = \xi \times 1_i = \xi \quad (\text{all } \xi \text{ in } A_i);$$

(3)
$$0_i T \xi = \xi T 0_i = \xi \quad (\text{all } \xi \text{ in } A_i);$$

(b) if \mathcal{U}_i is a regular subprimal, then (2) and (3) hold in addition to

$$(4) \qquad \qquad \{0_i, 1_i\} \subseteq A_i^*.$$

DEFINITION 2. A family $\mathcal{U}_i = (A_i; \Omega)$, $i \in I$, of regular subprimal algebras of species S is said to be *co-framal* if there exist S-expressions $\xi \times \eta (= \xi \cdot \eta = \xi \eta)$ and ξ^{\cap} , and elements 0_i , 1_i in $A_i (0_i \neq 1_i)$, for each $i \in I$, such that (2) and (4) hold in addition to

(5) \cap is a permutation of A_i with $0_i^{\cap} = 1_i$.

REMARK 1. If \mathcal{U}_i , $i \in I$, is a co-framal family of regular subprimal algebras, then by letting $\xi T \eta = \text{def} = (\xi^{\cap} \times \eta^{\cap})^{\cup}$, where ξ^{\cup} denotes the inverse of ξ^{\cap} , it follows that (3) holds and therefore the family is also co-coupled.

THEOREM 1. Let $\mathcal{U}_i = (A_i; \Omega)$, i = 1, ..., n, be co-coupled subprimal algebras of species S. Then, if the \mathcal{U}_i are pairwise independent, they are independent.

PROOF. Assume that $\mathcal{U}_1, \ldots, \mathcal{U}_n$ are pairwise independent. Then, for any two algebras $\mathcal{U}_i, \mathcal{U}_j$ (where $i \neq j$), there exists an S-expression $\Phi(\xi, \eta)$ such that

(6)
$$\Phi(\xi,\eta) = \begin{cases} \xi({}^{\mathcal{C}}\mathcal{U}_i) \\ \eta({}^{\mathcal{C}}\mathcal{U}_j). \end{cases}$$

Let $\mathcal{U}_i^* = (A_i^*; \Omega)$ denote the core of \mathcal{U}_i . If \mathcal{U}_i is a regular subprimal (respectively, a singular subprimal), then $\mathbf{1}_i \in A_i^*$ (respectively, $\mathbf{1}_i \in A_i \setminus A_i^*$), and according to Lemma 3 it is expressible (respectively, ex-expressible). In either case, there exists a unary S-expression $\mathcal{L}_{\mathbf{1}_i}(\xi)$ such that

(7)
$$\Delta_{\mathbf{1}_{i}}(\xi) = \mathbf{1}_{i} \quad (\xi \text{ in } A_{i} \setminus \{0_{i}\}).$$

From (6), (7), and the fact that $0_j \in A_j$ is S expressible, say by $\Lambda_{0_j}(\xi)$, it follows immediately that

$$\Pi_{ij}(\xi) = \operatorname{def} = \Phi\left(\varDelta_{1_i}(\xi), \quad \varDelta_{0_j}(\xi) \right) = \begin{cases} 1_i & (\xi \text{ in } A_i \setminus \{0_i\}) \\ 0_j & (\mathcal{U}_j) \end{cases} \quad (i \neq j).$$

Define, now, a unary S expression $\Psi_i(\xi)$, $1 \le i \le n$, by

(8)
$$\Psi_{i}(\xi) = \Pi_{i1}(\xi) \times ... \times \widehat{\Pi}_{ii}(\xi) \times ... \times \Pi_{in}(\xi) = \begin{cases} 1_{i} \ (\xi \text{ in } A_{i} \setminus \{0_{i}\}) \\ 0_{j} \ (\mathcal{U}_{j}) \ (\text{all } j \neq i). \end{cases}$$

where \uparrow denotes deletion and the $\Pi_{ij}(\xi)$ are associated in some fixed manner. Using (8) and the co-coupling binary S-expression $\xi T \eta$, define an n-ary S-expression $\Phi(\xi_1, ..., \xi_n)$ by

$$\Phi(\xi_1,\ldots,\xi_n) = [\Psi_1(\xi_1) \times \xi_1] T \ldots T [\Psi_n(\xi_n) \times \xi_n],$$

the *T*-factors being associated in some fixed manner. It is easily checked that $\Phi(\xi_1, \ldots, \xi_n) = \xi_i(\mathcal{U}_i), 1 \le i \le n$. This proves the theorem.

