
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

CARLO TRAVERSO
Seminormality and Picard group
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3e série, tome 24,
no 4 (1970), p. 585-595
<http://www.numdam.org/item?id=ASNSP_1970_3_24_4_585_0>

© Scuola Normale Superiore, Pisa, 1970, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1970_3_24_4_585_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


SEMINORMALITY AND PICARD GROUP

CARLO TRAVERSO

Introduction.

In this paper we investigate the structure of seminormal rings under
noetherian assumptions and its connection with the Picard group.

The definitions of seminormality and seminormalization have arousen
from a problem of classification ([1]), [2],). When one parametrizes algebraic
objects (for example algebraic cycles of an algebraic variety) with an alge-
braic variety, one gets sometimes a variety which may depend, for example,
from the choice of coordinates. If the transformation from one to another

choice of coordinates acts birationally over the parameter variety, y one knows
that the normalization of the parameter variety is independent from that
choice (for necessarily this birational map is bijective, so one can dominate
it with the normalization). Of course the normalization may no longer pa-
rametrize the objects it was intended for, because one point of the variety
may split in many points of the normalization. So one must « glue » toge-
ther the different points of the normalization coming from one point of the
variety.

This is the problem solved in [1], where the « weak normalization » is

defined, in the standpoint of preschemes.
We study here a slightly different definition (which is the same of [1] J

whenever the prescheme is over a field of characteristic 0, for inseparability
is then excluded).

We limit ourselves to affines schemes, i. e. to rings, although all results
can be obtained for noetherian preschemes (proof by localization; see 2.2).

Let A be a ring, B an overring of A integral over A. We define
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where .R (2~) is the radical of the ring B,. $A is called the seminormali-
zation of A in B, and if A = BA, then A is called seminormal in B. If B
is the normalizatiou of A (i. e. the integral closure of A in Q (A), the total
quotient ring of A) we put +A = BA, and A is called seminormal if A = +A.

BA is the greatest subring A’ of B such that A’ ~ A, and

i) E spec A, there is exactly one x’ E spec A’ above x (i. e, such
that n A = jx)

ii) the canonical homomorphism k (x) -+ k (x’) is an isomorphism.
For the proof, see section 1.

In Section 1 we prove some basic results on seminormalization and

seminormal rings. We then restrict ourselves to noetherian rings A, with
B an overring of A finite over A, and define the « glueings over a point
x E spec A &#x3E;&#x3E; ; this is the local counterpart of obtaining BA from B, operating
only over x ; we obtain a new ring A’ containing BA and seminormal in
B, which equals B outside the closure of x, and has only one point x’
above x, with the same residue field that A has in x.

In section 2 we investigate the structure of seminormal varieties. We

prove the basic structure theorem 2.1: if A is seminormal in B, (A noethe-
rian, B finite over A), then A is obtained from B by a finite number of
glueings.

By theorem 2.1 we then obtain, when A is reduced and B is the nor-

malization of A, a kind of « purity theorem » (or Hartogs-like theorem, 2.3)
which shall allow us to prove, in section 3, a generalization of a theorem
of Endo, [6], using the methods of Bass and Murthy, [4].

Section 3 is dedicated to the proof of the main theorem of this paper:
Theorem 3.6. Suppose that A is a noetherian reduced ring and that

the normalization of A is an overring of A of finite type; let T be a finite
set of indeterminates over A. Then the canonical homomorphism Pic A -+
--~ Pic A (T J is an isomorphism if and only if A is seminormal.

The structure theorem of section 2 is not developped here in its full

strenghth ; we can divide any glueing in two parts (a weakly normal part,
for weak normality see [1], and a purely inseparable part) which would

have allowed us to prove some results on products of seminormal rings
(chiefly, under some freenes and finiteness assumptions, if A is seminormal

in B, then A (~) C is seminormal in B (&#x26; C).
As the arguments for these generalizations are rather disjoint from

this paper, while the proofs are in this present formulation considerably
simpler, we have skipped the proofs.

We use standard notation and well-known results of commutative al-

gebra (chiefly from [5] and [7]) without further mention.
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We distinguish between x E spec A A only if this does not
lead to notational difficulties.

This work has been suggested to me by Andreotti, Bombieri and Sal-
mon, whose works about weak normalization [1], [2] and Picard group [8],
had led to identical examples.

