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PROJECTIVE EMBEDDING
OF PSEUDOCONCAVE SPACES

ALDO ANDREOTTI and YUM-TONG SIU (*)

In [4] Tomassini and the first author investigate the projective embed-
ding of pseudoconcave manifolds (with maximal concavity) and, following
an idea of Grauert, prove that a pseudoconcave manifold X of dimension

_&#x3E; 2 can be embedded as an open subset of a projective algebraic variety
if and only if X carries a holomorphic line bundle L such that the graded
ring of sections of its powers

separates points and gives local coordinates at each point of X [4, Theo-
rem 2].

In this paper we continue the investigation of projective embeddability
in two directions.

Firstly we extend the above result to pseudoconcave normal spaces.
Secondly we show that for the projective embeddability of a pseudo-

concave manifold X of dimension &#x3E; 3 it suffices to assume that X carries

a holomorphic line bundle L such that A (X, L) gives local coordinates at
each point of X. This is done by using extension techniques. We extend

.g to a compact complex manifold X (by the methods of Hironaka [10] and
Rossi [13]) and, then, we extend the line bundle L to a holomorphic line

N N N

bundle L over X (by the method of Trautmann [24]). From Z we construct
a positive holomorphic line bundle on Y and show that X is a projective
algebraic manifold. It is essential that dim ~’ &#x3E; 3. A counter-example (which
was inspired by a remark of Grauert) is given to show this point.

Pervenuto alla Redazione il 18 Settembre 1969.

(*) The second author was partially supported by NSF Grant GP-7265,



282

At the end of this paper we establish a result concerning the finite
generation of nl (X, .~). This result on finite generation is independent of
the result on finite generation obtained in [4]. A counter-example due to
David Prill is included to show this lack of relationship.

All complex spaces and subvarieties in this paper are reduced unless

specified otherwise.

§ 1. Pseudoconeavity and pseudoconvexity.

1. A real-valued C °° function V on an open set D of Cn is called

strongly q-pseudoconvex if the hermitian form

has at least n - g positive eigenvalues at each point of D (zi being
the coordinates of Cn).

A real-valued function 99 on a complex space X is said to be strongly
q-pseudoconvex if for every point xo of X there exist an open neighborhood
U of x, a biholomorphic map 0 of C onto an analytic subset of an open
set D of some Cn and a strongly q-pseudoconvex function 1p on D such that

i) q; = 1p 0 0,
ii) the closure of the set (x E 199 (x)  c) is (x E (x)  c) for

every c E R,.

DEFINITIONS. (a) A complex space X is called p-convex if there exists

a C °° map g from X to (- oo, b), where b E R U j-{- oo j, such that
(i) 199 ~ c) is compact for every c E (- oo, b),

(ii) for some is strongly q-pseudoconvex on (g &#x3E; b’).
(b) A complex space X is called q-coneave if there exists a C °° map g

from X to (a, + oo), where a E ( - oo ) U R, such that
(i) 199 ? c) is compact for c E (a, + oo),

(ii) for some is strongly q-pseudoconvex on (99 a’).
(c) A complex space X is called (p, q)- convex- concave if there exists a

proper C °° map g from X to (a, b), where a E ( - U R and b E R U ( -[- I

such that for some a  a’  b’  b, 99 is strongly p-pseudoconvex on

199 &#x3E; b’) and strongly q-pseudoconvex on IT  a’).
In all these cases we call q an exhaustion function.

2. The following proposition is due to Grauert [8, § 2].
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PROPOSITION 1.1. Let X be a 0-convex space. Then there exist a Stein

space S, a finite subset A of S, and a proper holomorphic surjection 7: ~--~ S
such that

(i) V-1 (x) is a connected nowhere discrete subspace of X for
xEA,

(ii) y : ~’ - y-1 (A) -+ S - A is biholomorphic,
Moreover, if X is normal, S can be chosen to be 

This statement can also be viewed as a consequence of the reduction

principle of Cartan [6]. In particular we note the following.

COROLLARY. A 0-convex space without compact positive-dimensional sub-
spaces is Stein.

The proofs of Propositions 21, 22 and Theorem 15 of [2] yield readily
the following :

PROPOSITION 1.2. Let X be a (,v, unreduced complex
space with exhaustion function (p from X to (a, b).

Let a  a’  b’  b and suppose is strongly p-pseudoconvex on
&#x3E; b’) and strongly q pseudoconvex on 199  a’).
Let ~’ be a coherent analytic sheaf on X with prof r on  a’).

Set

Then

(a) the restriction map .H ~ (X, ~’) - H (X d , ~) is bijective for c E [a, a’),
dE(b’,b] 

(b) for c E [a, a’) the restriction map ‘~) -+ £F) is bijective
for l  r - q -1 and injective for l = r - q -1.

The following proposition is adapted from Trautmann [24, (3.1)].

PROPOSITION 1.3. Let X be a (0, 0)-convex- concave unreduced space with

exhaustion function 99 from X to (a, b) which is strongly 0-pseudoconvex on
the whole of X.

Let ~’ be a coherent analytic sheaf with prof 3 on 199  a’~ for
some a’ E (a, b).

Let 9 be a coherent sheaf of ideals on X whose zero-set is disjoint from
(99  a") for some a" E (a, b). Then the natural map

is surjective,
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PROOF. We can assume a’ = a~". Set Y = ~q~ C a’~. From the short
exact sequence of sheaves

we derive the following commutative diagram with exact rows :

Now v is an isomorphism, because on Y, = 0 and hence 7. Since

prof 3 on Y, by proposition 1.2 both A and ,u are isomorphisms. Hence
y is an isomorphism. Thus fl = 0 and a is surjective.

3. We end this section by the study of (0, 0)-convex-concave spaces X
in which prof 0 &#x3E; 3, C~ being the structure sheaf of X.

LEMMA 1.1..Let (X, 0) be a (0, 0)-convex-concave space with exhaustion
function 99 from X to (a, b) which is strongly 0-pseudoconvex on the whole of X.

Let prof 0 &#x3E; 2 on X. Set for a __ c  d __ b, ic  99  d). Then
for any f E 1-’(Xa , 0) we have (1)

PROOF. Clearly ~ f ? ~ f (Xc) I since Xd c Suppose that

. Then there exist an and a real number M

such that

Now for n oo, 0 uniformly on Xd while

This is a contradiction since, by Proposition 1.2, the restriction map

being bijective and continuous, must be an isomorphism of Fr6chet spaces.

(’) By I f (Y) I we denote -
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PROPOSITION 1,4..Let (X, Õ) be a (0, 0)-convex-concave complex space
with exhaustion function 99 from X to (a, b) which is strongly 0-psoudoconvex
on the who le of X.

Suppose prof C) &#x3E; 3 on ((p  a’) for some a’ E (a, b). Then
(a) the holomorphic functions on X separate points,
(b) the holomorphic functions on X give local coordinates at every point

of X,
(c) for every d E (a, b) we can find d’ E (a, b) such that the holomorphically

convex hull of (q~  d) is contained in ~c~ _ d’j.
PROOF. We denote by m (x) the sheaf of ideals defined by the subspace

~x~ constituted by the single point x 
(a) Fix x =1= y in X. 111 (y) and apply Proposition 1.3

we conclude that

is a surjective map. Thus holomorphic functions separate points on X.
(b~ Fix z E X and apply Proposition 1.3 

We get a surjective map

This shows that holomorphic functions give local coordinates at x.
(c) For d E (a, b) set Kd = (q  d). Suppose that the holomorphically

convex hull Kd of gd is not contained in any Kd, for d’ E (a, b).
We can then find a sequence of distinct points in gd such

that (p -+ b.
00

Now U is a subspace of X and 1I tn (x) is a sheaf of ideals
v 1’=1

on X. By the same Proposition 1.3, taking 9= 0~ we conclude that

is a surjective map. Thus in particular there exists on X a holomorphic
function f with lim I f (x,,) = oo. On the other hand f must be bounded on Kd .
Indeed, by Lemma 1.1, for a  c  d  d’  b we get

This leads to a contradiction since I by the assumption
.........

that E Kd -



236

§ 2. Gap-sheaves and p normalization.

4..Relative gap-sheaves. Let (X, 0) be an unreduced complex space and
let 9 c y be analytic sheaves on X.

A subset is said to be thin of at a point xo E X, if

there exist an open neighborhood Uxo of xo in .~’ and an analytic set A c: UXo
such that

This notion involves only the germ of the set M 

DEFINITION. Given an integer n &#x3E; 0~ the nth relative gap-sheaf of g in
J, denoted by is the analytic subsheaf of defined as follows :

(9[n] support of B (s) is thin of dimension  n at x),

where fl: J- 7/g is the quotient map.
This notion is due to Thimm [23].
Clearly gc We set

From [23] and [17] we borrow the following propositions :

PROPOSITION 2.1. if 9 and 7 are coherent, then, for any n, the sheaf
is coherent and (~, )) is an analytic set of dimension  n in X.

PROPOSITION 2.2. Suppose that q and 7 are coherent. For any x E X,
is the intersection of all primary components of a primary 

sition of belonging to prime ideals of n.

PROPOSITION 2.3. Let 7 be coherent, g E Ox is a zero divisor for 7,, (i.e.
such that f ~ 0 and gf = 0) if and only if g roanishes on some irre-

ducible germ of some Ell (0, ~’) at x. (0 denotes the zero sheaf on X.)