Because of Theorem 1, it is important to discuss the pairwise independence of subprimal algebras. To do this we impose a surjectivity property on the primitive operations.

DEFINITION 3. A subprimal algebra \mathcal{U} , with core \mathcal{U}^* , is said to be *two fold surjective* if each primitive operation of \mathcal{U} is surjective on both \mathcal{U} and \mathcal{U}^* .

We now show that subprimal algebras which are two-fold surjective satisfy a certain factorization property (compare with [6]).

THEOREM 2. Let $\mathcal{U} = (A; \Omega)$ be a two-fold surjective subprimal algebra of species S. Then, for each unary S-expression, $\Gamma(\xi)$, and each primitive operation \mathcal{O}_i (of rank n_i) of \mathcal{U} , there exist unary S-expressions $\Psi_1(\xi), \ldots, \Psi_{n_i}(\xi)$ such that

(9)
$$O_i(\Psi_1(\xi), \dots, \Psi_{n_i}(\xi)) = \Gamma(\xi)(\mathcal{U}).$$

PROOF. Let $A = \{a_1, \ldots, a_m, a_{m+1}, \ldots, a_t\}$ where $A^* = \{a_1, \ldots, a_m\}$ is the base set of \mathcal{U}^* (= core of \mathcal{U}) Clearly. $\Gamma(a_j) \in A^*$ for $1 \leq j \leq m$. Because of two-fold surjectivity, there exist elements $a_{jk} (1 \leq j \leq t, 1 \leq k \leq n_i)$ of A, with a_{jk} in A^* when $1 \leq j \leq m$, such that

$$\mathcal{O}_i(a_{j_1},\ldots,a_{j_{n_i}})=\Gamma(a_j).$$

Now let unary functions $g_1(\xi), \ldots, g_{n_i}(\xi)$ be defined on A by

$$g_k(a_j) = a_{jk} \ (1 \le k \le n_i, \ 1 \le j \le t).$$

Since $g_k(a_j) \in A^*$, $1 \le j \le m$, each g_k is conservative and hence is S-expressible, say by $\Psi_k(\xi)$. It follows that

$$O_{i}(\Psi_{1}(a_{j}), \dots, \Psi_{n_{i}}(a_{j})) = O_{i}(g_{1}(a_{j}), \dots, g_{n_{i}}(a_{j})) = O_{i}(a_{j1}, \dots, a_{jn_{i}}) = \Gamma(a_{j})$$

for $1 \leq j \leq t$ and (9) is verified.

From [6; Lemma 2.3] and Theorem 2 we immediately obtain the following generalized factorization property.

THEOREM 3. Let \mathcal{U} be a two-fold surjective subprimal algebra of species S. Then, for each expression $\Sigma(\xi_1, \ldots, \xi_q)$ and each expression $\Theta(\xi_1, \ldots, \xi_p)$ in which no indeterminate $\xi_i, 1 \leq i \leq p$, occurs twice in Θ , there exist expressions Ψ_1, \ldots, Ψ_p such that

(10)
$$\Theta(\Psi_1, \dots, \Psi_p) = \Sigma(\mathcal{U}).$$

The pairwise independence of any two universal algebras \mathcal{U}, \mathcal{B} of species S assures that any two subalgebras of \mathcal{U}, \mathcal{B} , of more than one element each, are non-isomorphic. In establishing independence, therefore, this must be taken as a minimal assumption.

THEOREM 4. Let $\mathcal{U} = (A; \Omega)$ and $\mathcal{B} = (B; \Omega)$ be subprimal algebras of species S with cores $\mathcal{U}^* = (A^*; \Omega)$ and $\mathcal{B}^* = (B^*; \Omega)$, respectively. Suppose that either of the following holds:

(i) \mathfrak{B} is a regular subprimal and $\mathcal{U}^*, \mathfrak{B}^*$ are non-isomorphic;

(ii) \mathcal{B} is a singular subprimal and \mathcal{U} , \mathcal{B} are non-isomorphic.