1. Seminormality.

We prove that BA is the largest subring A’ of B such that:

(1.1) i) V- x E spec A, there is exactly one x’ E spec A’ above x.

ii) the canonical homomorphism k (x) (x’) is an isomorphism.

1A satisfies i) and ii): let x E spec A, and let x’, x" be points of

spec +BA above x. We shall prove Let and let y’,
y" be points of spec B above x’, x". Then b E jy, . = a + y, with
a E Ax , y y E R (Bx). As b Ejy, , y we have a E 1nx C R (Bx), so we may assume
oc = 0. Then so b 1;A = jx~- .

To prove ii), it is sufficient to remark that if y’ is a point of spec B
above x, and b E’tA, bx = oc + y with a E Ax , y (Bx) so b (y’) _
= a (x) + 7 (y’) = a (x) E k (x) (identifying k (x) with a subfield of k (y’)).

Now we shall prove that if A’ satisfies i) and ii), then A’C BA. Let
b E A’, b ~ 1A; then there is x such + R (Ax). Since we have
supposed that i) holds for A’, Ax is local and Ax = A’,, so R = 

Ax + · As 1nx’ is the kernel of the homomorphism Ax’ -+- k (x’), this
is equivalent to lc (x) -+ k (x’) not being surjective, contradicting ii).

From this characterization it is obvious that +A is seminormal in B~
that if A c C C B and A is seminormal in B, then A is seminormal in C
too, and that if A _C B, then C has properties (1.1), so to =
= tA; in particular 1A has no proper subrings containing A and semi-

normal in B.

LEMMA 1.2. Let A C B C C, C integral over A. If A is seminormal in
Band B is seminormal in C, then A is seminormal in C.

PROOF. Let a x’ E spec B. Let x E spec A such that jx- n A = jx . We
have ax = a + r, with E B (C.,). But R ( Cx)x- C_ R (C .,,), so ax- E Bx~ +
-~- R (C,,,), hence a E aB = B.

aA is then a subring of B satisfying (1.1), so 
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LEMMA 1.3. Let A be semiuormal in B, and let f be the conductor of
A in B. Then f is equal to its radical in B.

PROOF. We sball prove that A contains the radical f’ of f in B ; as f
is the greatest B-ideal contained in A, this implies f = f’. Let b E E f,
x E spec A ; we have so bx E R (Bx); 
we have bx E Bx = Ax ; y so we have V x E spec A, bx E Ax + R (Bx), whence

From now on in this section we shall always suppose that A is a
noetherian ring and B an overring of A finite (i. e. integral of finite type)
over A.

Let x E spec A, and let x1, ... , xn be the points of spec B above x.

Let Wi be the canonical homomorphism (x~ 2013~- ~ 
Let A’ be the subring of B consisting of all b E B such that

A’ is a subring of B containing A and such that

(1.5) i) there is exactly one x’ E spec A’ above x

ii) the canonical homomorphism 7c (x) - lc (x’) is an

isomorphism.

a) impJies ii) for any prime of A’ above x, and b) implies that if b E A’ is

contained in some prime above x, then it is contained in any prime above x.
A’ is moreover the largest subring of B satisfying (1.5), as any element

of one such A’ shall satisfy a) and b) ; as by (1.1) B(A’) has also these
properties, it follows that A’ is seminormal in B.

We say that A’ is the ring obtained from B by glueing over x.
The conductor of A’ in B contains jx~ , y for if a y b E B, then

ab (xi) = a (r;) b (xa) = 0.
Let S be a multiplicative system of A ; if =1= s3, then S-1 A’ _

By since the conductor contains S -1 jx = A’ ; if not, S-1 A’ is obtai-
ned from S-1 B by glueing over S-1j,,; hence ~"~ A’ is always seminormal
in B.

LEMMA 1.6. Let y E speo A ; let A’ be obtained from B by glueing over
x E spec A. Suppose The primes of A’ above y are in 1-1 corres-
pondence with the primes of B above y.
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PROOF. Let f be the conductor of A’ in B. As is not

contained in j1l, y so A~ = By . As the maximal ideals of By (resp. A~) are
in 1-1 correspondence with the primes of B above y, the lem.
ma is proved.

LEMMA 1.7. Let f be the conductor of A in B ; suppose that f is in-

tersection of prime ideals of B. Let x E spec A be a prime of f, suppose
that there is exactly one x’ E spec B above x. Then the canonical homo-

1norphism k (x) -&#x3E; k (x’) cannot be surjective.

