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PROJECTIVE EMBEDDING
OF PSEUDOCONCAVE SPACES

A1Lpo ANDREOTTI and YuMm-ToNe St1U (¥)

In [4] Tomassini and the first author investigate the projective embed-
ding of pseudoconcave manifolds (with maximal concavity) and, following
an idea of Grauert, prove that a pseudoconcave manifold X of dimension
= 2 can be embedded as an open subset of a projective algebraic variety
if and only if X carries a holomorphic line bundle L such that the graded
ring of sections of its powers

A (X, L) = Upy I'(X, LY

separates points and gives local coordinates at each point of X [4, Theo-
rem 2]

In this paper we continue the investigation of projective embeddability
in two directions.

Firstly we extend the above result to pseudoconcave normal spaces.

Secondly we show that for the projective embeddability of a pseudo-
concave manifold X of dimension = 3 it suffices to assume that X carries
a holomorphic line bundle L such that of (X, L) gives local coordinates at
each point of X. This is done by using extension techniques. We extend
X to a compact complex manifold X (by the methods of Hironaka [10] and
Rossi [13]) and, then, we extend the line bundle L to a holomorphic line
bundle I over X (by the method of Trautmann [24]). From I’ we construct
a positive holomorphic line bundle on X and show that X is a projective
algebraic manifold. It is essential that dim X = 3. A counter-example (which
was inspired by a remark of Grauert) is given to show this point.

Pervenuto alla Redazione il 18 Settembre 1969.
(*) The second author was partially supported by NSF Grant GP-7265.
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At the end of this paper we establish a result concerning the finite
generation of of (X, L). This result on finite generation is independent of
the result on finite generation obtained in [4]. A counter-example due to
David Prill is included to show this lack of relationship.

All complex spaces and subvarieties in this paper are reduced unless
specified otherwise.

§ 1. Pseudoconcavity and pseudoconvexity.

1. A real-valued C= function v on an open set D of (" is called
strongly q-pseudoconvex if the bermitian form

82‘/’ —_
L(p)= 2 — U Uj
i 0w 0z

has at least n — ¢ positive eigenvalues at each point of D (z,,...,2, being
the coordinates of C»).

A real-valued function ¢ on a complex space X is said to be strongly
g-pseudoconvex if for every point x, of X there exist an open neighborhood
U of », a biholomorphic map @ of U onto an analytic subset of an open
set D of some C* and a strongly ¢-pseudoconvex function v on D such that

) p=vyo @,
ii) the closure of the set (¢€ U | (x) <<c} is {x€ U|ep () = ¢} for
every ¢ €R.

DEFINITIONS. () A complex space X is called p-convexr if there exists
a O map ¢ from X to (— oo, b), where b€ R U {4 oo}, such that
(i) {¢ = ¢} is compact for every c€(— oo, b),
(ii) for some b’ €(— oo, d), ¢ is strongly g-pseudoconvex on {p > b’}.
(b) A complex space X is called g¢-concave if there exists a C> map ¢
from X to (@, 4 co), where a € {— oo} U R, such that
(i) {@ = ¢} is compact for c€(a, 4 oo),
(ii) for some a’€(a, -+ o), ¢ is strongly ¢-pseudoconvex on {p<a'}.
(¢) A complex space X is called (p, q)-convex-concave if there exists a
proper C* map ¢ from X to (a,d), where a € {— cojUR and b€ R U {4 oo},
such that for some a << a’ << b’ < b, ¢ is strongly p-pseudoconvex on
{ > b’} and strongly ¢-pseudoconvex on {p < a’}.
In all these cases we call ¢ an exhaustion function.

2. The following proposition is due to Grauert [8, § 2].
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PROPOSITION 1.1. Let X be a 0-convexr space. Then there exist a Stein
space S, a finite subset A of S, and a proper holomorphic surjection y: X — 8
such that

(i) y71(x) is a connected mowhere discrete compact subspace of X for
r€EA,
(i) y: X—p1(4)— 8— A 18 biholomorphic.

Moreover, if X is normal, S can be chosen to be normal.

This statement can also be viewed as a consequence of the reduction
principle of Cartan [6]. In particular we note the following.

COROLLARY. A 0-convex space without compact positive-dimensional sub-
spaces is Stein.

The proofs of Propositions 21, 22 and Theorem 15 of [2] yield readily
the following :

PROPOSITION 1.2. Let X be a (p, q)-convex-concave unreduced complex
space with exhaustion function ¢ from X to (a, b).

Let a <<a’ <b"<<b and suppose that ¢ is strongly p-pseudoconvexr on
{p > b’} and strongly q pseudoconvex on {p < a’}.

Let F be a coherent analytic sheaf on X with prof F=1r on {p <a’}.
Set

Xl ={(c<o<d for a<c<d=h.

Then

(@) the restriction map H'(X, F)— H (X2, F) is bijective for c€[a, a’),
de@d,bland p<l<<r—q—1,

(b) for c€[a,a’) the restriction map H "X, F)— H Z(ch, F) is bijective
for 1< r—gq—1 and injective for | =r — q — 1.

The following proposition is adapted from Trautmann [24, (3.1)].

PROPOSITION 1.3. Let X be a (0, 0)-convex-concave wunreduced space with
exhaustion function @ from X to (a,b) which is strongly 0-pseudoconvexr on
the whole of X.

Let F be a coherent analytic sheaf with prof F=3 on {p <a’} for
some a’ € (a, b).

Let I be a coherent sheaf of ideals on X whose zero-set is disjoint from
{p < a’’} for some a’’ €(a,b). Then the natural map

I' X, F)— I'(X, #/I9F)

i8 surjective,
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PrROOF. We can assume o’ =a’’. Set ¥ = {p << a’}. From the short
exact sequence of sheaves

0> IF—> F— FIF—0
we derive the following commutative diagram with exact rows :

I'&X, %X FHI9 5 B (X, IF) L HY (X, F)
34 %
HY(Y,9F) > H' (Y, F)
Now » is an isomorphism, because on ¥, 9= O and hence JF = % Since

prof = 3 on Y, by proposition 1.2 both 1 and u are isomorphisms. Hence
y is an isomorphism. Thus f = 0 and « is surjective.

3. We end this section by the study of (0, 0)-convex-concave spaces X
in which prof O = 3, O being the structure sheaf of X.

LemMA 1.1. Let (X,0) be a (0, 0)-convex-concave space with exhaustion
JSunction ¢ from X to (a, b) which is strongly 0-pseudoconvex on the whole of X.

Let prof O= 2 on X. Set for a<c<<d=<b, Xcd={c<q9<d]. Then
for any f€ (XS, 0) we have (!)

| f (X | =S (&].

PrOOF. Olearly |f(XJ)|=|f(X})| since X;c X7. Suppose that
[f(XD|>|f(XD|. Then there exist an #€(p < ¢} and a real number M
such that

|f@)]|>M>|f(XD]|.

n
Now for n — oo, (L) —> 0 uniformly on X! while

M
Jm () o= e

This is a contradiction since, by Proposition 1.2, the restriction map
I'Xd,0—I'(X!,0)

being bijective and continuous, must be an isomorphism of Fréchet spaces.

(1) By |£(¥)| we denote sup, y |/ ()].
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ProOPOSITION 1.4. Let (X,O) be a (0, 0)-convex-concave complex space
with exhaustion function ¢ from X to (a,bd) which is strongly 0-pseudoconvex
on the whole of X.

Suppose prof O = 3 on {p < a’} for some a’€(a,b). Then

(@) the holomorphic functions on X separate points,

(b) the holomorphic functions on X give local coordinates at every point
of X,

(e) for every d € (a, b) we can find d’ € (a,b) such that the holomorphically
convex hull of (¢ = d} is contained in {p < d’}.

PrOOF. We denote by m (x) the sheaf of ideals defined by the subspace
{x} constituted by the single point » € X.

(@ Fix #=Fy in X. Set I=m(x) m(y) and apply Proposition 1.3
with = (O we conclude that

I'X, 0)— I'(X, 0/F) = (O/m @)} © (O/m (v))y
is a surjective map. Thus holomorphic functions separate points on X.

(b) Fix £€ X and apply Proposition 1.3 to F=m(x) and I= m (x).
We get a surjective map

I'X, m (x) — I'(X, m (x)/m (#)?) = (m @)/m @73, .

This shows that holomorphic functions give local coordinates at .

(¢) For d€(a,b) set Kq={p = d}. Suppose that the holomorphically
convex hull ﬁd of K4 is not contained in any K4 for d’ € (a, b).

We can then find a sequence of distinet points {,}y=: in &, such
that @ (z,) — b.

Now U {x,} is a subspace of X and I= II m(x) is a sheaf of ideals
v =1

on X. By the same Proposition 1.3, taking = (O, we conclude that

I'(X, 0)— F(X, O/ Im (w») — 1T (O/m @),
r==1

r=1

is a surjective map. Thus in particular there exists on X a holomorphic
funetion f with lim | f (#,) | = co. On the other hand f must be bounded on Kj.
Indeed, by Lemma 1.1, for a <ec¢<<d < d” < b we get

lf(Kd)Ié< sup}|f|<oo.

c< o<’

This leads to a contradiction since |f(x,)| = |f(Kq4)| by the assumption
that x, € Kg.
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§ 2. Gap-sheaves and p-normalization.

4. Relative gap-sheaves. Let (X, O) be an unreduced complex space and
let @< & be analytic sheaves on X.

A subset Mc X is said to be thin of dimension p at a point xy,€ X, if
there exist an open neighborhood U, of %, in X and an analytic set A < U,,

such that
MnU, €4, dim, A =p.

This notion involves only the germ of the set M at x,.

DEFINITION. Given an integer n = 0, the n‘ relative gap-sheaf of G in
% denoted by gmg, is the analytic subsheaf of & defined as follows :

(g[n] )e = {8 € %, | support of f(s) is thin of dimension = n at x},

where g: F— F/Q is the quotient map.
This notion is due to Thimm [23].
Clearly Q< G- We set

ENG F)=[2 € X| Go == (Gpuy 7)al-

From [23] and [17] we borrow the following propositions :

PROPOSITION 2.1. If Q and F are coherent, then, for any n, the sheaf
Q[”]g« is coherent and E™ (G, F) is an analytic set of dimension = n in X,

PROPOSITION 2.2. Suppose that G and F are coherent. For any =€ X,
(g["] 7)s 18 the intersection of all primary components of a primary decompo-
sition of @, belonging to prime ideals of dimension >> n.

PROPOSITION 2.3. Let F be coherent, g € O, is a zero divisor for T, (i.e.
3f€F, such that f== 0 and gf = 0) if and only if g vanishes on some irre-
ducible germ of some E" (0, F) at ». (0 denotes the zero sheaf on X.)

5. Absolute gap-sheaves. Let (X, O) be an unreduced complex space and
let & be an analytic sheaf on X.
For any open set Uc X we can consider the group

F)(U) =1lim I (U — 4, F)
A

where A runs over all analytic subsets of U of dimension = n.
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If Wc U is open we have a natural restriction map
r¥ G (T) — F (W),

‘We obtain in this way a presheaf on X for any integer » = 0.
We define the n'* absolute gap sheaf of %, denoted by F[, as the
sheaf associated to the presheaf {7 (U), r7].
This notion was introduced in [18] from which we borrow the following
proposition.