Then, there exist elements d_1 , d_2 in B ($d_1 \neq d_2$) and unary expressions $\Gamma_1(\xi)$, $\Gamma_2(\xi)$ such that

(1⁰) $\Gamma_1(\xi) = \Gamma_2(\xi) (\mathcal{U});$

(2⁰)
$$\Gamma_{1}(\xi) = d_{1}(\xi \text{ in } B \setminus B^{*});$$

(3⁰) $\Gamma_2(\xi) = d_2(\xi \text{ in } B \setminus B^*).$

Moreover, if (i) holds, then d_1 , $d_2 \in B^*$ and

- (4⁰) $\Gamma_{1}(\xi) = d_{1}(\mathcal{B});$
- (5⁰) $\Gamma_2(\xi) = d_2(\mathcal{B}).$

PROOF. First, assume that (i) holds. Then \mathfrak{B}^* is primal (Lemma 3) and hence categorical (Lemma 1). Therefore, if $Id(\mathfrak{U}) \supseteq Id(\mathfrak{B}^*)$ then $\mathfrak{U} \cong \mathfrak{B}^{*(k)} (= k^{th}$ subdirect power of \mathfrak{B}) for some $k \ge 1$. Now $k \ne 1$ since \mathfrak{U} has a subalgebra $(\ne \mathfrak{U})$. But if $k \ge 2$, there exists an epimorphism $\mathfrak{U} \to \mathfrak{B}^*$, contradicting the simplicity of \mathfrak{U} . Thus, $Id(\mathfrak{U}) \not\supseteq Id(\mathfrak{B}^*)$. Similarly, if $Id(\mathfrak{B}^*) \supseteq Id(\mathfrak{U})$, then since \mathfrak{U} is semi-categorical (Lemma 2), $\mathfrak{B}^* \cong \mathfrak{U}^{(k_1)} \times \mathfrak{U}^{*(k_2)}$ (= subdirect product of subdirect powers of \mathfrak{U} and \mathfrak{U}^*) for some k_1, k_2 . Now $k_1 + k_2 \ne 1$ since $\mathfrak{B}^*, \mathfrak{U}$ are non-isomorphic and by assumption $\mathfrak{B}^*, \mathfrak{U}^*$ are non-isomorphic. Thus, $k_1 + k_2 \ge 2$. But then there exists an epimorphism from \mathfrak{B}^* onto either \mathfrak{U} or \mathfrak{U}^* , contradicting the simplicity of \mathfrak{B}^* . Thus $Id(\mathfrak{B}^*) \not\supseteq Id(\mathfrak{U})$. These two non-inclusions assure the existence of expressions $\mathfrak{Y}_1(\xi_1, \ldots, \xi_p)$ and $\mathfrak{Y}_2(\xi_1, \ldots, \xi_p)$ such that

(11)
$$\Psi_1 = \Psi_2(\mathcal{U}) \text{ and } \Psi_1 \neq \Psi_2(\mathcal{V}^*).$$

From (11) it follows that there exist elements β_1, \ldots, β_p of B^* for which

(12)
$$d_1 = \operatorname{def} = \Psi_1(\beta_1, \dots, \beta_p) \neq \Psi_2(\beta_1, \dots, \beta_p) = \operatorname{def} = d_2.$$

694

olusters

Clearly, d_1 , $d_2 \in B^*$. Since $\beta_1, ..., \beta_p \in B^*$, there exist expressions $\Lambda_1(\xi), ..., \Lambda_p(\xi)$ such that (see Lemma 3)

(13)
$$\Lambda_i(\xi) = \beta_i \ (\mathcal{B}), \ 1 \le i \le p.$$

If $\Gamma_i(\xi)$ is defined by

(14)
$$\Gamma_j(\xi) = \Psi_j(\Lambda_1(\xi), \dots, \Lambda_p(\xi)), 1 \le j \le 2,$$

from (12) (14) it follows that $\Gamma_{4}(\xi)$, $\Gamma_{2}(\xi)$ satisfy (1⁰), (4⁰), and (5⁰).