PROOF. As B is finite over A, f x = fix is the conductor of Ax in Bx
(which implies Bx). f x is intersection of primes of Bx ; but if a prime
of Bx contains f x = mx, by Cohen-Seidenberg theorem it must be a maxi-

mal ideal of Bx . Bx is a local ring, since the maximal ideals of Bx are in
1-1 correspondence with the primes of B above x ; so Bx. = Bx , and
mx = fx , intersection of maximal ideals, must be equal to Suppose
that k (.r) = k (.)/) (identifying canonically). Then = Bx~ ~ mx’ . Let b E Bz,,
b Ax and let a E Ax such that a (x) = b (x’). Then b - a E mx’ = mx C A,
so b E Ax , a contradiction.

COROLLARY 1.8. The conductor f of A in hA is not intersection of
primes of BA.

PROOF. Suppose that f is intersection of primes, and let us glue over
a minimal prime jx containing f ; if the A’ thus obtained were equal to

ilA, jx could not be a prime of f for, being A’ obtained by glueing over

x, by 1.5 the hypothesis of lemma 1.7 were true and the thesis false. We

should then have and A’ should be seminormal in ’hA, which is
impossible.

2. The structure of seminormal rings.

In this section we prove the two main structure theorems.

THEOREM 2.1. Let.A be a noetherian ring, B an overring of A, finite
over A. If A is seminormal in B, there is a sequence B = ...

... ~ Bn = A such that obtained from Bi by glueing over a

point x E spec A.

PROOF. Suppose that Bi has already been determined ; if Bi = A, all
is done ; otherwise, let fi be the conductor of A in by 1.3, f, is inter-
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section of prime ideals. Let x E spec A be a prime of f z of least codimension
(the assumption on the codimension is not needed, is only useful for other

proofs). We define as obtained from B, by glueing over x. If is

the conductor of A in we have fi. As A is seminormal in

Bt+1, y we can apply 1.3; as is obtained by glueing over x, by 1.5 and
1.7, jx is not a prime of so By the noetherian hypothesis,
we cannot have an infinite increasing chain of f i , so there is n such that
Bn = A, and the theorem is proved.

COROLLARY 2.2. If A is seminormal in B and S is a multiplicative
system of A, then rS-1 A is seminormal in S-1 B.

PROOF. As is obtained from B~ by glueing, W1 Bi+1 is seminor-

mal in Wl B~ ; then apply 1.2.

If B is the normalization of A, we will deduce from the sequence Bi
of 2.1 another sequence A (i) defined thus : A (0) = B ; for i ~: 1, A (i) = Bg,
if B, is the largest Bj such that the conductor fj of A in B’ is contained

in no prime of codimension ~ i. So we pass from A (i) to A (i -~-1) by a
finite number of glueings over primes of codimension i -~-1.

The sequence (A (i)) is independent of the particular sequence ~B~), as
A (i) is the largest subring of B containing A and such that Ax = (A. (i))x
for each x E spec A., cod (x) ~ i. Obviously, (A (m)) (n) = A (s), with 8 = min (m, n).

THEOREM 2.3. Let A be a reduced noetherian seminormal ring with

finite normalization ; suppose A = A (m), and let a E A be ..a regular element

of A. Then any prime of aA has codimension S m.

PROOF. Let B be the normalization of A ; let C be a ring, A c C c B.
Let x E spec C. We define By the Cohen-Seidenberg
theorem, we have cod (x ; A ) h cod (x), and if cod (x ; A) &#x3E; cod (x), there

exists x’ E spec C such that jx n A = jx- n A, cod (x’ ; A) = cod (x’).
As 9(~)==9(~)~Q(~)? the minimal primes of C are in 1-1 cor-

respondence with the minimal primes of A, hence cod (x) = 0 &#x3E; cod (x; A) = 0.
Take in particular C = B ; let f be the conductor of A in B. Let

x E spec B, such that cod (x ; A) &#x3E; cod (x) ; suppose that if y E spec B, y 
and then so in the chain we have no glueing over

jy n A. From 1.6 we get that in the chain we have a glueing over a
prime jy n A, y E spec B, such that jy C jz (otherwise in each Bi, hence also
in B~ = A, one would have at least two primes above jx n A), so we have

a glueing over x. As A = A (m), any prime of A over which we glue has
codimension ~ m, hence cod (x, A) ~ 1n. As the assumptions are satisfied
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if cod (x) =1 (f has no primes of codimension 0), we have cod (x) =1 &#x3E;
&#x3E; cod (x ; A) ~ m.