5. Absolute gap-sheaves. Let (X, Õ) be an unreduced complex space and
let 9 be an analytic sheaf on X.

For any open set Uc X we can consider the group

where A runs over all analytic subsets of U of dimension  n.
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If W c U is open we have a natural restriction map

We obtain in this way a presheaf on X for any integer n &#x3E; 0.

We define the nth absolute gap sheaf of:F, denoted by as the

sheaf associated to the presheaf 
This notion was introduced in [18] from which we borrow the following

proposition.

PROPOSITION 2.4. Let 7f be a coherent sheaf. The sheaf coherent

if and only if dim (0, ~)  n.
Set

If 9 is a coherent sheaf, Sk (7) is an analytic set of dimension  k in X
[16, Satz 4]. Combining the Corollary to Satz III of [15] and Proposition
19 of [20] we get the following proposition.

PROPOSITION 2.5 Let 9 be coherent. Then :1[n] if and only if
dim (7) :!~ k for - 1 -:::: k  n.

(Proposition 2.5 can also be derived from [25, Satz 2].)

6. p-normalization. Let (X, 0) be a complex space. We say that X is

at a point x E X if = Ox. We say that X is p.normal if

0.
This means the following: X is p-normal at x if, given an open nei-

ghborhood IJ of x, an analytic subset A of Uof dimension  p and a
holomorphic function f on U - A we can find a neighborhood W of x and

a holomorphic function f on W such that = f 
Making use of Proposition 2.5 we obtain the following criterion for

p-normality :
(X, 0) is a p-normal space if and only if

In particular (X, 0) is 0-normal if and only if prof C) &#x3E; 2.
’ 

If X is an irreducible normal space of dimension n, then X is p-nor
mal for 2.

The following proposition is adapted from the usual proof of existence
of the normalization of a complex space (cf. for instance [12, § 4]).
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PROPOSITION 2.6..Let X be a complex space whose irreducible compo-
nents all have dimension &#x3E; p -~- 2. Then

(a) the set A of points of X where X is not p-normal is an analytic
subset of X of dimension _ p,

(b) there exist a p-normal complex space X’ and a proper surjective hol-
omorphic map with finite fibers a: g’ ---~ X suclv that

(i) n-l (A) is of dimension  p at each point,
(ii) n: X’ - n-l (A) -+ ~’ - A is biholomorphic
(iii) any proper holomorphic surjective w : Y - X of a p-nor-

mal complex space Y onto X and verifying property (i) factors through
n, i. e. 3 ~ : Y--~ X’ holomorphic such that w = n o~.

Clearly the universal property (iii) defines the space ~’ up to an isomor-

phism. We will call n : X’-+X the p.normalization of X.

PROOF OF (a). Since every irreducible component of X has dimension

~~-t-2~ it follows that Or _~~o===0y where 0 is the zero sheaf. There-

fore, (0, ~) _ ~ and, by Proposition 2.4, the sheaf is coherent.

Now A = EP (0, and thus, by Proposition 2.1, A is an analytic
subset of X of dimension _ p.

PROOF OF (b). Since the p-normalization of a complex space .X (if it
exists) is unique, we need only to prove its existence for a sufficiently small
neighborhood of every point of X.

Let xo E X. Since is finitely generated over OXo and is noe-

therian, must be integral over 0,. Thus for some neighborhood U
of X0 in ~ there exist 91 , ... , such that

and

Let ~’ be the conductor sheaf of 0 into i. e. the maximal sheaf of ideals

~ such that c 0. Since is coherent, 9 is also coherent and the
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zero set of J is A. Taking U sufficiently small, we may assume that

with ul , . 1. 1 um E r (U, 9).
We set

so that bli E r (U, ~).
We may assume, without loss of generality, that X = U. We consider

in X X Ck the set 11 defined by the following equations

and

where (Wi’’’. , U"k) E Ck and x E X.
Let .X’ be the union of those irreducible components of JT which are

not contained in A X Ck.
Let n : X’ - X be the map induced by the natural projection 
Since no irreducible component of X’ is contained in A X Ck it follows

that n-l (A) is of codimension &#x3E; 1 in each component of X’. Since X’ is con-
tained in the set defined by the equations (3) the map n is proper and its

fibers are finite. Since A is the set of common zeros of u1, ... , um , equations
(4) and (2) imply that, for x E X - A, ~ 1 (x) _ (x, g~ (x), ... , gk (x)) and,
since gi is holomorphic on X - A, ~c : g’ - w1 (A) --~ ~ - A is an iso-

morphism. Since n is proper, the image (X’) of ~c is an analytic set con-

taining X - A, which is dense in X. Hence ~c is surjective.
We show now that X’ is p-normal. Let x’ E X’. Let W be an open

neighborhood of x’. Let B be an analytic subset of W of dimension _ ~
and let f be holomorphic on W - B. Let n-l (~c (X,)) = s§) where

xi = x’. Choose a Stein open neighborhood D (x’) and disjoint open

neighborhoods D! in X’ such that

Let 
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Then f o ~c~ D~ is a holomorphic function on D - 0 and, since dim

it defines an element lz E Since D is Stein, we can find

tl ... , tk E F(D, 0) such that

Set f = (ti o on Di . This is a holomorphic function on Di . Be-

cause ui (x) gi (x) = bu (x) = ul (x) and (u, u. (x)) # (0, ... , 0) A,
we have gi _ Wi on Hence Di - n-1 (C).
Since each component of is of dimension&#x3E; p, the extension f off is
unique. Thus f extends f from to J9{. This proves our assertion.

, 
«

Finally we have to verify that X - X satisfies the universal property
(iii). Without loss of generality we may assume that X’ is an analytic
subset of some open Stein set in a numerical space CN. Let x1, ... , ZN be
the coordinate functions. On Y - w-1 (A) the functions zi o n-l o 60 = ~i
are holomorphic. Since (0-1 (A) is of dimension  p and Y is p-normal,
these functions extend to holomorphic functions on the whole of Y and
they define a map 7:: Y -+ CN. We claim that z (Y)C X’. By construction

7: ( Y - m- (A)) = g’ - n-I (A). Let now yv - y E wl (A), yv E Y - (A).
If r (yy) is not convergent in X’, we can find an unbounded holomorphic
function f on {T ( y+)). But f o z on Y - co-’ (A) extends to a holomorphic
function gf on the whole of Y. Thus f o z (yv) = gf(y+) -+ gf(y) which is a

contradiction.

By construction m I Y - (A) _ ~ o 1’. By continuity we must have

w = on the whole of Y.

The idea of using gap-sheaves to investigate problems on removable

singularities is due to Thimm [22] although p -normalizations are not consi ~

dered in that paper. The p-normalization ,X’ of X is the same as the par-
tial normalization of X with respect to A introduced in [19, § 3].

§ 3. Stein completion.

7. Let X be a (0,0).convex-concave complex space with exhaustion

function 99 from X to (a, b). We suppose that 99 is strongly 0-pseudoconvex
on the whole space X. As usual we set, for a  c  d  b,
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DEFINITION. A complex space Y is called a Stein co?npletion of X if
(i) X is an open subset of Y,

(ii) Y is a Stein space,

(iii) ( Y - X) is conrpact for any d E (a, b) .

PROPOSITION 3.1. -Let (Y, Õ) be a Stein completion of X and let 9 be
a coherent analytic sheaf on Y with 2. Then the restriction map

is bijective. In particular, if (Y, Õ) is 0-normal then F (Y, Õ) ~ T(X, ~),

PROOF. Let c E (a, b) and let yc = (Y - X ). Then Yl is a Stein

completion of Xac. Also we have

If we prove that, for any c, r (Y c, ~’ ) --~ r (Xa , ~) is bijective, then the
same conclusion holds for - 

We can thus replace Y by by Xa and therefore it is not re-

strive to assume that Y is imbedded in some C n as an analytic subset so

that on Y we can find a strongly 0-pseudoconvex function 1p such that

(~  d) is compact for any d E (- oo, + oo). Set Yd = (y &#x3E; d) and consider
the commutative diagram of restriction maps

where d E (- oo, + oo~ and e E (a, b) are so chosen that

By virtue of Proposition 1.2 and y are bijective. Since fl = Am, oc
must be injective. Since y = ph, I must be injective. Thus, given f E r (X, 7),
we can find g E r ( Y, such that fl (g) = A ( f ), i. e. A ( f - a (g)) = 0, and
therefore f = a (g). This shows that « is also surjective. Hence, oc is bijective.

The last statement follows from the fact that, if (Y, C)) is 0.normal,
then prof 0 &#x3E; 2.
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Let S, Z be complex spaces. We denote by Hol (S, Z) the set of all
holomorphic maps from S to Z.

COROLLARY 3.1. Let S be any Stein space.

(a) If X is then the restriction map

is bijective for any c E (a, b).
(b) 1 f Y is a 0-normal Stein completion of X, then the restriction map

is bijective.

PROOF. For S = C this is the statement of Propositions 1.2 ~b) and
3.1 for 9= 0. From this it follows that the same is true for any S that
can be imbedded as a subspace of some Cn.

In the general case we carry out the proof for case (b). Case (a) is

treated in the same way. Now

If f , g E Hol (Y, S) agree on X, then they agree on Now and g (Ye)
are relatively compact in S, so we can find an open subset S’ imbedded in
some ~’~ as an analytic subspace, such It follows

then that 1= g on YI. This is true for any c. Hence in general 1= g on
Y, i. e. Hol (Y, S) --~ Hol (X, S) is injective.