PROPOSITION 2.4. Let F be a coherent sheaf. The sheaf F™ is coherent
if and only if dim B! (0, F) = n.
Set

Sk (F) = (v € X | prof F, = k}.

If ¥ is a coherent sheaf, S; (%) is an analytic set of dimension =k in X
[16, Satz 4]. Combining the Corollary to Satz III of [15] and Proposition
19 of [20] we get the following proposition.

PROPOSITION 2.5 Let F be coherent. Then FM = F if and only if
dimSk+2(7)§kfor —1=2k<m.
(Proposition 2.5 can also be derived from [25, Satz 2].)

6. p-normalization. Let (X, O) be a complex space. We say that X is
p-normal at a point x € X if OLPJ =(0,. We say that X is pnormal if
Ol#l = 6.

This means the following : X is p-normal at x if, given an open nei-
ghborhood U of #, an analytic subset A of U of dimension =p and a
holomorphic function f on U — A we can find a neighborhood W of x and
a holomorphic function ?on W such that f|w—_4 _——ﬂ Wed -

Making use of Proposition 2.5 we obtain the following ecriterion for
p-normality :

(X, O) is a p-normal space if and only if

dim (g€ X |prof O, =k + 2| =k

for — 1=k < p.

In particular (X, O) is 0-normal if and only if prof O = 2.

If X is an irreducible normal space of dimension n, then X is p-nor
mal for any p = n — 2.

The following proposition is adapted from the usual proof of existence
of the normalization of a complex space (cf. for instance [12, § 4]).
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PROPOSITION 2.6, Let X be a complex space whose irreducible compo-
nents all have dimension = p -+ 2. Then
(a) the set A of points of X where X is not p-normal is an analytic
subset of X of dimension = p,
(b) there exist a p-normal complex space X' and a proper surjective hol-
omorphic map with finite fibers n: X' — X such that
(i) =—1(4) is of dimension =< p at each point,
(i) n: X' —a1(4)— X — A is btholomorphic
(iii) any proper holomorphic surjective map w: Y — X of a p-nor-
mal complex space Y onto X and verifying property (i) factors through
n, i.e. 3v: Y— X' holomorphic such that w=nor.

y —° o x

./

Clearly the universal property (iii) defines the space X’ up to an isomor-
phism. We will call n: X’ — X the p-normalization of X.

PROOF OF (a). Since every irreducible component of X has dimension
=p + 2, it follows that O[p + 1]O=0’ where 0 is the zero sheaf. There-
fore, E»*+1(0,0)= (f and, by Proposition 2.4, the sheaf O!#! is coherent.

Now A = E? (O, O#l) and thus, by Proposition 2.1, 4 is an analytic
subset of X of dimension = p.

ProOOF OF (b). Since the p-normalization of a complex space X (if it
exists) is unique, we need only to prove its existence for a sufficiently small
neighborhood of every point of X.

Let z,€ X. Since (Ol?l),, is finitely generated over O,, and O, is noe-
therian, (O[?#]),, must be integral over O, . Thus for some neighborhood U
of #, in X there exist g, ,..,gx€I" (U, Ol?)) such that

Orl =3t Og; on U
and

1) gi+ 33 a9l =0 with ay€ (U, 0)

Let I be the conductor sheaf of O into Ol?), i.e. the maximal sheaf of ideals
9 such that JOP1 c O. Since Ol#! is coherent, I is also coherent and the
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zero set of J is A. Taking U sufficiently small, we may assume that

I= Z{LOM; on U.

with .oy um € I' (U, 9).
We set
(2) b= 1w g
so that by € I'(U, O).
‘We may assume, without loss of generality, that X = U. We consider
in X > C* the set X defined by the following equations

e r;—1 s
wr 2L @) wl =0

@)

1<tk
and
/ U ((l/‘) Wi = bh‘ (.%')
(4) 1<i<k

1=l=m

where (w, ..., wy) € C¥ and x€ X.

Let X’ be the union of those irreducible components of X which are
not contained in A > CF.

Let n: X’— X be the map induced by the natural projection X< Ck—X.

Since no irreducible component of X’ is contained in A >< C* it follows
that 71 (4) is of codimension = 1 in each component of X’. Since X’ is con-
tained in the set defined by the equations (3) the map n is proper and its
fibers are finite. Since A is the set of common zeros of , , ..., %, , equations
(4) and (2) imply that, for x€X— A, a1l (2) = (x, 9, (), ..., 9k (%)) and,
since ¢; is holomorphic on X — 4, n: X’ —a—1(4)— X — A is an iso-
morphism. Since = is proper, the image = (X’) of # is an analytic set con-
taining X — A, which is dense in X. Hence = is surjective.

We show now that X’ is p-normal. Let z’€¢ X’. Let W be an open
neighborhood of x’. Let B be an analytic subset of W of dimension = p
and let f be holomorphic on W — B. Let n~!(n(#’))= {®1,..,%, Where
#; = a’. Choose a Stein open neighborhood D of = (z’) and disjoint open
neighborhoods D; of #;in X’ such that

Dic W and a~ ' (D)= UL, D;.

Let C =a (BN Dy)u(4nD).
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Then f o nl_Dli is a holomorphic function on D — (¢ and, since dim
O < p, it defines an element h € I'(D, Ol?]), Since D is Stein, we can find

tyy e, i €1'(D, O) such that
h=2?=1 tigi on D.

Set }\= ZL, (¢; o @) w; on Dj. This is a holomorphic function on D;. Be-
cause (%) gi (x) = by (x) = wi (x) w; and (u, (), .o y Un (@) (0, ..., 0) if ¢ A,
we have g;o = w; on X’ — n—1 (4). Hence f=h o n=f on D} — a—1 (0).
Since each component of X’ is of dimension > p, the extension _?of fis
unique. Thus ? extends f from Dj — B to Dj. This proves our assertion.

Finally we have to verify that X’ Z, X satisfies the universal property
(iii). Without loss of generality we may assume that X’ is an analytic
subset of some open Stein set in a numerical space C¥. Let 2, ,...,#, be
the coordinate functions. On ¥ — w—!(4) the functions 2, 0a 10 w=2¢
are holomorphic. Since w—1(4) is of dimension = p and Y is p-normal,
these functions extend to holomorphic functions ?, on the whole of ¥ and
they define a map v: ¥ —> C¥, We claim that z(Y)< X’. By construction
1(Y— o= (A)=X’—a"1(A). Let now y, >y €w 1 (4), €Y — w1 (A).
If = (y,) is not convergent in X’, we can find an unbounded holomorphic
function f on {v(y,)}. But for on ¥ — w~1(4) extends to a holomorphic
function gy on the whole of Y. Thus fo t(y,) = 9r(¥,) — gr(y) which is a
contradiction.

By construction w|Y — w—! (A)==x o 7. By continuity we must have
w =7 o v on the whole of Y.

The idea of using gap-sheaves to investigate problems on removable
singularities is due to Thimm [22] although p-normalizations are not consi-
dered in that paper. The p-normalization X’ of X is the same as the par-
tial normalization of X with respect to A introduced in [19, § 3].

§ 3. Stein completion.

7. Let X be a (0, 0)-convex-concave complex space with exhaustion
funetion ¢ from X to (a, ). We suppose that ¢ is strongly 0-pseudoconvex
on the whole space X. As usual we set, for a S c<<d =<0,

Xl=le<p<d;Ki=|p=d).
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DEFINITION. A complex space Y is called a Stein completion of X if
(i) X is an open subset of Y,
(ii) Y is a Stein space,
(iii) Kqu(Y — X) is compact for any d€(a,d) .

ProrosITION 3.1. Let (Y, O) be a Stein completion of X and let F be
a coherent analytic sheaf on Y with prof F= 2. Then the vrestriction map

ry,5)—IrX%)
is bijective. In particular, if (Y, O) is 0-normal then I'(Y,0)—=> I'(X, O).

PRrROO¥F. Let c€(a,b) and let Y°= X,y (¥ — X). Then Y° is a Stein
completion of X,;. Also we have

'y, ) = li}_n 'y %) and I' X, F) = lim I (X;, F).

[ [

If we prove that, for any ¢, I'(Y¢ F)— I'(X,,¥) is bijective, then the
same conclusion holds for I'(Y, F) — I'(X, F).

We can thus replace ¥ by Y¢ X by X, and therefore it is not re-
strive to assume that Y is imbedded in some C" as an analytic subset so
that on Y we can find a strongly O0-pseudoconvex function iy such that
{w = d} is compact for any d €(— co, 4 co). Set ¥y = (v > d} and consider
the commutative diagram of restriction maps

o
ry,7 »> I'(X, F)
ﬂl A lr
,‘ i
'Y, F) X, %

where d€(— oo, -4 oo) and e €(a,d) are so chosen that
X>Y,oX,.

By virtue of Proposition 1.2 (b), § and y are bijective. Since § = da, &
must be injective. Since y = ul,A must be injective. Thus, given f¢€ I'(X, F),
we can find g€ I'(Y, F) such that f(g)=A(f), i.e. A(f— a(g)) =0, and
therefore f = o (g). This shows that « is also surjective. Hence, o is bijective.

The last statement follows from the fact that, if (¥, O) is 0-normal,
then prof O = 2.
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Let 8,Z be complex spaces. We denote by Hol (8,Z) the set of all
holomorphic maps from S to Z.

COROLLARY 3.1. Let S be any Stein space.
(a) If X is O-normal, then the restriction map

Hol (X, 8)— Hol (X., 8)

ts bijective for any c € (a, b).
) 1f Y is a 0-normal Stein completion of X, then the restriction map

Hol (Y, 8) — Hol (X, §)
is bijective.

PROOF. For § = ( this is the statement of Propositions 1.2 (b) and
3.1 for = (. From this it follows that the same is true for any § that
can be imbedded as a subspace of some C».

In the general case we carry out the proof for case (b). Case (a) is
treated in the same way. Now

Hol (Y, §) = lim Hol (Y ¢, 8)
c€(a,d)
Hol (X, §) = lim Hol (X,,8).

c

If f,g € Hol (Y, S8) agree on X, then they agree on X,. Now f(Y°) and ¢(Y°)
are relatively compact in 8, so we can find an open subset S’ imbedded in
some (" as an analytic subspace, such that f(¥Y°)ug(¥Y°c S’ It follows
then that f =g on Y° This is true for any c¢. Hence in general f=g on
Y, i.e. Hol(Y, S)— Hol (X, 8) is injective.

Given f€ Hol (X, 8), we claim that, for any c€(a,d), f(X;) is relatively
compact in 8. Indeed, if this is not true ; there exist a sequence {w,}c X, and
a holomorphic function g on S such that

|9 (f(@))| — oo as ¥ — oo

By Lemma 1.1, |[(go f)(Xs)| =] (g0 f) (Xq)| for a <<d < ¢. Therefore g o f
is bounded on X,. This is a contradiction.