Now we prove, by induction on the sequence (B~), that in Bi any
prime x of aBi is such that cod (x ; A) S m.

If i = 0, we have Bo = B ; as A is reduced, B is a direct sum of a
finite number of integrally closed noetherian domains, for which it is well

known that a prime of a principal ideal has codimension s 1, so each

prime y of aB has codimension 1, hence cod (y ; A) S m.
Suppose that the theorem is proved for B~, and that is obtained

from jB~ by glueing over x E spec A. Let x’ be a prime of and

suppose cod (x’ ; A) &#x3E; Ti. is a prime of we have jx’ 4=
=1= abi+l , so there is ~ ~ aBi+l such that Ba C aB~ ,
and thus $ E aB; : jx- B~ .

Let ,X1, ... , Xj be the primes of jx,B;. We have cod (Xz; A) ~
~ cod (x’ ; A) &#x3E; m, so by induction hypothesis no jgi is contained in any

prime of aBi ; thus jgt = aBi . As Bi is noetherian, jXf B, contains a
product of the so aBi : B, = So we have proved ~ E 

As a is regular, f = ~/a E Q (A ) ~ aBi implies f E 
we have f ~ Bi+~ ; by the definition of 7 (1.4), there is xq E spec B, above
x such that (or there are xp , Xq E spec B, above x such that

=1= Wq f(Xq)). Let us take ~’ E A2 C such that C (x) # 0 (always
possible, and so

Hence (or w-i (~ f ) (xp) =
_ ~ (x) (x) = so ~’ f ~ 

(a is regular), a contradiction, as we have assumed ~ E jz
and C Ejx’ .

3. The Picard group.

Here we shall use freely definitions, notations and results of [4].
Let A be a noetherian ring; Pic A is the group of isomorphism clas-

ses of projective A-modules of rank 1 with ®g as product, U (A) the group
of units of A. We can associate functorially to any ring homomorphism f
a group Pic 4Y f (defined in [4]) such that, if
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is a commutative square, we have a commutative diagram with exact rows:

If S is a multiplicative system of A composed of regular elements,
~B = W1 A, and f is the canonical injection, Pic 45 f is naturally isomorphic
to inv (A, S), where inv (A, S ) is the subgroup of the group of invertible

fractionary A-ideals spanned by the integral invertible A-ideals whose in-

tersection with S is not empty ([5], [4J prop. 5.3).
We recall the following result:

LEMMA 3.2. Let A be a reduced ring, and let T be a finite set of in-

determinates over A ; let a be an ideal of A [T ], invertible and such that

Ro = a n A contains a regular element. Let pi 7 --- ) On be the primes of a,
and let Pi = IPi n A. Then a = ao A [T] ] if and only if each aApi [T] ] is

principal.
For the proof, see [4], lemma 5.6, page 33.

THEOREM 3.3. Let S be a multiplicative system of A composed of regular
elements; suppose that if s E S and p is a prime of sA, then Pic Ap [T ] = o.
Then the canonical homomorphism qJ : inv (A, S) --&#x3E; inv (A [T], S) is a-n iso-

morphism.
PROOF. The theorem and the following corollary are proved in [4], 5.5

and 5.7 ; as there the proof is only sketched, and the theorem is stated

only in a weaker form, we prove them completly here.
It is obviously sufficient to prove that f is surjective. Let a be an

A [.T]-ideal intersecting S. Let Ro = a n A and let s E S n a C ao. As s is

regular, we can apply lemma 3.2.
Let Jpt be a prime of a, pi = oi n A. As ~1~ is a prime of an inverti-

ble ideal, we have depth (0i) = 11 so depth (pi) S 1. As s E pi is regular,
depth =1, and pi is then a prime of any invertible ideal it contains,
in particular of sA ; by hypothesis, we have then Pic (Api [T 1) = 0, so

nApi [T] is principal. By lemma 3.2, a = ao A [T], and we need only prove
that ao is invertible. We can make A an A [T]-algebra, by the isomorphism
A ~ A and we have ao 2i ao A [T 0 AjTjA ~ a 0 AiTjA, so ao is

invertible. As ao f1 S # s3 , we have ao E inv (A, (ao) = a.

COROLLARY 3.4. Let 8 be as in theorem 3 3 ; if S-1 A is semilocal~
we have an exact seq2cence
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PROOF (as in [4], 7.12). We need only exactness in Pic ~1 [T]. We have
Pic W1 A = 0, hence

has exact rows, and the first vertical arrow is an isomorphism. So the re-
sult is immediate.