Secondly, assume that (ii) holds. Using arguments similar to those above, it can be established that $Id(\mathcal{U}) \not\supseteq Id(\mathcal{B})$ and $Id(\mathcal{B}) \not\supseteq Id(\mathcal{U})$. Thus, there exist expressions $\Psi_1(\xi_1, \ldots, \xi_p), \Psi_2(\xi_1, \ldots, \xi_p)$ such that $\Psi_1 = \Psi_2(\mathcal{U})$ and $\Psi_1 \neq \Psi_2(\mathcal{B})$. Let β_1, \ldots, β_p be elements of *B* for which (12) holds. Because of Lemma 3, there exist expressions $\Lambda_1(\xi), \ldots, \Lambda_p(\xi)$ with

$$\Lambda_i(\xi) = \beta_i (\text{in } B \setminus B^*), \ 1 \le i \le p_i$$

Let $\Gamma_1(\xi)$, $\Gamma_2(\xi)$ be defined as in (14). It is easy to verify that they have the desired properties $(1^0) \cdot (3^0)$.

Next, we prove the following theorems.

THEOREM 5. Let $\mathcal{U} = (A; \Omega)$ and $\mathcal{B} = (B; \Omega)$ be subprimal algebras of species S satisfing either (i) or (ii) of Theorem 4. Then there exist expressions $\Phi_1(\xi), \ldots, \Phi_p(\xi)$ such that $\Phi_1(\xi) = \ldots = \Phi_p(\xi)(\mathcal{U})$ and such that every conservative unary function on B is identical, in B, to one of $\Phi_1(\xi), \ldots, \Phi_p(\xi)$.

PROOF. Let the conservative unary functions on B be enumerated as $b_1(\xi), \ldots, b_p(\xi)$ and let $d_1, d_2, \Gamma_1(\xi), \Gamma_2(\xi)$ be as in Theorem 4. Since \mathfrak{B} is semi-primal, each conservative function on B is S-expressible. Hence, there exists an expression $\Phi = \Phi(\xi, \xi_1, \ldots, \xi_p, \xi_{p+1})$ for which

$$\Phi\left(\xi,\underbrace{d_1,\ldots,d_1}_{i \text{ terms}},\,d_2,\ldots,d_2\right) = b_i(\xi),\, 1 \leq i \leq p \ (\xi \text{ in } B).$$

(This follows since the above equation is a conservative condition). Using Φ as a skeleton, we now define $\Phi_1(\xi), \ldots, \Phi_p(\xi)$ by

$$\Phi_i(\xi) = \Phi\left(\xi, \Gamma_1(\xi), \ldots, \Gamma_1(\xi), \Gamma_2(\xi), \ldots, \Gamma_2(\xi)\right), \ 1 \le i \le p.$$

From (1°) of Theorem 4 it follows that $\Phi_i(\xi) = \Phi_j(\xi)$ (U) for all $1 \leq i, j \leq p$. If (i) holds, then from (4°) and (5°) of Theorem 4, $\Phi_i(\xi) = b_i(\xi)$ (ξ in B), $1 \leq i \leq p$. If (ii) holds, then (2°) and (3°) assure that $\Phi_i(\xi) = b_i(\xi)$ (ξ in $B \setminus B^*$). Moreover, in \mathfrak{B} , $\Phi_i(\xi)$ and $b_i(\xi)$ are both conservative. Since B^* consists of exactly one element, say $B^* = \{0\}$, it follows that $\Phi_i(0) = b_i(0) = 0$. Hence, in case (ii) we also have $\Phi_i(\xi) = b_i(\xi)$ (ξ in B).

THEOREM 6. Let $\mathcal{U} = (A; \Omega), \mathcal{B} = (B; \Omega)$ be subprimal algebras of species S (with cores $\mathcal{U}^* = (A^*; \Omega), \mathcal{B}^* = (B^*; \Omega)$, respectively) satisfying either (i) or (ii) of Theorem 4. If \mathcal{B} is two-fold surjective, then for each a in A^* and each unary expression $\Psi(\xi)$ there exists an expression $\Omega = \Omega(\xi)$ such that

$$\Omega = \begin{cases} a (\mathcal{U}) \\ \Psi (\mathcal{B}). \end{cases}$$

PROOF. If $a \in A^*$, there exists a unary expression $\Theta(\xi)$ for which $\Theta = a(\mathcal{U})$. Let $\Theta'(\xi_1, \ldots, \xi_p)$ be the S-expression derived from Θ by distinguishing each occurrence of ξ in Θ . Thus, by definition, $\Theta'(\xi, \ldots, \xi) = \Theta(\xi)$. From Theorem 3, there exist expressions $\Psi_1(\xi), \ldots, \Psi_p(\xi)$ such that

$$\Theta'\left(\Psi_{1}\left(\xi\right),\ldots,\,\Psi_{p}\left(\xi\right)\right)=\Psi(\xi)\left(\mathcal{B}\right).$$