By replacing S with 8’ which contains f (X, ) and is imbeddable as analytic
subspace in some €, we see that f | X, admits a holomorphic extension to
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Ye. Since this is true for any cE€(a,d), it follows that there exists a
g €Hol (Y, 8) such that g |x=f,i.e. Hol(Y, 8) — Hol (X, §) is surjective.

COROLLARY 3.2. If ¥, , Y, are two O0-normal Stein completions of X,
there exist holomorphic maps f:Y, — Y, and g: Y,— Y, such that

Sfog=idy, and g o f=1dy,

i.e. if X admits a O0-normal completion, then the 0-normal completion is
unique up to an isomorphism which is the identity on X.

8. Euxistence of Stein completions. Let (X, O) be a (0, 0)-convex-concave
complex space with exhaustion function ¢ from X to (a, b) which is strongly
0-pseudoconvex on the whole space X.

PROPOSITION 3.2. We suppose that X is 0 normal and that, for some
a’ €(a, b), prof O = 3 on {p < a’}. Then X admits a 0-normal Stein comple-
tion.

PROOF. Let c€(a,a’) and d€(a,c) and consider the holomorphically
convex hull of K; in X,. By Proposition 1.4 (¢) it is contained in X,,d' for
some d* € (d, c).

For every point # on {¢ = d*} we can find f€I'(X,,0) and an open
neighborhood U of « such that

|f(0)|>1 and |f(Ky|<1.

Replacing f by a convenient power of f, we may assume that |f(Kg)|<<1/2.
Since {@=d*} is compact, we can find a finite number of functions
fi€I'(X,;,0) and a finite number of open sets U;, for 1 < ¢ <k, such that

(@ =a%c U, Us, |£i (U] > 1,| fi(Ka) | < 1/2.

By Proposition 1.4 (a) (b)) we can find fiy1,...,/1€ I'(X, O) such that fit;,..,[i
separate points and give local coordinates on {d < ¢ < d*}. It is not re-
gtrictive to assume that (Lemma 1.1) we also have

|filKy) | <1/2fork +1=<i=<1.

Consider the map « : X, — C' defined by a(x)= (f, ();...,fi(@)). For0<d =1
set
Ps={eeC| || < dfor1=i=<1).
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Then
Ku€ a1 (Pryy), =t (P N [ = d*) = .

Let G = P, — Py and H=0a"1(G)n X;. For any K compact in @,
oV (K)NH=0o"Y(K)N{d =@ =d"} is compact. Thus «|H is a proper
map and a (H) is an analytic subset of G.

Now every irreducible component of H has dimension (= 3)=2[2,
Proposition 4]. By [9, Theorem VII. D.6] we can find §€[1/2,1) such that

o(H)n (P, — 135) can be extended to an analytic subset V of P,.

Set B = o~ (Ps) N XF, Let X be the topological space obtained from
X — E and V by the following identification ;

x€ X — F is identified with y€ V iff

2€H — o1 (Ps)and y = a ().

One verifies that X is a Hausdorff space so that (since the identifications
are holomorphic) X inherits a natural complex structure in which X — Fand V
are open subsets of X. For k +1=i=1f; can be extended naturally to a
holomorphic funection f: on X (by setting 7”,-: z; on V).
We claim that X is a Stein completion of X?. For this it is enough to
verify the following conditions (cf. Corollary to Proposition 1.1):
i) {e<p=ejV (X — X/)is compact for e€ (c, b).
(ii) X has no compact positive-dimensional subspaces.
Now for ¢ € (¢, b) the set {c < ¢ < e} U (X — X!) is the union of the fol-
lowing three sets:

[*=¢p=<e, VNP, |p=e—al(P),

1 .
where ¢ = # > 4. Of these sets the first two are obviously compact
and the third is a closed subset of {d = ¢ =< e¢}. Hence (i) is verified.
Let o be a 0~ function on X — E with the following properties
e=1lon X — (@1 (P,)n X7
o=00n(X—E)na~t(P)n X,

for gome & < n < e.
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Let A(f) be a (= increasing convex function defined in (a,d) with
A () — -} oo for t—>b.
On X — F we consider the function @ = pi(¢). It is a C> function

and it can be extended to the whole of X by setting & =0 on ¥V n P,
i ~
One now verifies that for large u > 0 the function y=u 5 |fi®?+ P is a
k41

strongly O-pseudoconvex function on the whole of X, Therefore the sets

{y = const} are compact in X, This forbids the existence on X of any
compact analytic set of positive dimension (by the maximum principle).
Going to the O normalization we obtain that there exists a 0-normal
Stein completion of X2 for every c€(a, a’).
But these completions must all coincide by virtue of Corollary 3.2.

Therefore this common completion X is the 0-normal Stein completion of X.

COROLLARY 3.3. We suppose that X is O-normal and that for some
a’ € (a, b) the part {p < a’} is 1-normal. Then X admits a 0-normal Stein
completion.

PROOF. Let A = (x € X |prof O, < 2). Since X, is 1-normal, by Pro-
position 2.5, 4 N X7 is a discrete set.

Fix ¢€ (a,a’) and select d€ (¢, a’) such that 4 n X! = (. Then, on X,
prof O = 3 and by the previous proposition there exists a 0-normal Stein
completion of X2, Again by Corollary 3.2 all these 0-normal Stein comple-

tions of the spaces ch, when ¢ varies, must coincide. Thus there exists a
0-normal Stein completion of X.

§ 4. Projective imbedding of normal pseudoconcave spaces.

9. Let (X, 0) be a complex space and L a holomorphic line bundle
over X. We consider the graded ring

AX, L= y I'(X,IH.

h=0

We say that of (X, L) separate points of X if for x,y€X, x ==y we can
find a positive integer h = h (v, y) and two sections o,7 € [' (X, L*) such that

o@ oW
det (z @ - <y>>* 0-

6. Annali della Scuola Norm. Sup. - Pisa.
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We say that o (X, L) gives local coordinates at a point x€ X if we can
find a positive integer h =k () and a finite number of sections o;,..., o €
€ I'(X, L*) such that g, (x)5= ¢ and

g (ﬁ)(x), for 1 <i <k,
% %

generate the space m, /m? over C where m, is the maximal ideal of O;.

If X is an open set of a projective algebraic variety and L is the line
bundle of the hyperplane section, then o (X, L) separates points and gives
local coordinates on the whole of X.

THEOREM 4.1. Let X be a 0-concave normal complexr space whose non-
compact irreducible components have dimension = 2. Suppose that X carries
a holomorphic line bundle L such that A (X, L) separates points and gives
local coordinates at each point of X. Then X is isomorphic to an open set of
a projective algebraic variety.

PRrROOF. Let ¢: X —>(a,00) be an exhaustion function on X which is
strongly 0-pseudoconvex on {p < a’} for some a’ € (a, co). We set

X.={p>c¢} Xcd={c<qo<d]

for a =< c < d<oo.

Every subspace of X disjoint from X, for some c¢€(a, a’) must be 0-
dimensional [4, Lemma 2]. Thus X must have only a finite number of irre-
ducible components. Since X is assumed normal it is not restrictive to as-
sume X irreducible. (If X is compact, X = X, for any ¢ € (a, a’)).

() For any two points #,y of X, x5y, we can find og)y, 0;2)’,6
€ I'(X, L™®v) for some m (x,y) = 1 such that

o (@) ol (y)
det 0.
o (¥) o2 (y)

Replacing o;’)y and og)y by linear combinations, we can assume

o), (¥) = 0 = o), (2).
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We can find open neighborhoods W (»,y) of * and W’ (x,y) of y such that
o

()
z, Y

pre)
( “"’)(w)\<1 N we W (x,y).

(2)
ox. Yy

<1 V2e Wy

Hence for z and w in these neighborhoods we must have, for every n=1,
Q1 (@) (oD, ()
%+ 0.

(D)) (o2, (10)

det

Also for any 2€ X we can find an open neighborhood U (2) and holomorphic
sections (0, ..., 7™ € I' (X, L"@) for some n (¢) =1 such that (" never va-

nishes on U (2) and
19) 1£l(z))
w |—> ((@) () ey (_rg’) )(w))

is a biholomorphic map of U () onto a locally closed analytic set of CU2.
Now fix c€ (a, a’). Since X, is compact, we can find x;, y;, 2€ X
1=i=p, 1 =j= q) such that

X, c U;'I=l U(zj)’
X, < X, < (UE, W (@i, 9) <X W7 (@i, %)) U(Ui= U (25) < U (2))).

Set h = (ITZ; m (:, ¥:)) (II{Z1 n (%)). Then the sections of I'(X, L*) give local
coordinates and separate points on the whole space X,.

Let 8y,..,8: be a basis (®) for I'(X, L*) over C and let A be the set
of common zeros of these sections. Since by construction An X, = (%, 4

(*) Here we use the fact that dimg I'(X, Lh) is finite. This is ensured by the pseu-
doconcavity assumption. Directly, if we set a;, = h/m (x;,y;) and ﬂ,=(h/n (2)) — 1, we can
take for 8,y ees 8y the following sections of I'(X, )

(og;{w)«s for u=1,2 and 1<i=<p,

(xg]f))ﬂ; tg) for 0<v=<l(s) and 1<j=gq

Here k=2p — 1 + 2}’=1 T (2) + 1).
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is discrete. Let us consider the holomorphic map
F: X—A— Py

defined by x |— [s, (#), ... , 8 (¥)]. The map F is one-to-one and holomorphic
on X,. Thus F(X,)is concave and F(X — A) is contained in an irreducible
algebraic variety Z of the same dimension » as X [1, Theorem 6].

Let n: Z* — Z be the normalization of Z. Since X is normal, the map
F factors through =, i.e. there exists a holomorphic map F*: X — A4 — Z*
such that F=m o F*

Moreover, F*(X,) is an open subset of Z* and F*|X, is an isomor-
phism onto that open subset. Indeed, Z* is locally irreducible and F*(X,)
is a locally closed analytic set of pure dimension #.

(b) We now prove that, for a < ¢ < d < o/, X admits a Stein com-
pletion. With the previous notations set

D = F*(X})U (Z* — F*(X,).

Since F*| X, is an isomorphism, it follows that D is 0-convex. Thus by
Proposition 1.1 there exist a normal Stein complex space S and a proper
holomorphic surjective map y: D— 8§ and a finite set B c § such that
y: D—9y1(B)—8— B and, for 2z€ B, y~!(2) is connected and nowhere
discrete.

By [4, Lemma 2], y~! (B)n F*(X.)= J so that y o F*IXcd is an iso-
morphism onto an open subset (y o F* (X)) of §. Moreover, § — (y o F'*) (XY=
=y (Z* — F*(X,) is compact. This proves that § is a Stein completion
of X .

(c) Keeping d fixed and letting ¢ vary on (a,d) we see that S is a
Stein completion for all X, and thus for X2, In particular there exists a
holomorphic map

0: Xi— 8

which extends y o F* |Xcd and maps X. biholomorphically onto an open
subset of 8.

Outside of the compact set B the imbedding dimension of 8 is the
same as that of Z* (which is projective algebraic). Thus the imbedding
dimension of 8 is bounded and we realize § as an analytic subspace of
some CV.