Given f E Hol (X, S), we claim that, for any c E (a, b), is relatively
compact in S. Indeed, if this is not true ; there exist a sequence and

a holomorphic function g on S such that

By Lemma 1.1~ ~ 1 (g - f ) (Xa ) I = o f ) (X3) I for a  d  c. Therefore g o f
is bounded on X#. · This is a contradiction.

By replacing with S’ which contains f (Xac) and is imbeddable as analytic
subspace in some Cn , we see that f admits a holomorphic extension to
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Ye. Since this is true for any c E (a, b), it follows that there exists a

g e Hol (Y, S) such that g Ix = f, i. e. Hol (Y, S) Hol (X, S) is surjective.

COROLLARY 3.2. If Yl, Y2 are two 0-normal Stein completions of X,
there exist holomorphic maps f : Y2 and g : Y2 - Y1 such that

i. e. if X admits a 0-normal completion, then the 0-normal completion is

unique up to an isomorphism which is the identity on X.

8. Existence of Stein completions. Let (X, 0) be a (0, 0).convex-concav6
complex space with exhaustion function g~ from X to (a, b) which is strongly
0-pseudoconvex on the whole space X.

PROPOSITION 3.2. We suppose that X is 0 normal and that, for some
a’ E (a, b), prof 0 &#x3E; 3 on (99  a’). Then X admits a 0-normal Stein comple-
tion.

PROOF. Let c E (a, a’) and d E (a, c) and consider the holomorphically
convex hull of .A’d in By Proposition 1.4 (c) it is contained in for

some d* E (d, c).
For every point x on = d*) we can find f E F (Xac C~) and an open

neighborhood U of x such that

Replacing f by a convenient power of f, we may assume that f (Kd) ~ 1/2.
Since ~~ = d’~~ is compact, we can find a finite number of functions

[1 (Xa, Ô) and a finite number of open sets U1 ? for 1  i  k, such that

By Proposition 1.4 (a) (b) we can find ... , fi E F (X, 0) such that 
separate points and give local coordinates on (d _ ~ __ d*). It is not re-

strictive to assume that (Lemma 1.1) we also have

Consider the defined by oc (x) = (/~ (x)~ ... ~ f i (x)). For 0  6:!!5~ 1
set
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Then

-- 

d*
Let For any K compact in G,
aw (K) fl .g = a-1 (.g) f1 is compact. Thus « I H is a proper

map and a (.g) is an analytic subset of G.
Now every irreducible component of H has dimension ( &#x3E; 3) &#x3E;_ 2 [2,

Proposition 4]. By [9, Theorem VII. D.6] we can find 6 E [1/2, 1) such that

« (H) n (Pl - can be extended to an analytic subset Y of Pl.
Set E = (Pa) n ~a *. Let X be the topological space obtained from

X - E and V by the following identification ;

One verifies that is a Hausdorff space so that (since the identifications

are holomorphic) ~ inherits a natural complex structure in which and V

are open subsets of For can be extended naturally to a
N N N

holomorphic function l on X (by setting fi = zi on V).
N

We claim that is a Stein completion of Xcb. For this it is enough to

verify the following conditions (cf. Corollary to Proposition 1.1):

(i) jc  ~  e~ U is compact for e E (c, b).
(ii) ~ has no compact positive dimensional subspaces.

Now for e E (c, b) the set (c  ~ ___ e) U (X - X~ ) is the union of the fol-

lowing three sets:

where s 1+6 &#x3E; 6. Of these sets the first two are obviously compact
2 

p

and the third is a closed subset of (d e). Hence (i) is verified.

Let e be a C°° function on X - B witb the following properties

for some 6 C s.
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be a C°° increasing convex function defined in (a, b) with

I (t) -~ + oo for t --~ b.
On .X - E we consider the function 0 = gl It is a C°° function

and it can be extended to the whole of X by setting ø = 0 on Y f1 Pn .
i 

One now verifies that for large 0 the function + 4S is a
k+l

strongly 0-pseudoconvex function on the whole of Therefore the sets

{1p  const) are compact This forbids the existence on X of any
compact analytic set of positive dimension (by the maximum principle).

Going to the 0 normalization we obtain that there exists a 0-normal

Stein completion of X, b for every c E (a, a’).
But these completions must all coincide by virtue of Corollary 3.2.

Therefore this common completion X is the 0-normal Stein completion of X.

COROLLARY 3.3. We suppose that X is 0-normal and that for some
a’ E (a, b) the part 199  a’) is 1-normal. Then X admits a 0-normal Stein

completion. ,

PROOF. Let Since Xl’ is 1-normal, by Pro-

position 2.5, A n x,,3’ 
, 

is a discrete set.

Fix c E (a, a’) and select d E (c, a’) such that A n 0. Then, on X ~,
prof C~ _&#x3E; 3 and by the previous proposition there exists a 0-normal Stein

completion of ,X~ . Again by Corollary 3.2 all these 0-normal Stein comple-
tions of the spaces X~, when c varies, must coincide. Thus there exists a
0-normal Stein completion of X.

§ 4. Projective imbedding of normal pseudoconcave spaces.

9. Let (X, 0) be a complex space and L a holomorphic line bundle

over X. We consider the graded ring

We say that szl (X, L) separate points of X if for x, y E X, x ~ y we can
find a positive integer h = h (x, y) and two sections a, z E Lh) such that

6. Annali della Scuola Norm. Sup. · Piaa.
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We say that nt (X, L) gives local coordinates at a point x E X if we can
find a positive integer h = lc (x) and a finite number of sections 

such that o (x) # 0 and

for

generate the space m,, ./m,2 over C where mx is the maximal ideal of 
If X is an open set of a projective algebraic variety and .L is the line

bundle of the hyperplane section, then (X, L) separates points and gives
local coordinates on the whole of X.

THEOREM 4.1. Let X be a O-concave normal complex space whose non-

compact irreducible components have dimension &#x3E; 2. Suppose that X ca,rries
a holomorphic line bundle L such that -Qf (X, L) separates points and gives
local coordinates at each point of X. Then X is isomorphic to an open set of
a projective algebraic variety..

PROOF. Let 99 : ~’ --~ (a, oo) be an exhaustion function on ~’ which is

strongly 0-pseudoconvex on 199  a’) for some a’ E (a, oo). We set

Every subspace of X disjoint from X, for some c E (a, a’) must be 0-

dimensional [4, Lemma 2]. Thus X must have only a finite number of irre-
ducible components. Since X is assumed normal it is not restrictive to as-

sume X irreducible. (If X is compact, X = Xc for any c E (a, a’)).

(a) For any two points x, y of y, we can find g(2) EX, y X, y

E r (X, Lm(x, y)) for some m (x, y) &#x3E; 1 such that 
’ ’

Replacing 00) and 0(2) by linear combinations, we can assume0, y 0, y p



247

We can find open neighborhoods W (x, y) of x and W’ (x, y) of y such that

Hence for z and w in these neighborhoods we must have, for every n &#x3E;_ 1,

Also for any z E X we can find an open neighborhood U (z) and holomorphic
sections for some n (z) &#x3E;_ 1 such that never va-

nishes on U (z) and 
.u

is a biholomorphic map of U (z) onto a locally closed analytic set of 
Now fix c E (a, a’). Since Xc is compact, we can find 

(1  ~  ~~ 1  j  q) such that

Set h = ( II p ~ m (x~ , ya)) (II j~ 1 n (zj)). Then the sections of give local
coordinates and separate points on the whole space J~c.

Let so , ... , sk be a basis (2) for Iu) over C and let A be the set
of common zeros of these sections. Since by construction A _ 0, A

(2) Here we use the fact that is finite. This is ensured by the pseu-
doconcavity assumption. Directly, if we set and = (hln (x9)) - 1, we can
take for following sections of Lh) :

Here
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is discrete. Let us consider the holomorphic map

defined by x )2013~ [so (x), ... , sk (x)]. The map F is one-to one and holomorphic
on X,. Thus F (X~) is concave and F (X - A) is contained in an irreducible
algebraic variety Z of the same dimension r as X fl, Theorem 6].

Let n : Z* - Z be the normalization of Z. Since X is normal, the map
F factors through n, i. e. there exists a holomorphic map F* : X- A- Z*
such that F _ n o F*.

Moreover, ~’~ (Xc) is an open subset of Z* and F~ ~ is an isomor-

phism onto that open subset. Indeed, Z* is locally irreducible and F* (Xc)
is a locally closed analytic set of pure dimension r.

(b) We now prove that, for a  c  d  a’, Xed admits a Stein com-
pletion. With the previous notations set

Since is an isomorphism, it follows that D is 0-convex. Thus by
Proposition 1.1 there exist a normal Stein complex space ~S and a proper

holomorphic surjective map y : D -+ S and a finite such that

y : D - yw (B) ~ S - B and, for z E B, y-I (z) is connected and nowhere

discrete.

By [4, Lemma 2], y-I (B) f1 F* 0 so that y o F* is an iso-

morphism onto an open subset (y of S. Moreover, S - (y o F*)(Xcd)=
= y (Z~ - F~ (Xc)) is compact. This proves that S is a Stein completion
of Xcd.

(c) Keeping d fixed and letting c vary on (a, d) we see that S is a
Stein completion for all Xed and thus for In particular there exists a
holomorphic map

which extends y and maps X/ biholomorphically onto an open
subset of S.

Outside of the compact set B the imbedding dimension of S is the
same as that of Z* (which is projective algebraic). Thus the imbedding
dimension of S is bounded and we realize S as an analytic subspace of
some CN.