Since $\Psi_1(\xi), \ldots, \Psi_p(\xi)$ are conservative in \mathcal{B} , by Theorem 5, there exist expressions $\Phi_1(\xi), \ldots, \Phi_p(\xi)$ such that

$$\begin{split} \varPhi_i(\xi) &= \varPhi_j(\xi) \ (\mathcal{U}), \ 1 \leq i, j \leq p \ ; \\ \varPhi_i(\xi) &= \varPsi_i(\xi) \ (\mathcal{B}), \ 1 \leq i \leq p. \end{split}$$

Let $\Omega(\xi) = \Theta'(\Phi_1(\xi), \dots, \Phi_p(\xi))$. It is easily verified that Ω has the desired property of the theorem.

If F is a family of subprimal algebras of species S let us use F_{\bullet} (respectively, F_r) to denote the subfamily of all singular subprimal (respectively, regular subprimal) members of F.

THEOREM 7. (Principal Theorem) Let F be a family of two-fold surjective subprimal algebras of species S, each finite subset of which is co-coupled. If, further,

(a) the members of F^s are pairwise non-isomorphic,

(b) the members of F_r have pairwise non-isomorphic cores, then F is a subprimal cluster.

PROOF. Because of (a), (b), and Theorem 6, for any two members \mathcal{U}, \mathcal{B} of F, there exist expressions $\Omega_1(\xi), \Omega_2(\xi)$ for which

$$\Omega_{1}(\xi) = \begin{cases} \xi({}^{c}\mathcal{U}) \\ 0({}^{c}\!\!\mathcal{B}) \end{cases}; \quad \Omega_{2}(\xi) = \begin{cases} 0({}^{c}\!\!\mathcal{U}) \\ \xi({}^{c}\!\!\mathcal{B}) \end{cases}.$$

Since each finite subset of F is co-coupled, there exists a binary S-expression $\xi T \eta$ satisfying (3). Thus

$$\mathcal{Q}_{1}\left(\xi_{1}\right)T\mathcal{Q}_{2}\left(\xi_{2}\right) = \begin{cases} \xi_{1}\left(\mathcal{U}\right) \\ \\ \xi_{2}\left(\mathcal{H}\right) \end{cases}$$

and therefore \mathcal{U} , \mathcal{B} are independent. From Theorem 1 it follows that each finite subset of F is independent, and the theorem is proved.

COROLLARY 1. Let $F(=F_r)$ be a family of two-fold surjective regular subprimal algebras of species S satisfying (b) of Theorem 7. Suppose that each finite subset of F is co-framal. Then F is a regular subprimal cluster.

This follows from the above theorem, upon applying Remark 1.

We now consider special subclasses of co-coupled and co-framal subprimal algebras.

DEFINITION 4. An s-couple is a singular subprimal algebra $\mathcal{U} = (A; \times, T)$ of species S = (2,2) containing elements 0,1 $(0 \neq 1)$ such that (1)-(3) hold. An *r*-frame is a regular subprimal algebra $\mathcal{U} = (A; \times, \cap)$ of species S = (2, 1) containing elements 0,1 $(0 \neq 1)$ for which (2), (4), and (5) hold. Examples of s-couples are plentiful. Two such examples are (see [5]):

(1°) The « double groups » $\mathcal{C} = (\mathcal{C}; \times, +)$ of finite order $n \ge 2$ in which $(\mathcal{C}; +)$ is a cyclic group with identity 0 and generator 1, $(\mathcal{C} \setminus \{0\}; \times)$ is a group with identity 1, and $0 \times \xi = \xi \times 0 = 0$ (ξ in \mathcal{C}); and

(20) the algebras $C_p = (C_p; \times +)$ of p elements 0, 1, ..., p-1 (p a prime) in which $\xi + \eta =$ addition mod p, and $\xi \times \eta = \min(\xi, \eta)$ in the ordering 0, 2, 3, ..., p-1, 1.