Now y o F*: X} —A—8 and 0: X2 — 8 agree on X2 and every
irreducible component of X2 must meet X. Thus these maps being given
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by holomorphic functions must agree on the whole space Xl —A4,ie 0
extends y o F* to X2,

(d) Set ¢ =0-1(B). This is a finite set since B is finite and 0 on X2
is an isomorphism.

We want to prove that 4 = C.

Let G: X — 0 — Z* be defined as follows:

G=y1060 on Xi—0C, G=F* on X,.

This map is one-to-one and biholomorphic and agrees with F* on X — ¢ — A.

Now C < A, otherwise there exists x € C such that ¢ A. Since yo F*=90
on X2 and 0 on X is injective, we have F* (€) =y~10(x)n F*(X — A)
and y~—! 0 (x) contains the isolated point F*(x). This is a contradiction, be-
cause 0 (x) € B.

Also A c (C, otherwise there exists w€.A4 such that x¢ C. Then @
extends F holomorphically over x. If U is a sufficiently small neighborhood
of », we can find holomorphic functions u, ..., u; such that y|— [u,(y),...
.y Ug (y)] represents the map =z o @| U. If U is sufficiently small, we can
assume UN A=z} and L|U to be trivial. If we fix a trivialization of
L| U, the sections s;| U are given by holomorphic functions. Since F|U — {x}
coincide with = o @| U, there exists a unique nowhere zero holomorphic
function v on U — {«} such that

si=vu; on U—fa} for 0=i=k.

Now » extends to a holomorphic function von U (since U is normal of
dimension = 2). Because at # some wu;(x) 5= 0, we must have ’5(::7) = 0. This
is impossible since v ()€ v (U — {z}) and v (U — {x)) does not contain 0.

As a consequence of the fact that A = (, it follows that A is a
finite set.

(¢) Let ¢’ €(a,6) be such that A € X,. We can find a positive integer
k' such that the sections of I'(X, L) do not have common zeros on X, .
Then the sections of I'(X,L*’) do not have common zeros on the whole
of X (3. Repeating the previous argument, we conclude that A = 0=
and @ maps X biholomorphically onto an open set of Z*.

(®) If (85, ..,8;) are sections of I'(X, Lh’) without common zeros on X, we take
the map given by the following sections of I'(X, J ALY

(@ %Y for p=1,2 and 1=<i=p,
1'%
(1;? )P WA+ —1 zg) for 0=v=n(s and 1=j=gq,

h !
(@™ s ey (8l )R,
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REMARK. For any vector space V < I'(X, L*) whose sections have no
common zeros we can consider the natural map z,: X — P (V) given by
the evaluation

@ 1= [8 (2), .. , 3¢ (@)]

where $,,...,8; is a basis of V over C.

We can choose the integer » and the vector space V in such a way
that the minimal algebraic variety Z containing 7, (X) is normal so that 7,
is a realization of the map F*.

Indeed, with the same notations as in the previous proof, we may as-
sume 4 = (f and F: X — Z to be holomorphic. Let Z* be the normalization
of Z. We may assume that Z* c Py and that the homogeneous coordinates
Egs ey Ey On Z* are rational functions homogeneous of the same degree
1=1 in the homogeneous coordinates [2,,...,2:] of the general point of Z
(cf. Zariski [26]). It is not restrictive to assume that among the &, are all
monomials of degree of ! in the 2’s. Since each £, is integral over the
coordinate ring of Z, it represents a holomorphic section o, of I'(X,, L")
By the concavity assumption I'(X,, L)~ I'(X, L") so that o, is a holo-
morphic section of L* over the whole of X. It is therefore enough to take
as V the space generated in I'(X, L") by these sections o,. We have
('(X, LYY € V € I'(X, L™ so that the sections of V have no common zeros.

In particular we deduce the following

COROLLARY 4.1. The tsomorphism G: X —>Z of the previous theorem
can be so chosen that Z is a mormal projective algebraic variety and that,
for some integer h =1, G*E = L* where E is the line bundle of the hyper-
plane section of Z.

§ 5. Compactification of 0-concave spaces.

10. Given a complex space X, an isomorphism ¢: X — Y of X onto
an open subset of a compact complex space Y will be called a compactifi-
cation of X.

In what follows we will be concerned only with 0-normal complex
spaces admitting 0-normal compactifications.

A compactification ¢: X— Y of the 0-normal complex space X into
the O0-normal complex space Y will be called minimal if for any other
compactification j: X — Y’ into a 0-normal complex space Y’ we can find
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a morphism z: ¥’ — Y such that i =10 j:

X————]—;.Y'

NPZ

Y

Clearly any two minimal 0-normal compactifications of the same space X
are isomorphic by an isomorphism which is the identity on X (when X is
identified with its image in the compactification).

PROPOSITION 5.1. Let X be a 0-concave 0-normal complex space. A 0-
normal compactification ©: X — Y is minimal if and only if no positive di-
mensional compact complex space is contained in ¥ — ¢ (X).

ProoOF. Let ¢: X —> (a4, c0) be an exhaustion function for X and let
a’ € (a, o) be such that ¢ is strongly 0-pseudoconvex on {p < a’}.

Set Z={p < a’}. Then Z is a (0, 0)-convex-concave 0-normal complex
space. We may assume without loss of generality that any irreducible
component of X intersects Z. Let ¢: X — Y be a 0-normal compactification
of X. We may assume that no irreducible component of Y is in ¥ —i(X).
Then the space

W=(Y—iX)VUi(Z)

is a 0-convex complex space. Any compact irreducible positive-dimensional
subspace of W must be contained in ¥ — i (X). Hence W has no compact
irreducible components.

Let y: W— 8 be the reduction of W according to Proposition 1.1
and let 8 be the 0 normalization of S. Then y factors through y’: W— §’.

I

W\__:———/—S’

Since Z is 0 normal, y’|¢(Z) is an isomorphism onto its image.
Pasting together X and S8’ along Z according to the map o=y’ 0i|Z,
we obtain a new 0-normal compact space

Y=XU,8
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and a holomorphic map t: ¥ —+ Y’ such that the following diagram is
commutative :
)

Y ———— Y
Y/

j being the natural injection of X into Y'.

By Proposition 1.1, Y’ has no compact subspaces in Y’ —j(X) of di
mension = 1. It follows that we have constructed a 0-normal compactifica-
tion j: X — Y’ which is dominated by the given one and satisfies the
property of the proposition.

It follows then that any minimal O-normal compactification of X, ¢:
X — Y, has the property that ¥ — i(X) does not contain any compact
subspace of dimension = 1.

Conversely, if i: X — Y is any 0-normal compactification such that in
Y — ¢(X) there are no compact subspaces of dimension =1, then W=
=(Y—4i(X)ut(Z) is a 0-normal Stein completion of i(Z).

If j: X— Y’ is any other 0-normal compactification of X, then W’ =
= (Y’ —j(X)uj(Z) is a 0-convex complex space. Let W’/ be the space
obtained by suppressing the irreducible compact components of W’. Then
W’ has W as 0-normal Stein reduction. Therefore there exists a holomor-
phic map ¢: W’ — W such that, on Z, g o j =+4. From this we deduce a
holomorphic factorization of ¢ through j, i.e. the minimality of i.

From the proof we deduce in particular the following :

COROLLARY 5.1. If X is a 0-concave 0-normal complex space and if X
admits a 0-normal compactification, then it admits also a minimal 0-normal
compactif ication.

PROPOSITION 5.2. Let X be a 0-concave 0-normal complex space with
exhaustion function ¢ : X — (a, co). Suppose that for some a’ € (a, o) the set
lp < a’} is 1-normal. Then X admits a minimal 0-normal compactification.

PROOF. We may assume that ¢ 1is strongly O-pseudoconvex on
{p<a’). Set Y={p<a’}, Then Y is a (0,0)-convex-concave 1-normal
complex space. By Corollary 3.3, Y admits a O-normal Stein completion
Z. By pasting together X and Z along Y, we obtain a compact com-
plex space X which is a 0-normal compactification of X with respect to
the natural inclusion map and which satisfies the requirements of the pre-
vious proposition.
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REMARKS 1. Instead of the l-normality of {p <<a’} one may as well
assume that, on {p < a’}, prof O = 3.

2. This compactification result can be considered as a refinement of
a result of Rossi [13].

§ 6. Extension of coherent sheaves.

11. LEMMA 6.1. Let X be a (0, 0)-convex concave complex space with ex-
haustion function @: X —> (@, b) which is strongly 0-pseudoconvex on the whole
of X.

Let F be a coherent analytic sheaf onm X whith prof F=3 on (p < a’}
Jor some a’ €(a, b).

Then I'(X, F) generates the stalls <, for any x€ X.

PROOF. Let I be the ideal sheaf of germs of holomorphic functions
vanishing at x. By Proposition 1.3,

' X, F) — I' X, FIIF) = (FIF).

is surjective. Since I, is the maximal ideal of the local ring O,, by Naka-
yama’s lemma we deduce that I'(X, F) generates .

ProproSITION 6.1. Let X be a (0, 0)-convex-concave complex space and
let X be a Stein completion of X. Let F be a coherent analytic sheaf on X
such that Fll= F, Then there exist a coherent analytic sheaf & on X which
extends %, i.e. F| X = F

PROOF. Let ¢ : X —> (a, b) be an exhaustion function and let a’ € (a, b]
be such that ¢ is strongly 0-pseudoconvex on {p < a’}. We set Xl= fe <
<p<dlforas=e<d=h.

The set

A = (x€ X |prof 7, < 2}

is discrete by virtue of Proposition 2.5 since Fl= % We choose ¢, d
with @ < ¢ < d < o/ such that 4 n X} = (. By the previous lemma we
can find s{,...,s,'cEF(Xc“', F) generating F on X!. By Proposition 2.5
prof = 2 on the whole of X and thus by Proposition 1.2 (b) we can ex-
tend i, ..., s; to global sections s, , .., sx€ ['(Xs , F).

Let K =X — X. For our problem it is sufficient to extend | X2 to
KEu X} by a coherent analytic sheaf. It is not therefore restrictive to replace
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X by X2 and X by KU X2, So we may assume without loss of generality

that
(i) o' =b,
(ii) Xis a subspace of some number space C¥ (for N = 4),
(iil) 8y, .., 8x€ I'(X, F) generate %, for z in X_.
Let us denote by & the trivial extension of F on C¥ — K. Let ';1 ) oo

v, 8 €'(CY — K, ) be the corresponding trivial extensions of the sections
8y y8. Let yO denote the structure sheaf of C¥ and let ‘R yO* be the

relation sheaf of ’.;, y oo ,';k on C¥ — K.

By the assumption F1 = F it follows that, on C¥ — K, ¥l = & and
thus by Proposition 2.4, 0[2]?},: 0. Hence on C¥ — K, Pl = R. Again
by Proposition 2.5 it follows that the set {# € C¥ — K| prof ¥, < 2} is 0-
dimensional.