Now y o F~: A --~ S and 8 : agree on xc’ and every
irreducible component of X: must meet Thus these maps being given
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by holomorphic functions must agree on the whole space i. e. 0

extends y - F* to X:.
(d) Set C = 9-1 (B). This is a finite set since B is finite and 8 on X4

is an isomorphism.
We want to prove that A = C.

Let G : X - C -+ Z * be defined as follows :

This map is one-to-one and biholomorphic and agrees with F* on ,X’- C - A.
Now C c A, otherwise there exists x E C such that Since y o F* = 8

on X: and 0 on X/ is injective, we have F* (x) =,y-1 0 (x) n F* (X - A)
and (x) contains the isolated point F* (x). This is a contradiction, be-
cause 0 (x) E B.

Also A c C, otherwise there egists x E A such that 0. Then G

extends F holomorphically over x. If U is a sufficiently small neighborhood
of x, we can find holomorphic functions uo , ... , uk such that y I--~ ~uo (y), ...
... , uk (y)] represents the map n o I U. If U is sufficiently small, we can

and Z ~ I U to be trivial. If we fix a trivialization of

L the sections Si I t7 are given by holomorphic functions. Since F IT - (x)
coincide with a o there exists a unique nowhere zero holomorphic
function v on U - (x) such that

Now v extends to a holomorphic function v on U (since U is normal of
dimension ? 2). Because at x some ui (x) # 0, we must have v (x) = 0. This
is impossible (x)) and v ( ~ - (x?) does not contain 0.

As a consequence of the fact that A = Cl it follows that A is a

finite set.

(e) Let c’ E (a, c) be such that A c We can find a positive integer
h’ such that the sections of r (X, Lh’) do not have common zeros on X,,.
Then the sections of Lhh’) do not have common zeros on the whole
of X (3). Repeating the previous argument, we conclude that A = C = §§
and G maps X biholomorphically onto an open set of Z*.

(3) If (~o~’"~~) are sections without common zeros on X~, , we take
the map given by the following sections of 
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REMARK. For any vector whose sections have no

common zeros we can consider the natural map given by
the evaluation

where so Y ... is a basis of V over C.
We can choose the integer h and the vector space V in such a way

that the minimal algebraic variety Z containing is normal so that rv
is a realization of the map F*.

Indeed, with the same notations as in the previous proof, we may as-
sume A = Qj and F: X - Z to be holomorphic. Let be the normalization

of Z. We may assume that Z* c PN and that the homogeneous coordinates

~o , ... , inr on Z. are rational functions homogeneous of the same degree
l &#x3E; 1 in the homogeneous coordinates [zo,’’’, xk~ of the general point of Z
(cf. Zariski [26]). It is not restrictive to assume that among the $,,,, are all
monomials of degree of I in the x’s. Since each ~a is integral over the

coordinate ring of Z, it represents a holomorphic section 0. of r (Xc, Lhl).
By the concavity assumption Lhl) ~ Lhl) so that oa is a holo-

morphic section of Lhl over the whole of X. It is therefore enough to take
as V the space generated in F(X, Lhl) by these sections 6a . We have

Eh))l c: V e Lhl) so that the sections of V have no common zeros.
In particular we deduce the following

COROLLARY 4.1. The isomorphism G : X -+ Z of the previous theorem

can be so chosen that Z is a normal projective algebraic variety and that,
for some integer h &#x3E;_ 11 = Lh where .E is the line bundle of the hyper-
plane section of Z.

§ 5. Compactification of 0-concave spaces.

10. Given a complex space X, an isomorphism i : X--~ Y of X onto

an open subset of a compact complex space Y will be called compactifi-
catiorc of X.

In what follows we will be concerned only with 0-normal complex
spaces admitting 0-normal compactifications.

A compactification i : .~-~ Y of the 0-normal complex space X into
the 0-normal complex space Y will be called minimal if for any other

compactification j : .~--~ Y’ into a 0-normal complex space Y’ we can find
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a morphism r : Y’ --~ Y such that i = z o j :

Clearly any two minimal 0-normal compactifications of the same space X
are isomorphic by an isomorphism which is the identity on X (when X is
identified with its image in the compactification).

PROPOSITION 5.1. Let X be a 0-concave complex space. A 0-
normal compactification i : X - Y is minimal if and only if no positive di-
mensional compact complex space is contained in Y - i (X).

PROOF. (a, oo) be an exhaustion function for ~’ and let

a’ E (a, oo) be such that p is strongly 0-pseudoconvex on  a’).
Set Z = (g  a’). Then Z is a (0, 0).convex-concave 0-normal complex

space. We may assume without loss of generality that any irreducible

component of X intersects Z. Let i : X - Y be a 0-normal compactification
of X. We may assume that no irreducible component of Y is in 
Then the space

is a 0 convex complex space. Any compact irreducible positive-dimensional
subspace of W must be contained in Y - i (X). Hence ~P has no compact
irreducible components.

Let y : W -~ S be the reduction of W according to Proposition 1.1
and let S’ be the 0 normalization of S. Then y factors through y’ : W- S’.

Since Z is 0 normal, is an isomorphism onto its image.
Pasting together lY’ and S’ along Z according to the map o = y’ o I Z,

we obtain a new 0-normal compact space
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and a holomorphic map z : Y- Y’ such that the following diagram is

commutative :

j being the natural injection of X into Y’.

By Proposition 1.1, Y’ has no compact subspaces in Y’ - j (X) of di
mension ? 1. It follows that we have constructed a 0-normal compactifica-

which is dominated by the given one and satisfies the

property of the proposition.
It follows then that any minimal 0-normal compactification of X, i :

X --+ Y, has the property that Y - i (X) does not contain any compact
subspace of dimension ? 1.

Conversely, if i : X --~ Y is any 0-normal compactification such that in
Y - i (X) there are no compact subspaces of dimension &#x3E; 1, then W =

.._. (Y- i (-X)) u i (Z) is a 0-normal Stein completion of i (Z).
If j : X -+ Y’ is any other 0-normal compactification of X, then W’ _

_ ( Y’ - j (X )) ~ j (Z) is a 0-convex complex space. Let W " be the space
obtained by suppressing the irreducible compact components of W’. Then
W" has W as 0-normal Stein reduction. Therefore there exists a holomor-

phic map e : W’ -+ W such that, on Z, o o j = i. From this we deduce a

holomorphic factorization of i through j, i. e. the minimality of i.
From the proof we deduce in particular the following :

COROLLARY 5.1. 0-coneave 0-normal complex space and if X
admits a 0-normal compactification, then it admits also a minimal 0-normal

compactification.

PROPOSITION 5.2. Let X be a 0-concave 0-normal complex space with

exhaustion function 99 : X-~ (a, oo). Suppose that for some a’ E (a, 00) the set
199  1-normal. Then X admits a minimal 0-rcorrrial compactification.

PROOF. We may assume that g is strongly 0-pseudoconvex on

 a’). Set Y = (g  a’). Then Y is a (0, 0)-convex-concave 1-normal

complex space. By Corollary 3.3, Y admits a 0.normal Stein completion
Z. By pasting together X and Z along Y, we obtain a compact com-

plex space X which is a 0-normal compactification of X with respect to
the natural inclusion map and which satisfies the requirements of the pre-
vious proposition.
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REMARKS 1. Instead of the 1-normality of (~  a’? one may as well

assume that, on (~  a’), prof C) ~: 3.

2. This compactification result can be considered as a refinement of

a result of Rossi [13].

§ 6. Extension of coherent sheaves.

11. LEMMA 6.1. Let X be a (0, 0)-convex concave space with ex-

hau8tion function (p: X- (a, b) which is strongly 0-pseudoconvex on the whole
of X.

Let 7 be a coherent analytic sheaf on X whith prof ~’ &#x3E;_ 3 on (q  a’)
for some a’ E (a, b).

Then generates the stalks  Fx for any x E X.

PROOF. Let 9 be the ideal sheaf of germs of holomorphic functions

vanishing at x. By Proposition 1.3,

is surjective. Since 54 is the maximal ideal of the local ring Ox , by Naka-
yama’s lemma we deduce that generates 9a?.

PROPOSITION 6.1. Let X be a (0, 0)- convex- concave complex space and
N

let X be a Stein completion of X. Let be a coherent analytic sheaf on X
such that 7111 = 9. Then there exist a coherent analytic sheaf 9~ on X which

i. e. ~ ~ .X’ _ J.

PROOF. Let g : X -~ (a, b) be an exhaustion function and let a’ E (a, b]
be such that q is strongly 0-pseudoconvex on We set X/ = lo 
 99  d) 

The set

is discrete by virtue of Proposition 2.5 since = CJ. We choose c, d
with a  c  d  a’ such that A n Xed _ 0. By the previous lemma we

can find generating 7 on By Proposition 2.5

2 on the whole of X and thus by Proposition 1.2 (b) we can ex-
tend 81,..., 8k to global 8k E .r (Xa ~ , ~ ).

Let K == ~ 2013 JF. For our problem it is sufficient to extend to

,K U Xad by a coherent analytic sheaf. It is not therefore restrictive to replace
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~.’ by Xa and # by K U So we may assume without loss of generality
that

(i) r~’ = b,
(ii) ~’ is a subs pace of some number space 4),
(iii) E £F) generate 7,, for x in X,,,

Let us denote by F the trivial extension of 9 on Let ...

be the corresponding trivial extensions of the sections

s1, .,. , sk . Let NC denote the structure sheaf of CN and let 92 c NÔk be the
relation sheaf of ... ilk on CN - K.

