
ANNALI DELLA

SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

JAN PERSSON
Global linear Goursat problems for functions of Gevrey-Lednev type
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3e série, tome 23,
no 2 (1969), p. 387-412
<http://www.numdam.org/item?id=ASNSP_1969_3_23_2_387_0>

© Scuola Normale Superiore, Pisa, 1969, tous droits réservés.

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASNSP_1969_3_23_2_387_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


GLOBAL LINEAR GOURSAT PROBLEMS

FOR FUNCTIONS OF GEVREY-LEDNEV TYPE

JAN PERSSON

1. liitioduction.

The purpose of this paper is to prove two theorems for global Goursat
problems. Theorem 1 in section 4 covers equations with variable coefficients.
It generalizes the theorem in [7]. Theorem 2 in section 5 is restricted to

equations with constant coefficients. It covers both the first part of theorem 1
in [4] and theorem 1 in [6]. The proofs depend on a unification of the

exponential znajorization, used in [6], with a generalization to the classes

y (fl, 6, d) in [6] of the characterization of entire functions in [7]. The reader
is referred to [7] for further details of the background of the problem. We
shall also give some comments in section 6 belovl.

In section 2 we introduce the necessary notation and give some defini-
tions. The lemmas used in the proofs of the theorems in section 4 and 5

are stated and proved in section 3.

2. Preliminaries.

Let x = (xl 9 x,t’+i 9 ... Xn) = (X’, x") X where 1 ~

S n’ ~ n. A multi-index with non-negative components is denoted by a

Greek letter a = (a1, ..., o~). We define 2)~ = (Dxi , ... , = (~/9.r~..., 8/axn)
and we write Dx = D’i ... We also write xa = X"i ... +x 

xi n 1 n

--...--a,, We define a 6=--&#x3E;

and (ar) = b ! (oc! - x) !)-I when a 6. Let
a

We define We shall also use variables

Pervenuto alla Redazione 1’8 Gennaio 1969.
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(y, .1:) E lis X Rn, y E Rll, X E Rn. For these variables we use the natural exten-
sion of the definititions above.

DEFINITION 1. Tlze function p (t), t &#x3E; 0, iR continuously dif-
If it satisfies tlae conditions

(2.3) p (t) tends monotonically to -f - oo when t - -~- oo,,

(2.4) p’ (t) tends monotonically to zero when t - + oo,
and

(2.5) p (t)/t and p ( p (t))It are decreasing,

then p is said to belong to the clasi P.

We note -that ( p (t)/t)’= p’ (t)/t- p (t)/t2. The mean value theorem says that

It now follows from (2.1) and (2.4) that

Thus p (t)lt is decreasing. Then it follows from this, (2.1) and (2.3) that

is decreasing. Therefore (2.5) is a consequence of (2.1), (2.3) and (2.4). It

has been incorporated in the definition of 1’ because it will be convenient

in the following. It also follows from (2.1)-(2.4) that p E P -&#x3E; kp ( p (t)) E P,
for some k &#x3E; 0.

DEFINITION 2. The .(unction g (y, x) is complex-va,lued and defined in .Re+n,
6 E Rn and B E Rs are multi-indices, and d E Rn, dj &#x3E; 0, 1 ’5:"j The deriva-

tive8 D~ D, x g, y f-, fl, all ~, exist and are continuous together ivith g itself. If
to every c01npact set K c R,,+n there exists a constant C &#x3E; 0 and a function

such that

then g is said to belong to tlae function class y(fl, ð, d). Here 0-1=1 in (2.6).
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Lemma 3 in [7] and the computing after definition 1 above shows that
definition 2 is identical with the definition of y (fl, b, d) in [6], since we may
as well use the factor (~d/p (~d))~d in (2.6).

The function g E y 8, d). We write

if

and

3. The fund81uental lemmas.

We are now going to prove the lemmas that will be used in the proofs
in sections 4 and 5.

1. The vecto). à E Rn and 1, 1 n. Then it follows that
there exists a constant c &#x3E; 0 independent of ~ and d such tha,t

PROOF. The left member in (3.0) is equal to 1 = 0. Since

~r1 ~ ~ ~ ~, ~ ~ 0, we see that the left member of (3.0) is always majorized by

But according to the proof of lemma 1 in [5] there exists a constant
c &#x3E; 0 such that

Thus lemma 1 is proved.

LEMMA 2. The function u (y, x) is defined in all R-1 X Rn, fl E Rs, and

,~ = (ðf ... , 8,z , 0, ..., 0! E Rn are multi-indices, and d E Rn, dj = 1, 1 ’5:.j =:;;: n’,
dj ~ 1, 1 ~ j ::;: n. The function u and all its deriroatives mentioned beloqv are

continuous and u = 0 (yfJ xa), To eiery r &#x3E; 0 there exists a p E P. Tlae constant
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k chosen so great that

and (g (t))t-1 is increasing t ~ 1.
We define

Let

The constant K &#x3E; 1 is chosen such that

and

The following inequality is satisfied

The multi-indices y E R’, and oc E Rn satisfy

Define t by

Then it follows that

It follott,.g from (2.5) and the choice of k that the right member
of (3.4) is an increasing function of ~d. This turns out to be an essential poiyzt
in the proof in section 4.