Set D£={(z,,...,zl\,)EC"’|ac<év |z < B} for —oc0o=<=a<f=co.

i=1

We can choose o and § such that
Kc D% ; prof ® =3 on Df.

Now, by virtue of Lemma 6.1, for any choice of a’, 8’ with a < &’ <’ <8
we can find ¢, ,..,4€l (D,‘f,c)?) generating ‘% on Ds. By Proposition 1.2
(0) (actually by Hartogs theorem) t,,..,% extends uniquely to sections

't: g voe ,Atilﬁ F(D'ioo, ~OF).
Let J be the sheaf of ideals defined in C¥ by the subspace X. We
define a subsheaf 5 of yOF as follows :

d=%R on Dy.
S=9.y0*+ Zie; O & on D%, .
On C¥ — K the set A where ® &= J is an analytic set with
Ac X — Dy.

By [4, Lemma 2], dim A < 0. Hence S/ =¥ on the whole set C¥ — K
(because ‘Rl = R on C¥—K). Also, since d is a subsheaf of yOF, H2(0,d) =
= (/J. Thus by Proposition 2.4, Jl!l is coherent on the whole space C?.

Let @= (yOF/J1)| X. This is a coherent analytic sheaf on X since its
support is concentrated on X. Moreover, @ is a subsheaf of ¥ on X
and agrees with ¥ on AZ because of the assumption (iii).
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The set of points where §== ¥ on X, by [4, Lemma 2], must be a 0-dimen-
sional analytic set. Thus Q0 = Fon X (since F= FUl), Moreover E*(0,Q)
must be empty. Thus Q) is coherent analytic (Proposition 2.4) and
extends F.

The proof of this proposition is a modification of Trautmann’s method [24].

COROLLARY 6.1. Let X be a 0-concave complex space and i:X —~Xa
compactification of X such that no positive-dimensional compact subspace is

contained in X — i (X). Let F be any analytic coherent sheaf on X such that
FNl = F. Then there ewists a coherent analytic sheaf F on X such that

i"(_‘?: .

ProoF. We identify X with ¢ (X) and let ¢ : X — (a, o0) be an exhau-
stion function for X such that on {¢p < a’}, for some a’ € (a, o0), ¢ is stron-
gly 0-pseudoconvex.

Set Y= {p < a’}. Y is a (0, 0)-convex-concave Space and (f —X)vy
is a Stein completion of ¥. By the previous proposition | Y can be exten-
ded to a coherent analytic sheaf Q on (XV — X)U Y. The sheaf & is obta-
ined by gluing together @ and ¥ along ¥ by Q| Y F| Y.

12. Extension of line bundles.

(¢) We need some preliminaries of commutative algebra.

DEFINITIONS.

(@) A ring (commutative with identity) is called prefactorial if every
prime ideal of height 1 is the radical of a principal ideal.

(b) A ring is semifactorial if every prime ideal of height 1 is a princi-
pal ideal.

A semifactorial ring is prefactorial; a factorization domain is semi-
factorial.

Also we recall the theorem : a noetherian integral domain which is
integrally closed is a unique factorization domain if and only if it is semi-
factorial. (cf. for instance [14]).

PROPOSITION 6.2. Let R be a mnoetherian integral domain, integrally
closed, and let I be a proper ideal of K.



256 ArLpo AxprrEOTTI and YuM-TonG S1u: Projective

(a) If R is prefactorial, there exists a positive integer k such that the
intersection I’ of all primary components of IP* (for any p positive) belonging
to prime ideals of height <1 is a principal ideal.

(b) If R is semifactorial (thus a unique factorization domain), I is a
principal ideal if and only if every associated prime ideal has height 1.

ProOF. Let P,,..., P, be the associated primes of I of height 1. Let
M=R— U§=1 P; and let Ry be the quotient ring of R with respect to
the multiplicative system M. Since R is integrally closed and noetherian,
Ry is also integrally closed and noetherian. Since P, Ry, ..., P, Ry are all
the proper prime ideals of Ry and they are all maximal, Ry is a Dedek-
ind domain [27, p. 275, Theorem 13]. Thus, by the very definition of
Dedekind domains we have

IRy = P}... P}t

for some non-negative integers j,,...,j5;. Every j; is positive, because
IRy c P; Ry for every t.

(a) Assume R to be prefactorial. Then P; is the radical of some prin-
cipal ideal Ra; and P:‘CRa‘. for some positive integer s;. The factorization

of Ry a; in Ry must have the form R, a,= PR, (for n, > 0) because,
for i 4= j, PPR, & PR, . Let k=n,,..., ;. We claim that k satisfy the
requirements.

First of all, for m; = pkj;/n; we get

(*) IkpRM=RMa1”l“. alm’.

Moreover, since P{""... P/ c Raj" ... a;", every associated prime ideal

of Ra"...a" contains some P;. Also, since R is integrally closed and

noetherian, every associated prime ideal of the principal ideal Ra,;"‘ a;"" is

isolated [27, p. 277, Theorem 14] and of height =<1 [27, p. 238, Theorem
29]. Thus every associated prime ideal of Ra;”‘ a;"‘ must be equal to some
P;. By [27, p. 225, Theorem 17] we have

Ra™...a*=Rn (R, a" ... a]").
Every associated prime ideal of I* contains I* which in turn contains
the product of sufficiently high powers of the associated prime ideals of I.
Therefore every associated prime ideal of I* of height < 1 contains
some associated prime ideal of I and hence equals some P;. By, [27, p. 225,
Theorem 17], I'=RN I* Ry .
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Intersecting both sides of (*) with B we get

m:
I’ = Ra}"... at.

Thus I’ is principal.

(b)) When R is semifactorial, in the previous argument we can take
$;=n;=p=1 and I’ = 1. The «only if» part is the combination of [27,
p. 277, Theorem 14] and [27, p. 238, Theorem 29].

PROPOSITION 6.3. Let (X, O) be a connected normal complex space of
dimension n. Let Y be a non-empty open subset of X. Let L be a holomorphic
line bundle over Y and let L2 denote the locally free sheaf associated with L.
Assume that £ can be extended to all of X by a coherent analytic sheaf .

(@) If Oy is semifactorial for all x € X — Y, then L can be extended to a
holomorphic line bundle over X (i.e. we can take F locally free)

() If Oyis prefactorial for all x€ X — Y and if X — Y is compact and
if moreover no compact positive dimensional subspace of X is contained in
X — X, then there exists an integer k such that L* can be extended to a holo-
morphic line bundle over X.

PROOF. By factoring out the torsion subsheaf of % we can assume
without loss of generality that < is torsion-free [1, Proposition 6]. Since X
is connected and & extends .0, ¥ has rank 1 on X [1, pp. 13-14].

(@) Suppose O, is semifactorial for x€ X — Y. Replacing &F by F—32,
we may assume without loss of generality % = =21 (Proposition 2.4).

For any x€ X — Y we can find a connected open neighborhood U of
x such that F| U is isomorphic to an ideal-sheaf Jc O with J5=0 [1, Pro-
position 9]. Since F= F=2, I, _ 95 =J. By Proposition 2.2, every asso-
ciated prime ideal of I, has height 1 and therefore, by Proposition 6.2
(b), I, is a principal ideal. This implies that F is locally free at #. Since x is
arbitrary,  is locally free everywhere on X, i.e. & is the associated sheaf

of a holomorphic line bundle I extending L.

(b) Suppose X — Y is compact and that no positive dimensional compact
subspaces of X are contained in X — Y. Suppose that O, is prefactorial
for £ € X — Y. Consider the analytic set A of points of X where & is not
locally free [1, Proposition 8]. If A is empty, there is nothing to prove. In
any case Ac X — Y. So A must be a finite set {x,,..,x}. Select an open
neighborhood U of A with ! connected components such that | U is iso.
morphic to an ideal-sheaf 9 O on U. By Proposition 6.2 (a) we can find
a positive integer Fk;(for 1 =<1 =< 1) such that for any positive integer p
the intersection I;(p) of all primary components of (9,,)”"" belonging to pri-
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me ideals of height =< 1 is a principal ideal. By Proposition 2.2 the ideal
I;(p) equals the stalk of the sheaf (J* ki)[n—2] ¢ at ;. Therefore for any
positive integer p the sheaf (I” k‘)[n__glo is locally free at «; and, conse-
quently, for k =k, ... k; the sheaf (9")[”_2]@ is locally free on U (since,
on U— A, T, _g10=9%.

Let ‘R be the sheaf obtained by tensoring & with itself ¥ times and
let J be the sheaf obtained from ‘¥ by factoring out the torsion subsheaf
of ‘®. The sheaf & satisfies the following conditions :

(i) J is torsion free.

(ii) o is locally free on X — A.
(iii) J extends the locally free sheaf associated to L* from Y to X.
(iv) Jis isomorphic to J* on U — A.

Gluing together ¢ on X — A and (J* )jw — 2] 0 on U by the isomorphism
(iv), we obtain a locally free sheaf of rank 1 which extends to all of X
the sheaf associated with L*F on Y. We note that the sheaf we have obtai-
ned is nothing else than the sheaf 21,

§ 7. Projective imbeddings of manifolds of dimension = 3.

13. We have already established a criterion for projective embedda-
bility of 0-concave spaces with Theorem 4.1. There the crucial assumption
was the existence on the space of a holomorphic line bundle I such that
the associated ring of (X, L) had the property of separating points and giving
local coordinates. In this paragraph we want to show that, for manifolds
of dimension = 3 the assumption that of (X, L) separate points can be
dropped.

LEMMA 7.1. Let f,, ..., fr be holomorphic functions defined in a neighbor-
hood U of 0¢€Cr. Consider the Levi form at the origin

L(p) EZ( 82(7)_) ;U5
0

0% 0%

of the function @ = log (14 St | fi®). Then L(@) is positive semidefinite
and it is positive definite if and only if f,, .., [rx gives a set of local coor-
dinates of C* at 0.
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The proof is a verification based on the identity
— k _ 1 i 2

9-0log (.2 9‘-"*‘) =T e 2 det(di.?g)\ ’

=0 (Zg;g;) i<j 1 AYj

1=0

oo
where ¢,, ... 9% are holomorphic functions with _2 9i9: > 0.

1==0

THEOREM 7.1. Let X be a 0-concave complex manifold of dimension n =3.
Let ¢ : X — (a, c0) be an exhaustion function for X which is strongly 0-pseu-
doconvex on |p < a’}, where a’ €(a, c0). We assume that there exists a holo-
morphic line bundle L over X such that the graded ring o (X, L) gives local
coordinates on {p > a’’} for some a’’€(a,a’). Then X is isomorphic to an
open subset of a projective algebraic variety.

PROOF, Let D = {p > a’’}. Moving a’’ a little toward a’ and eventually
replacing L by a sufficiently high power L* of L, we see that without
loss of generality we may assume that a finite number of sections
fis ey Je€I' (X, L) give local coordinates at each point of D (cf. part (a) of
the proof of Theorem 4.1). At each point of D one the sections f,,...,fr is
non-zero, therefore the sheaf .2 associated to L is generated on D by
fiy e 9 Ji. By Proposition 5.2, X admits a minimal 0-normal compactification
Xc X, . Since the normalization of X, is again a minimal 0-normal compa-
ctification of X, the space X, must be normal. The structure sheaf of X,
will be denoted by O,.