By the assumption = £F it follows that, on CN - = fi and
thus by Proposition 2.4, 0 .~==0. Hence on = ck. Again

by Proposition 2.5 it follows that the set prof is 0-

dimensional.

p 
N

Set Da - ... , zN) E a  fl) for - cxJ out oo.

i=1
We can choose a and fl such that

Now, by virtue of Lemma 6.1, for any choice of a’, ~’ with a  a’  ~8’  ~
we can find generating 92 on 2~. By Proposition 1.2
(b) (actually by Hartogs extends uniquely to sections

Let 9 be the sheaf of ideals defined in CN by the subspace ~". We
define a subsheaf cS of NOk as follows :

On CN - the set A where Cf¿ =F cS is an analytic set with

By [4, Lemma 2], dim A  0. Hence = ck on the whole set 

(because %21 = 92 on CN-K). Also, since cS is a subsheaf of E 2 (0, d) _
= 0. Thus by Proposition 2.4, is coherent on the whole space CN.

Let @ = I X. This is a coherent analytic sheaf on k since its

support is concentrated on 11. Moreover, @ is a subsheaf of 9 on X
and agrees with y on because of the assumption (iii).
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The set of points where ~=f= on X, by [4, Lemma 2], must be a 0-dimen-
sional analytic set. Thus 9101 (since J= Moreover 

must be empty. Thus 9101 is coherent analytic (Proposition 2.4) and

extends ]’.

The proof of this proposition is a modification of Trautmann’s method [24].

COROLLÂ.RY 6.1..Let X be a 0-coneave complex space and i : a

compactification of X such that no positive- dimensional compact subspace is
-

contained in X - i (X). Let 9 be any analytic coherent sheaf on X such that
N N

= Then there exists a coherent analytic sheaf on X such that

i- CY = 71.

PROOF. We identify X with i (X) and let q7: X- (a, oo) be an exhau-
stion function for ~Y such that on (g  a’), for some a’ E (a, is stron-

gly 0-pseudoconvex.
Set Y = (go  a’). Y is a (0, O)-convex-concave space and (.~ -- X) U Y

is a Stein completion of Y. By the previous proposition 9 Y can be exten-
ded to a coherent analytic sheaf 9 on (I - X) U Y. The sheaf 9 is obta-
ined by gluing together 9 and along Y by G Y 2%’- Y.

12. Extension of line bundles.

(a) We need some preliminaries of commutative algebra.

DEFINITIONS.

(a) A ring (commutative with identity) is called prefactorial if every

prime ideal of height 1 is the radical of a principal ideal.
(b) A ring is semifactorial if every prime ideal of height 1 is a princi-

pal ideal.
A semifactorial ring is prefactorial ; a factorization domain is semi-

factorial.

Also we recall the theorem : a noetherian integral domain which is

integrally closed is a unique factorization domain if and only if it is semi-

factorial. (cf. for instance [14]).

PROPOSITION 6.2. Let .R be a noetherian integral domain, integrally
closed, and let I be a proper ideal of R.
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(a) If R is prefactorial, there exists a positive integer k such that the
intersection I’ of all components of Ipk ( for any belonging
to prime ideals of height  1 is a principal ideal.

(b) If R is semi factorial (thus a unique factorization domain), I is a

principal ideal if and only if every associated prime ideal has height 1.

PROOF. Let Pj , ..., P, be the associated primes of I of height 1. Let

m = -R - Uf=l Pi and let RM be the quotient ring of .R with respect to

the multiplicative system M. Since R is integrally closed and noetherian,
RM is also integrally closed and noetherian. Since Pi RM, ..., Pz RM are all

the proper prime ideals of RM and they are all maximal, RM is a Dedek-

ind domain [27, p. 275, Theorem 13]. Thus, by the very definition of

Dedekind domains we have

for some non-negative integers j1, ... , jl . Every ji is positive, because

IRMc Pi RM for every i.

(a) Assume R to be prefactorial. Then Pi is the radical of some prin-
cipal ideal Rai and for some positive integer 8i. The factorization

of in RM must have the form (for ni &#x3E; 0) because,
for i # j, Pai Pj RM. Let k ... , ni . We claim that k satisfy the

requirements.
First of all, for m~ = we get

Moreover, since c Rai ... every associated prime ideal
of contains some Also, since R is integrally closed and

noetherian, every associated prime ideal of the principal ideal 2~~ ... ai i is

isolated [27, p. 277, Theorem 14] and of height  1 [27, p. 238, Theorem

29]. Thus every associated prime ideal of must be equal to some
By [27, p. 225, Theorem 17] we have

Every associated prime ideal of Ikp contains IkP which in turn contains

the product of sufficiently high powers of the associated prime ideals of I.

Therefore every associated prime ideal of Ikp of height  1 contains
some associated prime ideal of I and hence equals some By, [27, p. 225,
Theorem 17 J, Bjf.
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Intersecting both sides of (*) with R we get

Thus I’ is principal.
(b) When R is semifactorial, in the previous argument we can take

Si = ni = p === 1 and I’ = I. The « only if » part is the combination of [27,
p. 277, Theorem 14] and [27, p. 238, Theorem 29].

PROPOSITION 6.3. Let a connected normal c01nplex space of
dimension n. Let Y be a open subset of X. Let L be a holomorphic
hne bundle over Y and let E denote the locally free sheaf associated with L.
Assume that .£ can be extended to all of X by a coherent analytic sheaf 7.

(a) If Ox is semifactoriaL for all x E X - Y, then L can be extended to a
holomorphic line bundle over X (i. e. we can take ~’ locally free)

(b) I f Ox is prefactorial for all x E X - Y and if X - Y is compact and
if moreover no compact positive dimensional subspace of X is contained in

X - Y, therc there exists an integer k such that Lk can be extended to a holo-

morphic line bundle over X.

PROOF. By factoring out the torsion subsheaf of 9, we can assume
without loss of generality that F is torsion-free [1, Proposition 6]. Since
is connected and y extends E, J has rank 1 on X [1, pp. 13-14].

(a) Suppose is semifactorial for x E X- Y. Replacing 9 by 
we may assume without loss of generality 7== ~~’~-2~ (Proposition 2.4).

For any x E X - Y we can find a connected open neighborhood U of
x such that 71 U is isomorphic to an ideal-sheaf 9c (j with F# 0 [1, Pro-
position 9]. By Proposition 2.2, every asso-
ciated prime ideal of 9x has height 1 and therefore, by Proposition 6.2

(b), ~x is a principal ideal. This implies that 9: is locally free at x. Since x is
arbitrary, 7 is locally free everywhere on X, i. e. 9 is the associated s 11 eaf

of a holomorphic line bundle L extending L.
(b) Suppose X - Y is compact and that no positive dimensional compact

subspaces of X are contained in X - Y. Suppose that Ox is prefactorial
for x E X - Y. Consider the analytic set A of points of X where 9 is not

locally free [1, Proposition 8]. If A is empty, there is nothing to prove. In

any case Y. So A must be a finite set (x1 ~ ,.. ~ Select an open

neighborhood U of A with I connected components such that F U is iso.

morphic to an ideal-sheaf 0 on U. By Proposition 6.2 (a) we can find
a positive integer ki (for 1 such that for any positive integer p
the intersection I; ( p) of all primary components of belonging to pri-
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me ideals of height _ 1 is a principal ideal. By Proposition 2.2 the ideal

I; ( p) equals the stalk of the sheaf Therefore for any

positive integer p the sheaf _ locally free at x; and, conse-

quently, for k = ki... ki the sheaf (~k)~n _ ~~ ~ is locally free on U (since,

Let ~ be the sheaf obtained by tensoring 9 with itself k times and

let cS be the sheaf obtained from 92 by factoring out the torsion subsheaf
of The sheaf J satisfies the following conditions :

(i) c5 is torsion free.

(ii) cS is locally free on X - A.

(iii) c5 extends the locally free sheaf associated to Lk from Y to X.

(iv) cS is isomorphic to ~k on U - A.

Gluing together c5 on ~’ - A and on U by the isomorphism
(iv), we obtain a locally free sheaf of rank 1 which extends to all of X

the sheaf associated with Ek on Y. We note that the sheaf we have obtai-
ned is nothing else than the sheaf 

§ 7. Projective imbeddings of nianifolds of dimension &#x3E; 3.

13. We have already established a criterion for projective embedda-

bility of 0-concave spaces with Theorem 4.1. There the crucial assumption
was the existence on the space of a holomorphic line bundle .L such that

the associated ring  (X, .L) had the property of separating points and giving
local coordinates. In this paragraph we want to show that, for manifolds
of dimension &#x3E; 3 the assumption that separate points can be

dropped.

LEMMA 7.1. Let fi , ... ~ fk be holomorphicfunctions defined in a rceighbor.
hood U of 0 E C’~. Consider the Levi form at the origin

of the function 99 = log (1-~- 12). Then .C~ (99) is positive semidefinite
and it is positive definite if and only if f, , ,.. , fk gives a set of local coor-

dinates of Cn at 0.
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The proof is a verification based on the identity

k 
-

where go, ... , gk are holomorphic functions with -Y 0.
i=o

THEOREM 7.1. Let X be a 0-concave complex manifold of dimension n &#x3E; 3.
oo) be afn exhaustion function for X which is strongly 0-pseu-

doconvex on (q C a’~, where a’ E(a, oo). We assume that there exists a holo-

morphic line bzcndle L over X such that the graded ring -cl (X, L) gives local

coordinates on 199 &#x3E; a") for some a" E (a, a’). Then X is isomorphic to an
open subset of a p1’ojective algebraic variety.