To establish other classes of r-frames and s-couples we need the following definitions and lemmas.

DEFINITION 5. A binary algebra is an algebra $\mathcal{B} = (B; \times)$ of species S = (2) which possesses elements 0,1 $(0 \neq 1)$ satisfying

(15)
$$0 \times \xi = \xi \times 0 = 0; \quad 1 \times \xi = \xi \times 1 = \xi \text{ (all } \xi \text{ in } B).$$

The element 0 is called the null of \mathfrak{B} ; 1 is called the *identity*.

8. Annali della Scuola Norm. Sup. - Pisa.

LEMMA 4. (Foster and Pixley [5]). An algebra $\mathcal{B} = (B; \Omega)$ of species S is a regular subprimal if and only if there exist elements 0,1 in B (0 \pm 1) and functions \times (binary) and \cap (unary) defined in B such that (15) holds, in addition to

 (1^{0}) \mathfrak{B} is a finite algebra of at least three elements;

(20) \mathfrak{B} possesses a unique subalgebra ($\pm \mathfrak{B}$), denoted by $\mathfrak{B}^* = (B^*; \Omega)$ and B^* contains at least two elements;

 (3^{0}) the elements 0,1 and the functions \times , \cap are each S-expressible;

(4⁰) \cap is a permutation of B in which $0 \cap = 1$;

(5°) for each b in B, the characteristic function $\delta_b(\xi)$ (defined below) is S-expressible:

 $\delta_b(\xi) = 1$ if $\xi = b$ and $\delta_b(\xi) = 0$ if $\xi \neq b$ (all ξ in B);

(6°) there exists an element b_0 in $B \setminus B^*$ which is ex-expressible.

LEMMA 5 (Foster and Pixley [5]). An algebra $\mathcal{B} = (B; \Omega)$ of species S is a singular subprimal if and only if there exist elements 0, 1, 1° in B (0 ± 1) and two binary functions \times , T defined in B such that (15) holds in addition to

(1⁰) \mathcal{B} is a finite algebra of at least two elements;

(2°) \mathfrak{B} possesses exactly one one-element subalgebra $\mathfrak{B}^* = (B^*; \Omega)$ and no other subalgebra $(\neq \mathfrak{B})$;

 (3^{0}) the element 0 and the functions \times , T are each S expressible;

(4⁰) 0 $T\xi = \xi T 0 = \xi$ for each ξ in B and $1 T 1^0 = 1^0 T 1 = 0$;

(5°) for each b in $B \setminus B^*$, the characteristic function $\delta_b(\xi)$ is S-expressible;

(6°) there exists an element b_0 in $B \setminus B^*$ which is ex-expressible.

REMARK 2. If ξ^{\cap} is a permutation on a set, we use ξ^{\cup} to denote its inverse. Moreover, for each positive integer s we define:

$$\boldsymbol{\xi}^{\boldsymbol{\sqcap} s} = \operatorname{def} = (\dots \, (\boldsymbol{\xi}^{\boldsymbol{\sqcap}})^{\boldsymbol{\sqcap}} \dots)^{\boldsymbol{\sqcap}} \quad (s \text{ iterations}).$$

We define ξ^{U_s} similary. Note that if ξ^{n} is a permutation on a finite set, then there exists an integer s such that $\xi^{n_s} = \xi^{U}$. Hence, any (n, U) expression is just a (n)-expression.

The following theorems provide large classes of r-frames and s-couples.

THEOREM 8. Let $\mathcal{B} = (P; \times, \cap)$ be a primal algebra for which (1°) $(P; \times)$ is a binary algebra (with null 0 and identity 1); and (2°) \cap is a cyclic permutation on P with $0^{\circ} = 1$. If $P_m = P \cup \{\lambda_1, \dots, \lambda_m\}$

where $\lambda_i \notin P$, $1 \leq i \leq m$, then the operations \times and \cap can be extended to P_m such that $\mathfrak{B}_m = (P_m; \times, \cap)$ is an r-frame with core \mathfrak{B} .