Since n = 3, .21 = L. So, by Corollary 6.1, the sheaf .2 can be exten-
ded on X, by a coherent analytic sheaf % Factoring out the torsion sub-
sheaf of &, we may assume that & is torsion-free. Also we may replace
by U1 which is again coherent (Proposition 2.4). By Proposition 2.5,
prof F= 2.

Let Y= {p <a’} and set ¥, =Y U(X, — X). Then Y, is a (normal)
Stein completion of Y. By Proposition 3.1, the restriction map

ry, A —-IY,%

is bijective, so that each f; extends uniquely to a section f; € I'(Y,, F).
The sections fy,...,fr generate & on D.

Since the singular set § of X, is contained in X, — X, § must be a
finite set 8 = {x,, ..., ;). Here we apply a result of Hironaka-Rossi (Lemma
5 and Corollary 2 to Lemma 5 of [11]) which states the following :
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There exist an open neighborhood U; of x; and a coherent ideal-sheaf
Ji; on U; such that {«;} is the zero set of J; and such that the complex
space obtained from U; by the monoidal transformation with center at
({:}, O,/%;) is non-singular.

Let J be the ideal sheaf on X, which agrees with O, on X — § and
with J; on U; for 1 =i <1, and let @:(X,, O,)— (X,,0,) be the monoi-
dal tranformation with center (8, O,/9).

Let ‘® the sheaf obtained by factoring out the torsion subsheaf of
d—1(¥) on X,. As in Proposition 6.3 (a) the sheaf I = ‘RI*—2 is locally
free of rank 1 on X, and we have a natural sheaf homomorphism

A: @71 (F)— S, on X,.
Let f;"" be the unique section of I'(X,, ®~!(¥)) which by the natural map
I'X,, F)— I'(X,, D=1 (F))

corresponds to the section f;. Let fi''' = A (fi''). Let T be the subsheaf of J
generated by the sections f,'’,...,f¥''. The sheaf T agrees with  on @' (D).
Let us congider the conductor sheaf o« of T into J:

Since J is locally free, of is locally isomorphic to C. Let T be the zero
set of of. Obviously 7'n ¢~ (D)= since on P~1(D) we have S = T.
Moreover, @ (T) must be a finite set; D (T)= {y,, ey Ym}.

By the Remark 2 of [11], for every point of X, we can find a neigh-
borhood W such that ®—!(W) is isomorphic to a subspace of W < Py for
some N. By Lemma 7 and Corollary 2 of Lemma 5 of [11] for each y; in
X, we can find a neighborhood W; and an ideal sheaf {J; on @—1(W,) with
zero set T'n &—1(y;) such that;

(i) the monoidal transformation @;: V;— &~ (W;) of D1 (W,
with center (7'n &—!(y;), 0,/J:) is non-singular
(ii) @i (o) is a locally free sheaf on V;.

We may assume that W,,..., W, are mutually disjoint. Let S/ be the
ideal sheaf on X, which agrees with O, on X, — T' and with { on ®—1(W,)
and let @’ : X;— X, be the monoidal transformation with center (T, O,/9).
Then X, is non-singular and (®’)~! (o) is locally free.

Let B = (P’)~1(T). Since T is locally isomorphic to of, it follows
that <8 is a locally free sheaf of rank 1 on X, and hence is the sheaf of
germs of holomorphic sections of a holomorphic line bundle B on X,.



Embedding of Pseudoconcave Spaces 261

By the natural map I' (X, , C)— I'(X;, “B), to the section f;'"' of C corre-
sponds a section f* of B. Since fi'',...,s%' generate T on X,, f*,..., fi* ge-
nerate <3 on Xj.

By Corollary 2 to Lemma 5 of [11] there exists a coherent sheaf of
ideals X on X, with zero set Sy @ (T) such that @ o &' : X, — X, is the
monoidal transformation with center (SU @ (T), O,/°K). Let ¥ = @ o &’ and
let C= P-1(X). C is locally free by construction and it is thus the sheaf
of germs of holomorphic sections of a holomorphic line bundle C on X.

Let =X, —X)ufp<<a’} and let G'= P-1(@). We claim that
A (G, C) gives local coordinates at every point of G’.

Let #€ G’ and let m be the ideal-sheaf on X, defined by {«}. By [11,
Lemma 2] we can find a positive integer A’ such that, for ¢ =1,

RPMRC)=0,RIPm*Q C")=0,

where RI¥ denotes the ¢* direct image sheaf under ¥ of the sheaf in
parenthesis.
Since ¥ is proper, R°?Z (Mm@ C*) and R°¥P (mM*>@ C¥) are coherent
([7]) and, since G is Stein, we get
H @, mQEC)= H (¢, RRPmC¥) =0
HY (G, m* Q€)= H' (G, B°¥ (m* @ ")) = 0.
From the short exact sequences of sheaves
0—>mQ CY —CY — CY/ImC — 0
0—>m@CY —->mC > me"/m*C» — o
and from the corresponding cohomology sequences we conclude that
r(@,cer)— (C¥/mek),
r@,mer)— me/m*c¥),
are surjective maps. Thus we can find g, € I'(G’, C*) with g, () 3= 0 and
g1 9oy 9r€ (@, MC?) such that their images in (mC»/m?CH), generate
this vector space over C. Therefore the images of g¢,/g,, ..., gr/g, iD (M/M?)

generate this vector space over C. This implies that I'(G’, C*) gives local
coordinates at .

7. Annali della Scuola Norm. Sup. - Pisa.
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Let a*€(a’’,a’), let K= (X, — X)U{p < a*}, and let K’ = P-1(K).
We can find a positive integer » and a finite number of sections v, ..., v,
of C* over G’ such that v,,..,v, give local coordinates at every point of
K’, and therefore in an open neighborhood H of K’ in G’.

For a holomorphic line bundle 4, we denote by | A | the C> real line
bundle with transition functions equal to the absolute values of the tran-
gition functions of A. In particular

(I [P o + |0 PyeL (6, | O¥])

and has the property to be &= 0 on H. By partition of unity we can find
a O section o€I'(X;,| C¥|) which agrees with (|v, |24 ... 4 | v, [»)1/2
on an open neighborhood H’ of K’, and is nowhere zero on X,;. Then

2 -
5 81080 4 nim
32;' 3Zj

is well defined on X; and ddlogo is positive definite on H’. Let us consider
t=(|A"F+ .. +IA P (X, | B

By the previous lemma 89 log v is positive semidefinite and well defined
on X, and it is positive definite on P—! (D). Now X; = H’U ¥—1(D), and
actually X; — H’ cc ¥-1(D). Thus we can find a positive integer ¢ such
that

80 10og 6 + q 80 log = is positive definite on X, .

Therefore, since o1? € I'(X;,| C* @ B?|) and since § g log o1 > 0, the ho-
lomorphic line bundle C* ) B? is positive [8, p. 343]. Therefore X; is an
algebraic manifold by a theorem of Kodaira (cf. [8, Satz 2]). The biholo-
morphic map ¥P—1| X sends X isomorphically onto an open subset of X;.

REMARK. We do not know if this theorem is still valid if we allow X
to have singularities. Also a remark analogous to Corollary 4.1 does not
follow any more from the proof.

14. Some examples of non-itmbeddability. We are going to give examples
of 0-concave manifolds of dimension 2 which cannot be compactified. This
will show the role of the assumptions made in Proposition 3.2, Corollary
3.3, and Theorems 4.1 and 7.1.

We will make use of the following criterion for the non-existence of a
compactification :
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PROPOSITION 7.1. Let V be a compact connected manifold. Let U be open
in V and let K< U be compact. We assume that U — K s (0, 0)-convex-con-

cave and that U is a Stein completion of U — K, Let X be a connected com-
plex manifold and n: X — V — K a holomorphic map making X into a 1-
sheeted ramified covering of V — K with a compact ramification set ECV —
—U®. If dimg V=2 and if V — E is simply-connected, then either A=1
or else X cannot be compactified.

PrRoOOF. Suppose that X is an open subset of some compact complex
space X,

Let ¥ = (f— X)Un—1 (U — K). Y is a 0-convex open subset of X
Let S be the Stein space obtained by the reduction y : ¥ — 8§ of Propo-
gition 1.1. Let A be the finite subset of § where y—! is not single-valued.
Since y—! (4) is nowhere discrete, we must have y—1 (4) c X—x [4, Lemma 2].

Let X* be the compact complex space obtained from X and S by
identifying # € X and s€ S whenever €71 (U — K) and y (x) =s.

We can regard X as an open subset of X™* so that we can assume

without loss of generality that no positive-dimensional subspaces of X are
contained in X — X. Also, replacing X by its normalization, we may as-
sume X to be normal and connected (thus irreducible).

In this situation Y is a 0-normal Stein completion of the (0, 0)-convex-
concave space n—!(U — K). By Corollary 3.1, n|n—! (U — K) can be ex-
tended uniquely to a holomorphic map ¢: Y—> U. We claim that o(f—X)cK.
Let ve U — K and let ¢ : U — K —> (a, b) be an exhaustion function on
U—K Let W=KU{p < p(v). Then (X — X)Un—t(W—K) is a
0-normal Stein completion of a—1 (W — K) and n |a~! (W — K) extends
to a holomorphic map

t: (X — X)Uat (W — K)— W.
Since both ¢ and 7 extend z |x—! (W — K), they must agree on (X — X)U
Un=1 (W — K). Thus v¢o(X — X). The claim is proved. We define a ho-

lomorphic map n: XV by setting

7|X=a and 2|Y=o.

*) Cf. [1, n. 8].
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Let B the set of singular points of X. Since Bc X — X, it must be a
finite set. Let C be the set of points of X — B where 7 has a vanishing
Jacobian. We have ¢ € X — X and C is at most 0-dimensional. Indeed any
positive-dimensional irreducible component of C in X — B has an analytic
closure in X (by the theorem of Remmert-Stein [9, Theorem V. D. 5]).

Since 7 (B) is a finite set and dime V=2, V — n (B) — FE is simply-
connected. Also ;(0) —;{(B) is a 0-dimensional subset of V—;(B) — E.
So V — ?z'(O U B) — FE is again simply-connected.

Now X — a1 (77 (BU C’))—%—1 (H) is a topological covering over the
simply-connected space V—n (BU Q) — E. Since X is irreducible X —
— a1 (n(BV 0) — a1 (E) is connected. Thus 1 = 1.

15. We now proceed with the construction of the first example. We
will denote by [u,,u,] homogeneous coordinates in P,, by [2,, 2, #;] ho-
mogeneous coordinates in P,, and by [v,, v,, v,, v5] homogeneous coordi-
nates in Py.

For ¢ € C* we consider the non-singular quadric of Py:

V = {v; (v + ev,) = v, v,}.