PROOF. Let D = 199 ] a"). Moving a" a little toward a’ and eventually
replacing L by a sufficiently high poRTer Lh of L, we see that without

loss of generality we may assume that a finite number of sections

f, , ..., give local coordinates at each point of D (cf. part (a) of
the proof of Theorem 4. 1). At each point of D one the sections f1,... , fk is
non-zero, therefore the sheaf E associated to L is generated on D by
ft , ... ,fk. By Proposition 5.2, X admits a minimal 0-normal compactification
Xe Since the normalization of X1 is again a minimal 0-normal compa-
ctification of X, the space ~i must be normal. The structure sheaf of ~1
will be denoted by C~1.

3, = E. So, by Corollary 6.1, the sheaf E can be exten-
ded on ~1 by a coherent analytic sheaf 9. Factoring out the torsion sub-
sheaf of 9, we may assume that F is torsion-free. Also we may replace 9
by which is again coherent (Proposition 2.4). By Proposition 2.5,
prof J&#x3E; 2.

Let Y = (q  a’) and set Y U (Xi - X). Then Yi is a (normal)
Stein completion of Y. By Proposition 3.1 ~ the restriction map

is bijective, so that each fi extends uniquely to a section fi’ E T ( Y , ~).
The sections fl’, ... , fk’ generate 9 on D.

Since the singular set S of ~1 is contained in must be a

finite set S = ... , xi) . Here we apply a result of Hironaka-Rossi (Lemma
5 and Corollary 2 to Lemma 5 of [11]) which states the following:
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There exist an open neighborhood U~ of x~ and a coherent ideal-sheaf

9i on Ui such that is the zero set of Fi and such that the complex
space obtained from Ui by the monoidal transformation with center at

°1/9¡) is non-singular.
Let J be the ideal sheaf on X1 which agrees with O1 

with 9i on Ui for 1  i  Z, and let ~ : (X2, --~ C~1) be the monoi-
dal tranformation with center (S, Oii9).

Let 9S the sheaf obtained by factoring out the torsion subsheaf of

W1 on X2. As in Proposition 6.3 (a) the sheaf cS = C)?[n-2] is locally
free of rank 1 on ~2 and we have a natural sheaf homomorphism

Let fi" be the unique section of F(X2, W1 (9)) which by the natural map

corresponds to the section Let ft"’ = À ( f,;"). Let Z be the subsheaf of c$
generated by the sections f,"’, ... The sheaf 1: agrees with c5 on 4Y-1 (D).

Let us consider the conductor sheaf A of ’e into cS :

Since d is locally free, ,~ is locally isomorphic to 1:. Let T be the zero
set of sfl. Obviously T n (D) _ ~ since on 4$-I (D) we have d = 1:.

must be a finite set ; ~ (T) _ (y1, ... ~ y~ ~.
By the Remark 2 of [11], for every point of X1 we can find a neigh-

borhood W such that Ø-l ( W) is isomorphic to a subspace of W X PN for

some N. By Lemma 7 and Corollary 2 of Lemma 5 of [11] for each y, in

Xl we can find a neighborhood W, and an ideal sheaf Ji on 0-1 with

zero set T n Wl (yi) such that;
(i) the monoidal transformation tP,: T~~ --~ Ø-l ( Wi) of W1 

with center (T n 4)-1 (yi)l is non-singular
(ii) is a locally free sheaf on 

We may assume that W, , ... , Wm are mutually disjoint. Let g be the
ideal sheaf on X2 which agrees with O2 on X2 - T and with gi on 
and let 4Y’ : X3 -+ X2 be the monoidal transformation with center (T, C~2/~).
Then X3 is non-singular and is locally free.

Since 2 is locally isomorphic to sil, it follows

that 93 is a locally free sheaf of rank 1 on ~’3 and hence is the sheaf of
germs of holomorphic sections of a holomorphic line bundle B on X3.
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By the natural map 1:) ci3), to the section 1/" of C corre-
sponds a section fi* of B. Since 11’’’’ generate 1: on X2, fl ,... ~ fk’~ ge.
nerate cB on X3.

By Corollary 2 to Lemma 5 of [11] there exists a coherent sheaf of

ideals fK on X1 with zero (T) such that 4$ o 4S’ : X3 is the

monoidal transformation with center (S U 4$ (T), Let o 4Y’ and

let e = (9C). e is locally free by construction and it is thus the sheaf

of germs of holomorphic sections of a holomorphic line bundle C on X.
Let (~ _ (X1- ~’) ~ ~~  a’~ and let (~’ = Wl ((~). We claim that

sIl (G’, C) gives local coordinates at every point of G’.
Let x E (~’ and let t1t be the ideal-sheaf on Xs defined by (x). By [11,

Lemma 2] we can find a positive integer h’ such that, for ~~1,

where Rq’P denotes the qh direct image sheaf under W of the sheaf in

parenthesis.
Since Q is proper, and are coherent

([7]) and, since (~ is Stein, we get

From the short exact sequences of sheaves

and from the corresponding cohomology sequences we conclude that

are surjective maps. Thus we can with go (x) ~ 0 and
such that their images in , generate

this vector space over C. Therefore the images of g1/g0’ ... , gr/go in (m/m2)x
generate this vector space over C. This implies that r (0’, eh’) gives local
coordinates at x.

7. Annali della Scuola Norm. Sup. Pita.
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Let a* E (a", a’), let K = (Xl - X ) U 199 ::!~ and let .g’ = (K).
We can find a positive integer h and a finite number of sections vo , .,. , vp
of e h over G’ such that vo ~ ... ~ vp give local coordinates at every point of
K’, and therefore in an open neighborhood H of .g’ in (~’.

For a holomorphic line bundle A, we denote by I the CC° real line

bundle with transition functions equal to the absolute values of the tran-
sition functions of A. In particular

and has the property to be # 0 on H. By partition of unity we can find
a C °° section a E r (X3 , ~ 1 ) which agrees with ( vo 12 + ... 12)112
on an open neighborhood H’ of K’, and is nowhere zero on X3. Then

is well defined on ~3 and is positive definite on H’. Let us consider

By the previous lemma a a log is positive semidefinite and well defined
on X3 and it is positive definite on (D). Now ~’3 = H’ U P-1 (D), and
actually ~3 - ~’ c c Tf -1 (D). Thus we can find a positive integer q such
that

Therefore, since Urq E I Ch and since a a log Qzq &#x3E; 0, the ho-
lomorphic line bundle Ch 0 Bq is positive [8, p. 343]. Therefore X3 is an

algebraic manifold by a theorem of Kodaira (cf. [8, Satz 2]). The biholo-
morphic map sends X isomorphically onto an open subset of ~’3.

REMARK. We do not know if this theorem is still valid if we allow A

to have singularities. Also a remark analogous to Corollary 4.1 does not
follow any more from the proof.

14. Some examples of non-imbeddability. We are going to give examples
of 0-concave manifolds of dimension 2 which cannot be compactified. This
will show the r8le of the assumptions made in Proposition 3.2, Corollary
3.3, and Theorems 4.1 and 7.1.

We will make use of the following criterion for the non existence of a
compactification :
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PROPOSITION 7.1. Let connected manifold. Let U be open
in V and let K be compact. We that U - K is (0, 
cave and is a Stein completion of !7 2013 K, Let X connected com-

plex manifold and n: V - K a holomorphic map making X A-

sheeted ramified covering of V -Ie with a compact ramification set 
- U (4). If dime and if V - E is simp ly-connected, then either A= 1
or else X be compactified.

PROOF. Suppose that X is an open subset of some compact complex

space X.
Let Y = X) U (~ 2013 K). Y is a 0-convex open subset of ~.

Let S be the Stein space obtained by the reduction y : Y 2013-~ ~ of Propo-
sition 1.1. Let A be the finite subset of S where is not single-valued.
Since (A) is nowhere discrete, we must have y-1 (A) [4, Lemma 2].

Let X* be the compact complex space obtained from X and S by
identifying x E X and g E S whenever x E n-I (U - K) and y (x) = 8.

We can regard X as an open subset of X. so that we can assume

without loss of generality that no positive. dimensional subspaces of X are
contained in Also, replacing X by its normalization, we may as.
sume X to be normal and connected (thus irreducible).

In this situation Y is a 0-normal Stein completion of the (0, 0) convex-
concave space 7t-l (U - K). By Corollary 3.1, can be ex-

tended uniquely to a holomorphic map a: Y- U. We claim that 
Let v E U - K and K -+ (a, b) be an exhaustion function on

~2013IT. Let Then is a

0-normal Stein completion of (W - K) and n (W - K) extends
to a holomorphic map

Since both g and 1: extend a 11l-1 ( W - K), they must agree on (11 - X ) U
U ~-1 (W - .g). Thus v ~ a (~’- ~). The claim is proved. We define a ho-

lomorphic map a : X --~ V by setting
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Let B the set of singular points of X. Since B c X - X, it must be a

finite set. Let C be the set of points of .Z2013J5 where Z has a vanishing
Jacobian. We have C and C is at most 0-dimensional. Indeed any

positive-dimensional irreducible component of C in .X~ - B has an analytic
closure in ~ (by the theorem of Remmert-Stein [9, Theorem V. D. 5]).

is a finite set and dime V &#x3E;_ 2, V - §i (B) - E is simply-
- - -

connected. (B) is a 0-dimensional subset of 

So is again simply-connected.
- - - -

Now is a topological covering over the
N N N

simply connected space U C) - B’. Since is irreducible X -
N N N

- ;-1 6l (B U C)) - (B) is connected. Thus A = 1.