PROOF. Let $\cap = (0, 1, \beta_3, ..., \beta_n)$ in *P*. Because of primality, there exists a unary (\times, \cap) -expression $\Delta(\xi)$ such that

$$\Delta(\xi) = \begin{cases} 1 & \text{if } \xi = 0 \\ 0 & \text{if } \xi \neq 0 \end{cases} \quad (\xi \text{ in } P).$$

We extend the definitions of \times and \cap to P_m as follows:

- (i) For ξ, η in P define $\xi \times \eta$ and $\xi \cap$ in P_m just as in P;
- (ii) $\lambda_1^{\Pi} = \lambda_2$, $\lambda_2^{\Pi} = \lambda_3$, ..., $\lambda_m^{\Pi} = \lambda_1$;

(iii) $\lambda_i \times \lambda_j = \lambda_{\min(i,j)}$ (if $i \neq j$) and $\lambda_i \times \lambda_i = 1$ (for each i);

- (iv) $0 \times \lambda_i = \lambda_i \times 0 = 0, \ 1 \times \lambda_i = \lambda_i \times 1 = \lambda_i;$
- (v) $\xi \times \lambda_i$ and $\lambda_i \times \xi$ (ξ in P) are defined arbitrarily for other ξ .

Each characteristic function $\delta_{\tau}(\xi)$, $\tau \in P_m$, is (\times, n) -expressible since the following identities hold in P_m (for a product of more than two terms, assume that the association is from the left):

$$\begin{split} \delta_0\left(\xi\right) &= \Delta\left(\xi\right) \Delta\left(\xi \times \xi\right), \ \delta_1\left(\xi\right) &= \delta_0\left(\xi^{\mathsf{U}}\right), \dots, \delta_{\beta_n}\left(\xi\right) = \delta_0\left(\xi^{\mathsf{U}_{n-1}}\right); \\ \delta_{\lambda_1}\left(\xi\right) &= (\xi \cdot \xi^{\mathsf{f}} \dots \xi^{\mathsf{f}_{n-1}})^2 \left(\left(\left(\xi \xi^{\mathsf{f}} \dots \xi^{\mathsf{f}_{m-1}}\right) \left(\xi^{\mathsf{f}} \xi^{\mathsf{f}_2} \dots \xi^{\mathsf{f}_{m-1}}\right) \right)^{\mathsf{U}} \right)^2 \\ \delta_{\lambda_2}\left(\xi\right) &= \delta_{\lambda_1}\left(\xi^{\mathsf{U}}\right), \dots, \delta_{\lambda_m}\left(\xi\right) = \delta_{\lambda_1}\left(\xi^{\mathsf{U}_{m-1}}\right). \end{split}$$

In the above, ξ^{\cup} denotes the inverse of ξ^{\cap} . Since P_m is finite, ξ^{\cup} is a (f)-expression. Moreover, 0, 1, β_3 , ..., β_n are (\times, \cap) -expressible and λ_1 , ..., λ_m are (\times, \cap) -expressible, since

$$0 = \delta_0 (\xi) \times \delta_1 (\xi), 1 = 0^{\mathsf{n}}, \beta_3 = 0^{\mathsf{n}_2}, \dots, \beta_n = 0^{\mathsf{n}_{n-1}} (\xi \text{ in } P_m);$$
$$\lambda_1 = \xi \cdot \xi^{\mathsf{n}} \dots \xi^{\mathsf{n}_{m-1}}, \lambda_2 = \lambda_1^{\mathsf{n}}, \dots, \lambda_m = \lambda_1^{\mathsf{n}_{m-1}} (\xi \text{ in } P_m \setminus P).$$

Clearly, \mathscr{B} is the unique proper subalgebra of \mathscr{B}_m . The conditions $(1^0) \cdot (6^0)$ of Lemma 4 are verified. Thus, \mathscr{B}_m is a regular subprimal algebra and, indeed, even an *r*-frame. The theorem is proved.

THEOREM 9. Let $(B; \times)$ be a finite binary algebra. Then a binary operation $\xi T \eta$ can be defined on B such that $(B; \times, T)$ is an s-couple.