We recall another result of [4], theorem 7.2, page 41 :

LEMMA 3.5. Let B be a finite overring of A, and let j be the inclusion

of A in B ; let f be the conductor of A in B, and let j’ be the inclusion

of A’ = Alf in B’ = B/f. Then Pic Tj 2013~ Pic 4$j’ is an iso1norphism.
We can now prove :

THEOREM 3.6. Let A be a reduced noetherian ring with finite nor1na.

lization. Let T be a finite set of in determinates over A. The canonical ho-

momorphism an isomorphism if and only if A is

seminormal.

PROOF : (=) Suppose that A is seminormal. We prove the theorem,
by induction on n, supposing A = A (n). If n = 0, A is normal and the
theorem is well-known. Suppose the theorem true for B if B = B (n - 1).
We set B=A(n-1); y then B(n-1)=B.

Let f be the conductor of A in B ; as A is seminormal, if A Q B, f
is intersection of prime ideals of A. Let ... , pm be the primes of f in

A ; as A = A (n) and B = A (n - 1), the pi are all of codimension n.

Consider the multiplicative system S composed by those regular ele-
ments of A that are in no is the complement of a finite number of

primes (the pi and the primes of (0)), so S-1 A is semilocal. Let s E S, and
let p be a prime of sA. By theorem 2.3, cod (p)  n ; ~ is not one of the

p; , as As the pi are the minimal primes containing f,
p j t, so 

Ap = Bp is seminormal, Bp (n - 1) = Bp, hence the induction hypothe-
sis holds, Pic Ap [T] J = 0. We can thus apply Corollary 3.4, so

is exact. If we prove Pic S-1 A [1] = 0, all is done.
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Let us put A = Sw1 A, B = B, f = S-1 f. A is seminormal,
B (n - 1) = B. Any S-1 pi is a maximal ideal of A, so t conductor of A
in B, contains the radical of S-1 A.

We take A’ = A/f, B’ = B/f. From lemma 1.3, B’, A.’ are artinian

reduced, hence they are direct sum of fields, so Pic d.’ [T] = Pic B’ [T] = 0.
By induction hypothesis, Pic B [T ] = 0. We can consider the four exact

sequences (with j, obvious inclusions)

with arrows connecting a -+ fl, a --~ -~ 6, 7 - 3 and thus making a
big commutative diagram. As any ring in question is reduced, the first

and the second arrows connecting oc -~ y~ ~8 - 3 are isomorphisms. Applying
the five lemma to 2013~ ~ we get that -+ is an isomorphism.
By lemma 3.5, we have that Pic 4S j - are

isomorphisms, so is an isomorphism. Applying the five
lemma to L-4 - y, we get Pic S-1 A ~1~ ~ = 0.

( &#x3E;) We shall prove that if A is not seminormal, then Pic ]
is not an isomorphism. Let B = A+, and let f be the conductor of A in
B. Let A’ = A/f~ B’ = inclusions as in the first part of
the proof. Consider the square:

The bottom arrow is an isomorphism as B = +A is seminormal ; if the

top arrow were an isomorphism, one would have that the injection ker f --&#x3E;
- ker f’ is an isomorphism, and we shall prove that this is false.

As A, B are IT (B) _ ~T (B [T J), so it is

sufficient to prove that is not an isomorphism.
From lemma 3.5, I this is equivalent to not being an

isomorphism. 
’
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Consider the diagram with exact rows :

99 and gi are inclusions, and y is injective.
Suppose that X is an isomorphism, and let cx E U (B’ [T]). Then g2 (a) E

E ker g3 = x ker ( f2 o 1p) = x ker f2 (as y is injective), so X-I g2 (a) = f1 (a’)
(with we have g2 (a) = g2 cp (x’)~
so aw oc’ E ker g2 = im g, (remember that in the group of units the product
is the composition hence there is U (A’ [T ]) such that oc = We

shall exibit an a such that this is false.

By corollary 1.8, f does not coincide with its root in B = +A, so
there is an a E B such that a ~ A, an E f for some n. Hence there is in B’
a nilpotent a’ not contained in A.

Let t E T ; 1 + a’t is an unit of B’ [T], and is not product of an unit
of A’ [T J and one of B’. Hence the theorem is complete.

Univer8it,i di Pi8a
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