15. We now proceed with the construction of the first example. We
will denote by [uo ~ 9 ul] homogeneous coordinates in P, , by [zo , zi , Z2] ho-
mogeneous coordinates in P2 , y and by [vo, vi , v2 , y V3] homogeneous coordi-
nates in P3.

For e E C* we consider the non-singular quadric of Ps :

All non-singular quadrics of P. are isomorphic to P, X P . Thus V is

connected (and simply-connected).
We define the following functions on Pi :

Let a : P2 - [1, 0, 0] --~ P~ be the projection given by z !2013~ a (z) = ~z1, zz].
We define a non-holomorphic map p : P2 - [1, 0, 0] - P3 by the following
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equations :

Direct substitution shows that 1m cp c V. The image of 99 does not cover
all of V and actually [1, 0, 0, 0] E Indeed, for we have
the identity

Thus, if then But, if 
2

z2

= v2 - (x z» = 0, and, if z2 = 0, 1 = = 0.
2

This is impossible, Since z E P2 - [1, 0, 0].
Consider the following diagram

where ,

Direct substitution shows that, if v1z2 = v3zi and 

= ’l.’2Zi. So the diagram is commutative and B is holomorphic.
Let A = (vE vo = vo = 0). Note that

[1, 0, 0, 0] E A. We want to show that q; makes P2 - [1, 0, 0] a two sheeted
ramified differentiable covering of V - A with ramification set .E =

== (v E = 0).
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From (1) we deduce

Now, if z E P2 - [1, 0, 0] and v E V satisfy (3), we must have v E V - A
and, since

and

we must have a (z) (v). Moreover, we get by direct computation

for v E V.

This shows that, if vo =1= 0, cp-l (v) c (z E P2 ~ zo ~ 0) and consists of
two distinct points. In fact, the inverse map is given by

where the signs of the square roots are taken in such a way that their

product equals 2 v3 
vo /

For Vo = 0, T-1 (v) consists of a single point (0, z2) = (o, 1 v 1 _

= (0, V3 , V2) (note that Va 2 v2). 
’

Therefore P2 - [1, 0, 0] is a two-sheeted ramified differentiable covering
of V - A with ramification set E.

We can give now to P2 - [1, 0, 0] the complex structure of a two-di-
mensional complex manifold Z such V - A is holomorphic.

It is obvious, for any point with q; E, how to define such
a complex structure. If v° = q; (z°) E E, then the complex structure will be
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defined at z as follows : Let Wi , w2 be local coordinates in a neighborhood
U of vO such that U n E = = 0). Then we can consider on cp-l ( U) the
unique complex structure on which CP.w2 and are holomorphic
for any determination of the square root.

Let ,g = {v E vo = 0). By virtue of (4), H f1 A = ~. We identify
P3 - .g with C3 so that A will be a compact subset of C3 contained in
some ball g of C3 centered at the origin.

Set X = ( Y - ,g ) and let D = q-i (E). Since Y - K is 0-concave
and E n g = 0, X is 0 concave. Let .L = (E p { be the bundle of the

hyperplane section on V and let L’ _ (L) the corresponding line bundle
on X.

Since  L) gives local coordinates at each point of V, it follows

that -ci (X, L’) give local coordinates at each point of X - D.
Now V - E is simply connected since it is the affine part of a non-

parabolic quadric and these all have the same homotopy type of a 2-sphere.
It follows that

(a) ~’ is 0-concave but cannot be compactified,
(b) X - D is (0, 0).convex.concave but does not admit any 0-normal

Stein completion.
In particular the assumption prof 0 ~ 3 in Proposition 3.2 and the

assumption of 1-normality in Corollary 3.3 cannot be relaxed.

REMARK. We do not know whether sf{ (X, L’) gives local coordinates
over D (indeed we think this fact doubtful). The example given here is the
same (apart from a necessary slight change) as the one given in [13].

16. Let us consider in P. the Kummer surface g2 (z) corresponding to
the complex torus with periods (I, z) where z is a point in the Siege1 up
per half plane 912 of rank 2.

For z E g{2 outside a proper analytic set the Kummer surface is a sur-

face of order 4 with 16 isolated conical points. It is given by parametric
equations

where = 0, 1, 2, 3 and where 0 [p] (u ; z) is a basis for theta functions of

second order with periods matrix (I, z).
These parametric equations exhibit a holomorphic map

from the torus T2 (z) corresponding to the periods matrix (I, z), identitying
to the quotient of T2 (z) by the changing
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each points of T2 (z) to its inverse. The 16 double points are the images of
the fixed points of T.

The proof of all these statements can be found for instance in [3, n. 11].
We fix once for all the period matrix z. Let G (v) = 0 be the equation of

K2 (z). It is given by the vanishing of a homogeneous polynomial G (v)
of degree 4 whose partial derivatives BGlav; , for 0 i  3, have 16 dis-
tinct nontrivial common zeros pi , ... , iple -

We consider in R X P3 the set

If we assume, as it is permitted by a convenient choice of coordinates in

Pgy that (vo = 0) does not contain any of the points then it follows

that q9 is manifold. We consider CV via the projection as a

1-real-parameter family of algebraic surfaces :

w-1 (0) is the Kummer surface and is a non-

singular algebraic surface.
We select for each point p = p; a small neighborhood U = U; with

U f1 (roo = ol _ ~ and we can select in U near p holomorpbic coordinates

such that the holomorphic function

has the form

where are defined in the ball

We set wi = xi + ý- 1 Fix e &#x3E; 0 (such that 3e  2) and consider the
set
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The map

where is a diffeomorphism of 0 onto the set

for A E R and I Â I  8/4. Note that = Å implies x ~2 = 1 -~- ~ y ~2. So
on C~ ~

Now we can select 6 &#x3E; 0 so small that

i) for 0  I  6, (~,) is non-singular,
ii) 6  e/4,

and we consider flfl8 = w-1 (- 6, 6). Over each U the projection ~c = I cig
is an isomorphism. We consider

where the union is over all 16 U = U; .
From what preceeds it follows that, letting ro 

--~ (- 6, 6) has the following properties :
(~) it a- family nf complex analytic non-singular manifolds,
(b) this family is differentiably trivial if 6 is sufficiently small.
The first assertion is clear. The second follows from [5, Proposition 4]

since the mapping 0 : C X (- 3, 8) shows that the family is rigid
(differentiably) at infinity.

Consider now this is the Kummer surface from which we have

removed 16 connected neighborhoods of the 16 double points.
Let e - be the double covering of obtained from the

torus T2 (z), where e =o-I This is a connected non-ramified 2-she-

eted covering.
By the remark (b) differentiably x (- 6, + 6). Thus e X

X (- 6, -~- 6) turns out to be a two-sheeted unramified covering of ~ by
a map
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To each fiber e X (t) we can give a complex structure which makes

v e a local isomorphism. 
-1

Select to E (- 6, 6) with to ~ 0. We take V = W-l (to) and X = y-i 
and we apply Proposition 7.1 to the natural V. If we take

for IT the set V and for K the subset U 12  B/2)) we
v v

conclude that X cannot be compactified.
Now, if .L is the line bundle of the hyperplane section on V and

L’ = yl (L), then, since 0 is an unramified covering, (X, L’) gives local

coordinates everywhere.
Also w-’(to) is a 0-concave surface, because the neighborhoods we

have removed from V = cc-1 (to) have a smooth strongly Levi-convex boun-
dary. Therefore .~’ is 0-concave.

This example shows that in Theorem 7.1 the condition on the dimen-

sion cannot be removed. By virtue of Theorem 4.1 in the previous example
nl (X, L’) cannot separate points.

§ 8. Finite generation of the ring ,~ (X, F).

17. Let 7 be a locally free sheaf of rank 1 on an unreduced compact
complex space X. On the reduction ~’ of X, the sheaf induced by 9 is

the sheaf of germs of holomorphic sections of a holomorphic line bundle F.
Let F* denote the dual bundle of F. We call the sheaf 9 positive if the

bundle space of F’~ is 0-convex.

PROPOSITION 8.1. Let positive on X and let c5 be any coherent

sheaf on X. There exists an integer ho = ho (c5, J) such that

for p)0 

PROOF. The theorem is known if X is reduced (cf. [2] and [8, Korollar
on p. 344]).

Let 9C be the sheaf of nilpotent elements in the structure sheaf of X.

Let cSr = clICK" cS for r &#x3E; 0. For some k &#x3E; 0 we have (since X is compact)
cS = C5k -

Now c5 can be regarded as a coherent analytic sheaf on X’.
Hence we can find an integer ho (r) such that
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From the exact sequence of sheaves

we get HP (X, dr+l ® C¡:h) ~ Hp (X, dr @ for h &#x3E; ho (r) and p &#x3E; 1. Thus

for h sufficiently large we get, for p &#x3E; 1, .~p (X, c5 ® ~ Hp (X, do ® gh) = 0
since do = 0.