All non-singular quadrics of P, are isomorphic to P, < P,. Thus V is
connected (and simply-connected).
We define the following functions on P, :

Ug Uy

Ug Uy~ Uy Uy

Siw) = —c¢

g Uy

o Uy —+ Uy Uy

S () = €
u, U,
f3 (u) = — & —'—'IL—_—.
Up Uy —+ Uy Uy
Let «:P,—[1,0,0]— P, be the projection given by z |— « (2) = [2,, 2,
We define a non-holomorphic map ¢: P, —[1,0,0]— P; by the following
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equations :
/ /Uo == zg
22
v=— +fi@E)n
1

2
b=2 +f(a@)a

2

| %= i@ -

Direct substitution shows that Im ¢ € V. The image of ¢ does not cover
all of V and actually [1,0,0,0]¢ V — Im ¢. Indeed, for v = ¢ (2) we have
the identity

z%’l)2——zg’l71=82'122'00.
Thus, if [1,0,0,0)¢Im ¢, then # 2, =0. But, if 2, =0, then % 7 =

2
= U, — ¥y f; (¢ (2)) = 0, and, if 2, =0, Z_l = v, — 0,f, (4(2)) = 0.

This is impossible, since z€P, —[1, 0, 0].
Consider the following diagram

@
P,—[1,0,0) — V—[1,0,0,0]

(@)
® f

P,

[v,,v] if 0350

[vg 4+ evy,0,] if v3=0.

Direct substitution shows that, if v= @ (2), v,2,="vs2, and (v3-4-&v,)2,=
= 1,2, . So the diagram is commutative and 8 is holomorphie.

Let A= {veV]|v, — f,(B()vy=0, v, — f, (B (v)) vy=0]. Note that
[1,0,0,0] € A. We want to show that ¢ makes P, — [1, 0, 0] a two-sheeted
ramified differentiable covering of V — A with ramification set F =
= {veE V|1)0=0].

where f(v) = %
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From (1) we deduce

Ry = ’UO

2

= v, — f1 (B (v) v,
(3) \

%

2,2,

7 = vy — f3 (B (v) v, .

Now, if z2€ P, —[1,0,0] and v€ V satisfy (3), we must have ve V — 4
and, since

?1 2y 2,29
’Ui—=’03? and (’03-{—8?}0)?_—“@27,

we must have « (2) = f (v). Moreover, we get by direct computation
(4) (vg — f5 (B (v)) ”0)2 = (v, — f, (B (v) vy) (vg — fo (B (V) vy)
for ve V.,

This shows that, if v,3=0, g~1(v)< (2 € P, | 2,== 0] and consists of
two distinct points. In fact, the inverse map is given by

%=V4%—ﬁww9

2o %%—Awmﬂ

where the signs of the square roots are taken in such a way that their

product equals 2 (% — f3(B (v))) .
o

For vy = 0, ¢~ (v) consists of a single point (0, 2, , 2,) = (0, v, , v3) =
= (0, vy, vy) (note that v = vy V).

Therefore P, — [1, 0, 0] is a two-sheeted ramified differentiable covering
of V — A with ramification set K.

We can give now to P, — [1, 0, 0] the complex structure of a two-di-
mensional complex manifold Z such that ¢ : Z— ¥V — A is holomorphic.

It is obvious, for any point 2° € Z with ¢ (2°) ¢ E, how to define such
a complex structure. If ** = ¢ (2°) € E, then the complex structure will be



Embedding of Pseudoconcave Spaces 267

defined at z as follows: Let w,, w, be local coordinates in a neighborhood
U of v° such that UN E = {w, = 0}. Then we can consider on ¢~ (U) the
unique complex structure on which ¢*w, , p*w, and Jg*w, are holomorphic
for any determination of the square root.

Let H= {veP;|v,=0]. By virtue of (4), Hn A = (. We identify
P; — H with C? so that A will be a compact subset of C? contained in
some ball K of C® centered at the origin.

Set X = ¢~ (V — K) and let D = ¢! (E). Since V — K is 0-concave
and EnNnK = (J, X is O-concave. Let L = {F |y} be the bundle of the
hyperplane section on V and let L’= ¢—! (L) the corresponding line bundle
on X,

Since o (V, L) gives local coordinates at each point of V, it follows
that of (X, L’) give local coordinates at each point of X — D,

Now V — F is simply-connected since it is the affine part of a non-
parabolic quadric and these all have the same homotopy type of a 2-sphere.

It follows that

() X is O-concave but cannot be compactified,

(b)) X — D is (0, 0)-convex-concave but does not admit any 0-normal
Stein completion.

In particular the assumption prof O = 3 in Proposition 3.2 and the
assumption of 1-normality in Corollary 3.3 cannot be relaxed.

REMAREK. We do not know whether of (X, L’) gives local coordinates
over D (indeed we think this fact doubtful). The example given here is the
same (apart from a necessary slight change) as the one given in [13].

16. Let us consider in P, the Kummer surface K, (2) corresponding to
the complex torus with periods (I,2) where 2 18 a point in the Siegsl up
per half plane %, of rank 2.

For z€%(, outside a proper analytic set the Kummer surface is a sur-
face of order 4 with 16 isolated conical points. It is given by parametric
equations

V= 6[u] (u;2)

where u=0,1,2,3 and where 0 [u](u;2) is a basis for theta functions of
gecond order with periods matrix (I, 2).
These parametric equations exhibit a holomorphic map

0: Ty (2) — K, (2)

from the torus T, (z) corresponding to the periods matrix (I,z), identifying
K, (?) to the quotient of 7,(z) by the involution v:w— — w changing
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each points of T, (2) to its inverse. The 16 double points are the images of
the fixed points of «.

The proof of all these statements can be found for instance in [3, n. 11].
We fix once for all the period matrix 2. Let @ (v) == 0 be the equation of
K, (2). It is given by the vanishing of a homogeneous polynomial @ (v)
of degree 4 whose partial derivatives 6@/dv;, for 0 < ¢ < 3, have 16 dis-
tinct nontrivial common zeros p,, ..., P -

We consider in R < P; the set

VY = ((t, v) € R < Py | tvg + & (v) = 0}.

If we assume, as it is permitted by a convenient choice of coordinates in
P,, that {vy= 0} does not contain any of the points p;, then it follows
that ) is manifold. We consider ) via the projection w =prg| YV as a
1-real-parameter family of algebraic surfaces :

w: VY—R,

®~1(0) is the Kummer surface and w=! (¢) for ¢t 5= — (%930_0) is a non-
0 v=pj
singular algebraic surface.
We select for each point p = p; a small neighborhood U = U; with
UN{v,= 0] = (% and we can select in U near p holomorphic coordinates
such that the holomorphic function

e

4
Yo

A= —
has the form
A= w?+ wl -+ w}

where (w, , w, , wg) = (w{ , w , w}) are defined in the ball
(2| wi]? < 2)e U.

We set w; = 2; +}/— 1;. Fix ¢ > 0 (such that 3¢ < 2) and consider the
set

L e < ooy [ [0y P 4 [0y <1+ 2

w? + wl 4 w) = 1.
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The map

x — e
meV'y’2+l
D:

Y=y,

where |z |=(Za2)?, |y| = (T y2)'? is a diffeomorphism of C onto the set

82 < |yP<e
OAE

wy + wh + wy = 1

for A€ R and |1| < ¢/4. Note that Sw? = 1 implies |« > =1+ |y|%. So
on C,,

et A< |w P4 w24 |wgF < 2 4 A

Now we can select 6 > 0 so small that

i) for 0 < |1| < 4, o™ (4) is non-singular,

il) 0 < ¢/4,
and we consider Vs = w=!(— J, ). Over each U the projection = = prp,| YV
is an isomorphism. We consider

W=Y;—ya1(UN 18/2 > |?/|2})’

where the union is over all 16 U = U;.

From what preceeds it follows that, letting wqy= w| W, wqy: W —
— (— 4, ) has the following properties :

{a) it ig 2 family of complex analytic non-singular manifolds,

(b) this family is differentiably trivial if & is sufficiently small.

The first assertion is clear. The second follows from [5, Proposition 4]
since the mapping @ : C X (— 4§, 8) — W shows that the family is rigid
(differentiably) at infinity.

Consider now wS},(O), this is the Kummer surface from which we have
removed 16 connected neighborhoods of the 16 double points.

Let e—ma;,(()) be the double covering of w"cW’(O) obtained from the
torus T, (2), where C = o~! wc');}(O). This is a connected non-ramified 2-she-
eted covering.

By the remark (b) differentiably 9 = wq;}(0) < (— 8, 4 8). Thus T =€ <
X (— 8, + &) turns out to be a two-sheeted unramified covering of W by
a map

v W — W.
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To each fiber @ < {t} we can give a complex structure which makes
» | € < {t} a local isomorphism.

Select t, € (— 6, 8) with t, 3= 0. We take V = w=1 (t;) and X =»—1wgy(ty);
and we apply Proposition 7.1 to the natural mappe:X— V. If we take
for U the set ULJU'. UnV and for K the subset ULJU‘(Un (ly|? = ¢/2)) we

conclude that X cannot be compactified.

Now, if L is the line bundle of the hyperplane section on V and
L’ = o7 1 (L), then, since g is an unramified covering, «f (X, I.”) gives local
coordinates everywhere.

Also aﬁ},(to) is a O0-concave surface, because the neighborhoods we
have removed from V = w~!(f,) have a smooth strongly Levi-convex boun-
dary. Therefore X is 0-concave.

This example shows that in Theorem 7.1 the condition on the dimen-
gsion cannot be removed. By virtue of Theorem 4.1 in the previous example
A (X, L’) cannot separate points.

§ 8. Finite generation of the ring « (X, F).

17. Let ¥ be a locally free sheaf of rank 1 on an unreduced compact
complex space X. On the reduction X’ of X, the sheaf induced by ¥ is
the sheaf of germs of holomorphic sections of a holomorphic line bundle F.
Let F* denote the dual bundle of F. We call the sheaf F positive if the
bundle space of F* is 0-convex.

PROPOSITION 8.1. Let F be positive on X and let S be any coherent
sheaf on X. There exists an integer hy= h, (S, F) such that

H? (X, 5@ F*) =0
Jor p>0 and h=h,.

PROOF. The theorem is known if X is reduced (cf. [2] and [8, Korollar
on p. 344]).

Let X be the sheaf of nilpotent elements in the structure sheaf of X.
Let I, = JS/K*S for »r = 0. For some k = 0 we have (since X is compact)
S =%.

Now ArS/Kr+1 S can be regarded as a coherent analytic sheaf on X’.
Hence we can find an integer h,(r) such that

Hr (X, (K" S/ ) Q Fh) =0 for h = hy(r) and p > 0.
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From the exact sequence of sheaves
0— (A" S/ ) ® F*— Sppy ® Fr— S5, R F*—» 0

we get H? (X, S, Q F*) > H? (X, S, @ F*) for h = h, (r) and p = 1. Thus
for h sufficiently large we get, for p =1, H? (X, S @ F*) = H? (X, I, @ F*) =0
since S, = 0.