PROOF. For the two-element binary algebra $(\{0, 1\}; \times)$ it is easily verified that conditions (1^0) - (6^0) of Lemma 5 hold if $\xi T \eta$ is defined by $0 T\xi = \xi T 0 = \xi$ and 1 T 1 = 0. Let, then $B = \{0, 1, b_1, \dots, b_m\}$ be the base set of a binary algebra of order m + 2, where $m \ge 1$. Consider the cases (I) $m \ge 2$ and (II) m = 1. For (I), define T on B such that

(16)
$$0 T \xi = \xi T 0 = \xi \quad (\text{each } \xi \text{ in } B);$$

(17)
$$1 T 1 = b_1, b_1 T b_1 = b_2, \dots, b_m T b_m = 1;$$

$$1 T b_1 = 1, b_1 T b_2 = b_2 T b_3 = ... = b_{m-1} T b_m = b_m T 1 = 1 T b_m = 0;$$

 $\xi T \eta$ is defined arbitrarily for other ξ, η in B;

hold, while for (II), define T on B such that (16) and (17) hold in addition to

$$1 T b_1 = b_1 T 1 = 0.$$

In either case (I) or (II), let $\xi^{n} = \xi T \xi$. In the characteristic function $\delta_{i}(\xi)$ is (\times, T) -expressible then $\delta_{b_{1}}(\xi), \ldots, \delta_{b_{m}}(\xi), \Gamma_{i}(\xi)$, and 0 are (\times, T) -expressible since

$$\begin{split} \delta_{b_m}(\xi) &= \delta_1(\xi^n), \ \delta_{b_{m-1}}(\xi) = \delta_1(\xi^{n_2}), \dots, \delta_{b_1}(\xi) = \delta_1(\xi^{n_m}) \ (\xi \ \text{in} \ B) \ ; \\ \Gamma_1(\xi) &= \delta_1(\xi) \ T \ \delta_{b_1}(\xi) \ T \dots \ T \ \delta_{b_m}(\xi) = 1 \ (\xi \ \text{in} \ B \setminus \{0\}) \ ; \\ 0 &= \delta_1(\xi) \times \delta_{b_1}(\xi) \ (\xi \ \text{in} \ B). \end{split}$$

In case (I), $\delta_1(\xi) = \xi T \xi^{\cap}$, while in case (II), $\delta_1(\xi) = \xi^2$, $(\xi T \xi^2)^2$, or $\xi^{\cap} T(\xi \xi^{\cap})$, according as $b_1^2 = 0, 1$, or b_1 , respectively. In each case, it is clear that $\{0\}$ is the unique subalgebra of $(B; \times, T)$. The conditions $(1^0) \cdot (6^0)$ of Lemma 5 are verified. Thus, $(B; \times, T)$ is a singular subprimal algebra and, in fact, an s-couple.

We conclude with the following easily proved corollaries of Theorem 7.

COROLLARY 2. Any subfamily of the family F_{s_0} of all pairwise non-isomorphic s-couples forms a singular subprimal cluster.

COROLLARY 3. Any subfamily of the family F_{r_0} of all r-frames with pairwise non isomorphic cores forms a regular subprimal cluster.

COROLLARY 4. Any subfamily of the family $F_{s_0} \cup F_{r_0}$ is a subprimal cluster.

The algebras given in Theorems 8 and 9 apply, of course, to these corollaries.

Note Added in Proof. Theorem 8 was obtained independently by A. L. Foster, Monatshefte für Mathematik 72 (1968), 315-324.

REFERENCES

- 1. A. ASTROMOFF, Some structure theorems for primal and categorical algebras, Math. Z. 87 (1965), 365-377.
- 2. A. L. FOSTER, Generalized « Boolean » theory of universal algebras. Part. I. Subdirect sums and normal representation theorem, Math. Z. 58 (1953), 306-336.
- 3. A. L. FOSTER, The identities of and unique subdirect factorization within classes of universal algebras, Math. Z. 62 (1955), 171-188.
- 4. A. L. FOSTER, The generalized Chinese remainder theorem for universal algebras; subdirect factorization, Math. Z. 66 (1957), 452-469.
- 5. A. L. FOSTER and A. F. PIXLEY, Semi-categorical algebras. I: Semi-primal algebras, Math. Z. 83 (1964), 147-169.
- 6. E. S. O'KEEFE, On the independence of primal algebras, Math. Z. 73 (1960), 79-94.

.