LEMMA 8.1. Let M = Mh, N = Nh be graded C-algebras and

let f : M -+ N be a homomorphism of degree zero. We assume that
i) for every h &#x3E; 0, Mh and Nh are finite.dimensional,
ii) N is ,finitely generated,
iii) for h sufficiently large (h &#x3E; ho), f (Mh) = and

iv) there exists an s E Mk ( for some lc _&#x3E; 1) such that for h &#x3E; k,

Then M is also a finitely generated C-algebra.

PROOF. For x in M or N we will denote by d (x) its degree.
We select p &#x3E; k such that N h generates N, and f (Mh) = Nh for

h _&#x3E; p.
First we show that Nh generates the subalgebra Nh of N.
Let x E Nh, for h’ &#x3E; p so that x is a sum of products with

d (Xi) We define 0 = ro  r1  r2 ...  by the following con-

ditions :

Since d (x) &#x3E; p, we must have s ~. 0. Set

Since we have

Now and this proves our contention.



272

We now show that 

c s + subalgebra generated by Mh .

Let x E Mh, for h’ &#x3E; p. By what we have proved before we can write

where p  d ( y~r&#x3E;)  3 p.
Since f (Mh) = Nh for /~~~ we can find such that 

and d (z[r)) = d (~)). Therefore 
’ ’ ’

This proves (*). By using induction on h’, we conclude that Mh, is contai-

ned in the subalgebra generated by for any h’ &#x3E; p. This proves
the lemma.

PROPOSITION 8.2. If positive locally free sheaf of rank 1 on a
cornpact unreduced space (~, 9~)~ then r (~, finitely generated
graded C algebra.

PROOF. We can proceed by induction on the dimension n of X since
for n = 0 the proposition is obviously true.

0 and let Z1, ... , Zi be the irreducible analytic sets which

appear as irreducible components of EP (0, 9l) for some p, The number of

these sets is finite since, for p ? n, EP (0, = X.

Take Xi E Z; such that x1, xd are all distinct and let Xi , ... , Xm be
the irreducible components of X. Take Yi E ..., Xd so that the

... , ym are also all distinct.

For x E X let m (x) be the sheaf of ideals defined by the point r. Let
9 = m (Xi) + m (y~). By Proposition 8.1 for large k

Thus we get a surjective map:

In particular we can find s gk) such that .8,,i # 0 for 1 

8yj # 0 for 1 _ j  m. By Proposition 2.3 the sheaf homomorphism defined
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by multiplication by s :

is injective.
Let Y be the zero set of s and left 9 be the conductor sheaf of Jk

into 9~ s :

Then (Y, 9l/9) is an unreduced compact complex space of dimension  n
is a positive locally free sheaf on Y of rank 1. By the

induction hypothesis gh) is a finitely generated C-algebra.
Consider now for h &#x3E; k the exact sequence ~

where is defined in a natural way by Jh/Im (s) ~ gh. We deduce the
exact cohomology sequence:

Now for large h (Proposition 8.1 ) Hi = 0. Moreover Ker flt =
Sr (X, gh-k) for h &#x3E; k.

Taking Mh = r (X, Nh = r (Y, and fh = pt in the previous
lemma, we obtain the contention of this proposition.

For the case of a non-compact space we have the following criterion
of finite generation.

THEOREM 8.1. Let X be a normal irreducible 0-concave complex space of
dimension &#x3E; 3. be the minimal 0-normal compactification of X. Let L

be a holomorphic line bundle on X such that for every positive dimensional
subvariety A of X there exists an s E r (X, Lh) ( for some h = h (x)) such

that s vanishes at some point of A but not identically on A. Assume that at

every point of X - X the local ring is semi-factorial. Then -c~ (X, L) is a

finitely generated C-algebra.

PROOF. Let E be the locally free sheaf of rank 1 on X associated to

L. Since .~ is 1-normal, = E. Therefore, by Corollary 6.1, E can be
extended to a coherent analytic sheaf on the whole of X.

Since the normalization of X is again a minimal o-normal compac-
tification of X (by Proposition 5.1), it follows that X must be normal. By
Proposition 6.3 (a), L can be extended to a holomorphic line bundle Z over X.
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X -+ (a, oo) be an exhaustion function for X and let a’ E (a, 00)
be such that, on (q  is strongly 0-pseudoconvex.

Set Y = (q  a’) and Y = (X - X) U Y so that h is a Stein com-

pletion of the (0, 0)- convex- concave space Y. For the sheaf u we can take
the associated sheaf to 1 so that, because X and ~ are 0-normal, 2

and prof U~: 2. Applying Proposition 3.1, we get for every h &#x3E; 0 that

the restriction map

is bijective.
It follows that the restriction map

is an isomorphism for all h &#x3E; 0. In particular we get

We are going to prove that L is positive by using the criterion of Grauert
given by the Lemma on page 347 of [8]. In view of that criterion Z is

positive if for any nowhere discrete analytic subset A of 3i we can find
and which vanishes somewhere on A but not identically

on A.

Now -9 being a minimal 0-normal compactification of X, by Proposition
5.1, we must have so that is a positive-dimensional
subspace of X. By the assumption there exists s E T(X, Lh) vanishing so-
mewhere on A n X but not identically on A n X. The unique extension

shows that Grauert criterion is satisfied for E.
It is now enough to apply Proposition 8.2 in view of the isomorphism(*).

COROLLARY. Let X be irreducible 0-concave of 3 admitting
a minimal 0 normal compactification with the property that at each point

of ~ 2013 ~ the local If L is a holomorphic line bundle
on X such that the graded (X, E) either separates points or gives local

coordinates on X, (X, finitely generated 
In particular if X is a manifold of dimension &#x3E; 3, connected and 0-

concave, whose minimal 0-normal compactification X is still a manifold and

if, moreover, X admits a holomorphic line bundle I as in this corollary,
then X is projective algebraic and is finitely generated.
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REMARK. If the assumption on the semijactoriality of the local rings
of X - X is i-eplaced with the assumption of prefactoriality in the preceeding
theorem and corollary, the conclusion will be that for a convenient integer
k &#x3E;. 0 the graded ring -qf (X, -LL*) is a finitely generated C-algebra.

18. The last theorem and corollary are not very satisfactory criteria
for the reason that the type of singularities one expects in the compactifi-
cation X of X are (by the very construction of X-) the singularities one
obtains by the reduction of a normal 0-convex space. These singularities
are isolated normal but, apart from that, they do not present any other
special feature; in particular we cannot expect their local rings to be, in

general, semifactorial.

Another (equally unsatisfactory) criterion for the finite generation of
sti (X, L) was given in [4, Corollary to Proposition 10]. Comparing that to
the present criterion one may ask the following question.

Let V be an isolated singularity obtained by K blowing down » in a
complex manifold a compact analytic subset of codimension 2. Is the

local ring of V prefactorial I The answer is negative as it is shown by the
following example of David Prill.

19. The example of Prill. Let be a compact Riemann surface and
M be a holomorphic vector bundle over M whose bundle space V

is 0-convex and has fiber dimension k &#x3E; 2. We identify M with the 0-section
of V. For instance we can take the sum of k copies of the negative of the
line bundle of the hyperplane section of some projective imbedding of M.

By reduction we can find a normal complex Stein space X, a point

z E X, and a holomorphic surjection a : Y--~ ~’ such that oc: Y - ~ ~ X - (z)
while aw (x) = M.

PROPOSITION 8.3. The local ring of X at x is not prefactorial.

PROOF. (a) Fix a C°° hermitian metric on the fibers of V so that, for

v E V, I denotes the length of that vector. Set for r &#x3E; 0

We have a commutative diagram
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where 6 is the map which associate to each line bundle its Chern class

and M O* and are respectively the (multiplicative) sheaves of germs of
nowhere zero holomorphic functions on M and V. In the following diagram

the row is exact, y induced by nr is an isomorphism (since Vr is contra-

ctible onto the 0-section), B is induced by Yr c Yr, and by Thom isomor-
phism (cf. [21, Lemma 5.7. 16 (a)]),

In particular for s = 2, since k &#x3E;_ 2, we conclude that fl is injective and
therefore

is injective. This implies that:
if $ is a holomorphic line bundle on l~ with non-zero Chern class, then

on Vr’ is also a holomorphic line bundle with non~zero Chern class.

(b) Let p E M, since M is of dimension 1, (p) is of pure codimension 1.

Therefore Z = wl is of pure codimension 1 in V and A = a (Z) is of

pure codimension 1 in X.

Note that A is locally irreducible at x since, for every r, Z f1 v, is

connected.

The ideal P associated to A in the local ring of X at x is therefore
prime and of height 1.

We will show that P is not the radical of a principal ideal.

Suppose, if possible, that P is the radical of a principal ideal. In some
neighborhood U of x, A = {y E U, h (y) = 0) with h holomorphic on U. Let

f = h o n.
Let r be so small and let us consider on V r the fol-

lowing sheaves: 9 = Of (where 0 is the structure sheaf of V) and the

sheaf J of ideals defined by the anlaytic set V/.
Let z E Z n V§l. For some integer n &#x3E; 0 we must have

The analytic set in Pr where 9 and gn disagree is a proper analytic subset
of Z and therefore it is of codimension &#x3E; 2. But 9 are both locally
free each point of F/.
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Now 9 ~ 0. So 0. If $ is the holomorphic line bundle over M de-
fined by the divisor p, (~) is the holomorphic line bundle associated with
the divisor Z on By the above remark a-’ (~1) is trivial. But then

~n should be trivial on M. This is not the case since b (~’~~ = ± rc =1= 0.
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