LEMMA 8.1. Let M = Uj—, My, N = Uy Ny be graded C-algebras and
let f: M— N be a homomorphism of degree zero. We assume that
i) for every h = 0, M, and N, are finite-dimensional,
iil) N is finitely generated,
iii) for h sufficiently large (b = hy), f(Mp) = Ny, and
iv) there exists an 8 € My (for some k = 1) such that for h =k,

KerfnN My = sMy—.
Then M is also a finitely generated C-algebra.

PROOF. For x in M or N we will denote by d (x) its degree.

We select p =k such that Ui, N, generates N, and f(M;) = N, for
h = p.

First we show that U?.”:_ 1 N; generates the subalgebra U,‘T__,p N; of N,

Let ®x€ Ny for B/ =p so that x is a sum of products x,..x with

d(r)=p. We define 0 =r, <r, <7, <..<r=1 by the following con-
ditions :

. Ti41—1

(l) Ef:'-‘:'('l d (a"]) <bp
(ii) e ad@) =,
(i) Siery 1 (@) < p.

Since d (r) = p, we must have s > 0. Set

Tit1l . i
Yi =IIj=r‘. 1% for 0 =i=8—2,y1= Iy, 11%.

Since d(x;) =< p, we have

pP=d@) <2 and p=d(y,—) <3p.

Now z, ...2; = II;‘._IBI ¥; and this proves our contention.
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We now show that for »’ = p,
(*) My, © s My + subalgebra generated by U;3,1”=7,l My .

Let x € My for b’ = p. By what we have proved before we can write

f@) =3, gyl

where p < d (y{") < 3p.
Since f(M;) = N for h = p, we can find #{") such that f (x{)=y{"
and d (") = d (y{”). Therefore

@ — Sy o) ..ol € My 0 Ker f = sMy—y.

This proves (*). By using induction on h’, we conclude that M, is contai-
ned in the subalgebra generated by UiS' M, for any h’ = p. This proves

the lemma.

PROPOSITION 8.2. If F is a positive locally free sheaf of rank 1 on a
compact unreduced space (X, A), then Un I' (X, ?7") i8 a finitely generated
graded C algebra.

PROOF. We can proceed by induction on the dimension » of X since
for » = 0 the proposition is obviously true.

Let n>0 and let Z,,...,Z; be the irreducible analytic sets which
appear as irreducible components of E? (0, %) for some p, The number of
these sets is finite since, for p = n, E? (0, %) = X.

Take x; € Z; such that x, ,...,#; are all distinct and let X, ..., X,, be
the irreducible components of X. Take y; € X; — {@,, .., ;) so that the
Yy oo s Ym are also all distinct.

For # € X let m(x) be the sheaf of ideals defined by the point x. Let
I=>im @) + =, m (y;). By Proposition 8.1 for large k

HY (X, (AT) @ F*) = o.

Thus we get a surjective map :

l m
I'(X, 74 — (ea (FH/m (@ Cﬂ)) ® (,-@1 (FHm () %) .

i=1

In particular we can find s € I'(X, #*) such that s,,3=0 for 1 < ¢ <[ and

8y; =0 for 1 =< j =< m. By Proposition 2.3 the sheaf homomorphism defined
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by multiplication by s:
s Fhk 5 Fh (=)
is injective.
Let ¥ be the zero set of s and let I be the conductor sheaf of F*
into Hs:
‘gm = {“ € sz | o (?77%(: %wsx}~

Then (Y, %/9J) is an unreduced compact complex space of dimension <<n

and @ = F/IF is a positive locally free sheaf on Y of rank 1. By the

induction hypothesis Up—, I' (¥, @" is a finitely generated C-algebra.
Consider now for h = &k the exact sequence

B
0 — Fhk Iy Gh 5 Qb 0,

where f, is defined in a natural way by F*/Im (s) > Q*. We deduce the
exact cohomology sequence :

ﬂ*
0 — I'(X, P4 — I' (X, F¥) — I' (Y, QY — H1 (X, Fr—H),

Now for large h (Proposition 8.1) H! (X, F**) = 0. Moreover Ker g} =
= 8" (X, F*—F¥) for h = k.

Taking M, = I' (X, %), N, = I' (¥, @*, and f, = f% in the previous
lemma, we obtain the contention of this proposition.

For the case of a non-compact space we have the following criterion
of finite generation.

THEOREM 8.1. Let X be a normal irreducible 0-concave complex space of

dimension = 3. Let X be the minimal 0-normal compactification of X. Let L
be a holomorphic line bundle on X such that for every positive dimensional
subvariety A of X there exists an s € I' (X, L*) (for some h = h (x)) such
that s vanishes at some point of A but not identically on A. Assume that at

every point of X — X the local ring is semi-factorial. Then o (X, L) is a
Jfinitely generated C-algebra.

ProoOF. Let .2 be the locally free sheaf of rank 1 on X associated to
L. Since X is 1-normal, .01 = {2, Therefore, by Corollary 6.1, L can be

extended to a coherent analytic sheaf on the whole of b'd

Since the normalization of X is again a minimal 0-normal compac-
tification of X (by Proposition 5.1), it follows that X must be normal. By
Proposition 6.3 (a), L can be extended to a holomorphic line bundle T over X.
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Let ¢ : X — (a, c0) be an exhaustion function for X and let a’ € (a, co)
be such that, on {p < a’}, ¢ is strongly 0-pseudoconvex.

Set Y= (p<<a} and Y= (¥ — X)UY so that ¥ is a Stein com-
pletion of the (0, 0)-convex-concave space Y. For the sheaf £ we can take
the associated sheaf to L so that, because X and X are 0-normal, prof .C = 2
and prof el = 2. Applying Proposition 3.1, we get for every h = 0 that
the restriction map

r{, By — r, e
is Dbijective.

It follows that the restriction map

rX, 2y — I'(X, £
is an isomorphism for all # = 0. In particular we get

~ o~

(%) A X, L) ® A(X, L).

We are going to prove that s positive by using the criterion of Grauert
given by the Lemma on page 347 of [8]. In view of that criterion I is
positive if for any nowhere discrete analytic subset A of X we can find
h=1 and an s€rl” (X", z") which vanishes somewhere on A but not identically
on A.

Now X being a minimal 0-normal compactification of X, by Proposition
5.1, we must have A¢X—X so that AnX is a positive-dimensional
subspace of X. By the assumption there exists s € I'(X, L*) vanishing so-
mewhere on A NX but not identically on 4 N X. The unique extension

€ F(f’, I#% shows that Grauert criterion is satisfied for L.
It is now enough to apply Proposition 8.2 in view of the isomorphism ().

COROLLARY. Let X be irreducible 0-concave of dimension = 3 admitting
a minimal 0 normal compactification X with the property that at each point

of X — X the local ring is semi-factorial. If L i8 a holomorphic line bundle
on X such that the graded ring o{ (X, L) either separates points or gives local
coordinates on X, then o (X, L) is a finitely generated C-algebra.

In particular if X is a manifold of dimension = 3, connected and O0-
concave, whose minimal 0-normal compactification X is still a manifold and
if, moreover, X admits a holomorphic line bundle L as in this corollary,

then X is projective algebraic and (X, L) is finitely generated.
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REMARK. If the assumption on the semi-factoriality of the local rings
of XX is replaced with the assumption of prefactoriality in the preceeding
theorem and corollary, the conclusion will be that for a convenient integer
k> 0 the graded ring A (X, L*) is a finitely generated C-algebra.

18. The last theorem and corollary are not very satisfactory criteria
for the reason that the type of singularities one expects in the compactifi-
cation X of X are (by the very construction of X ) the singularities one
obtains by the reduction of a normal 0-convex space. These singularities
are isolated normal but, apart from that, they do not present any other
special feature; in particular we cannot expect their local rings to be, in
general, semifactorial.

Another (equally unsatisfactory) criterion for the finite generation of
A (X, L) wag given in [4, Corollary to Proposition 10]. Comparing that to
the present criterion one may ask the following question.

Let V be an isolated singularity obtained by «blowing down» in a
complex manifold a compact analytic subset of codimension = 2. Is the
local ring of V prefactorial? The answer is negative as it is shown by the
following example of David Prill.

19. The example of Prill. Let M be a compact Riemann surface and
let =: V —> M be a holomorphic vector bundle over M whose bundle space V
is 0-convex and has fiber dimension & = 2. We identify M with the 0-section
of V. For instance we can take the sum of & copies of the negative of the
line bundle of the hyperplane section of some projective imbedding of M.

By reduction we can find a normal complex Stein space X, a point

xz€ X, and a holomorphic surjection «: V—> X such that «: V — M > X — {w}
while o= (x) = M.

PRrROPOSITION 8.3. The local ring of X at x is not prefactorial.

PRrROOF. (a) Fix a O~ hermitian metric on the fibers of V so that, for
vE V, | v| denotes the length of that vector. Set for » > 0

Vi={eV||o|| <1}, V=V, —Myn,==|V,.
We have a commutative diagram
H' (M, ,0") —> H? (M, Z)

R

H! ( Vr’? VO*) i_>112( Vr’:Z)’
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where ¢ is the map which associate to each line bundle its Chern class
and , O* and yO* are respectively the (multiplicative) sheaves of germs of
nowhere zero holomorphic functions on M and V. In the following diagram

H*(V,, V;;Z)-—)H’(V,.,Z)iH‘(VL,Z)

b

H* (M, Z)

the row is exact, y induced by =, is an isomorphism (since V, is contra-
ctible onto the O-section), 8 is induced by V,/< V,, and by Thom isomor-
phism (¢f. [21, Lemma 5.7. 16 (a))),

He(V,, V)5 L)~ H=%* (M, 7).

In particular for s = 2, since k¥ = 2, we conclude that g is injective and
therefore
a*:H*M,Z)— H*(V,,Z)
is injective. This implies that:
if £ is a holomorphic line bundle on M with non-zero Chern class, then
71 (¢) on V, is also a holomorphic line bundle with non-zero Chern class.

(b) Let p € M, since M is of dimension 1, {p} is of pure codimension 1.
Therefore Z == n~1 (p) is of pure codimension 1 in V and A = a (Z) is of
pure codimension 1 in X,

Note that A is locally irreducible at « since, for every »,Zn V, is
connected.

The ideal P associated to A4 in the local ring of X at x is therefore
prime and of height 1.

We will show that P is not the radical of a principal ideal.

Suppose, if possible, that P is the radical of a principal ideal. In some
neighborhood U of #, A = {y€ U|h (y) = 0} with 2 holomorphic on U. Let
f=hon

Let r be so small that n(V,)c U and let us consider on V, the fol-
lowing sheaves: = Of (where O is the structure sheaf of V) and the
sheaf g of ideals defined by the anlaytic set Zn V..

Let z€Zn V.. For some integer » > 0 we must have

9;: == 91,”-

The analytic set in V,! where J and $/* disagree is a proper analytic subset
of Z and therefore it is of codimension = 2. But Jand ¢/ are both locally
free thus 9= " at each point of V,.
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Now I 0. So Jr> (. If ¢ is the holomorphic line bundle over M de-
fined by the divisor p, ;! (&) is the holomorphic line bundle associated with
the divisor Z on V,. By the above remark n-!(f") is trivial. But then
& should be trivial on M. This is not the case since d (&) = 4= n == 0.
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