If (3.3) is true with some K, it is always possible to choose a greater K
that satisfie8 (3.1) and (3.2) without violating (3.3). This we shall do several

times in the following when we adjust k upitord8, although the adjustment of
K is not always stated explicitly.
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PROOF. The proof is a modification of the proof of the lemma in [6].
It is based on the simple principle of exponential majorization. For a given
k &#x3E; 0, we get

It is obvious that there exist multi indices p, p, ~ a, and q such that

Note 8 implies  j ~ n. It also follows that 14d -

We denote integration from the origin by negative powers of Dy and Dx .
Remembering that u = we get

It follows from (3.3) and repeated application of (3.5) that

Now wehavewith and 

If ~ ~= 0 then +s and

because of (3.1).
If s = 0 then

If qd = 0 I 
If q ~ 0 then qd = ~d - e~&#x3E; 1 because 1, 1 ~j ~ n. So (3.4)

is proved in the case 8d - ~; 1.
Let t = ~d - 1. Then qd = t + 8. So we get
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Here we have defined I~’ by

If we can prove that 1, then we are through. Now (2.1), (2.3) and
t h 1 implies

It follows from (2.1) and (2.3) that

Because of (3.2) we now conclude that

and

It is now clear that

The lemma is proved.
Next we prove a modification of lemma 2 in [7].

LEMMA 3. The junction p belong to P. The number e is restricted by
0 C ~ ~ 4-1. The number k is the same constant as the k in the hypothesis
of lemina 2, zoath the additional condition that

1he function g,~ (t), 0 ~ t ~ n - 2-1, is defined by

It follows that
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It follows that thei-e exist a corzstant C &#x3E; 1 such that

REMARK. Note that e-k(1+-) Un (t) in (3.8) is a decreasing function of k
for every it and t.

PROOF. We look at

The mean value theorem says that for some 0, 0  0  1,

So we now see that

It follows from (2,1 ~ and (2.2) that for az great

Now we have

and

It follows from (2J) that Oil (0) tends to zero when n tends to infinity.
Now t is restricted to 1  t _- ?i, - 2-1. The is defined as

We differentiate f,,.
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The goal is to determine the maximun point of fn and then estimate the
value (t) in this point. All the reasoning in the following is based on

the assumption that it is great.
If t h 2-1 n, it follows from (2.2) and (2.3) that

It follows from (2.1), (2.3) and the choice of k that

It is also noted that

But that means that

The maximum point of fn will be found in

From now on we denote the maximum point of fn by t. We define

It follows from fn (t) = 0 and (3.9) that

The mean value theorem says that for some 9, 0  0  1,



395

Here b is defined as

A look at (2.1)-(2.4) shows that

From -(3.11) and (3.12) it follows that

It follows from the properties of p, and from 1  t  2-1 it that

Thus we estimate log p (t) by

But p (t) and log t are increasing and we get

Nov (2.1) gives

We may also estimate log&#x3E; p (t) by

From this we conclude that

The maximum point is inserted in Since

and since
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it now follows that

We rewrite this as

We now use (2,1), (2.2), (2.3), and (3.13) and get

It follows from (3,16) and t -g.’ 2-1 n that

Thus we have proved that

We now lee that

It follows trow (4.17) that

I

So (3.7) io proved, It follows from (3.7) and the oontinuity that (8.8) is true
too. The lomma ib proved.

Lemml 8 In [7J lfl restated as lemma 4 in a somewhat modified 

LaMMÀ 4. Lot d) &#x3E; 0 bi a ~~ ~ 0,
1  j  fi, &#x3E; 1/

then it follows that IUfl" that
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PROOF. Let

It follows that g (s) ---&#x3E; + oo when 8 --&#x3E; + oo .
Since dl &#x3E; 0 it also follows that ~d ~ c ~ ~ ~ , I for some c &#x3E; 0.

So if f (~, d) &#x3E; 1, then we have f (~, d) h Z. Since

j is continuous it follows from f (~, d) ~ 0 that for 0

Thus we have proved that g (0) &#x3E; 0.

It is then easy to construct a piecewise linear strictly increasing con-

tinuous function go (s) such that go (0) &#x3E; 0, go (8)  g (s), go (s) -+ + 00 when
8 - + 00 , and such that the derivative exists except in at most integer
points. Then ~~e use the proof of lemma 3 in [7]. Lemma 4 is proved.

LEMMA 5. Tlce fU’nction u (y, x) is defined in all R-1 X E RS and

a = (61 ) ... ~ bit 1) 0, ... , 0) E R’ll are 
0, 1 ’5:.j S n. The function it a,nd all its derivatives ntentioned below are

continuous and

In connection zaith )’ ~&#x3E; 1 there exist a p E P and constants k, and K. Let

i = e-k p (p (t)).
Let

1.1he conditions are .8satisfied
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The m’ltlti-indices y E RI, and a E Rn satisfy

The variable t is now defined by

Then it follows that

follows from (2.1) that for some to

If we choose k &#x3E; 1 that

then it follows that

Therefore it is always possible to choose k such that (3.18) is true. Since M

is a bounded set it is also possible to choose K such that (3.19) and (3.20)
are true.

PROOF OF LEMMA 5. Choose n and p such that ,u S 6, e -f - (X = n - - p -f - E.
We note that 0 S dj -,- 1, 1 S j - n’, and 0, n’ 1, ,ud ~ ~ ft I -
Just as in the proof of lemma 2 we get

and

- r I + = 8. It follows from (3.22) that
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So

and

It follows from (3.20) that (3.24) is true e’  0. Now We look

at the case t = ~d - ~’ ~ 0. Then we have + 8, and

Here K’ is defined by

iiere we have used (2.5) and t;% -,- t + ~ in the form (i +

+ s), and also the fact that the left member of (3.19) is increasing
iu s ==s 0. We look at

We get

lf i- &#x3E; 1 and t ~ then p (t) » 1. Then it follows that

Thus we g’et just us in the proof of lemma 2 that

Let We look at

It follows from (3.19) that in this case

The leroula is proved.

i2 della Scuola Norm, Sup.. Pisa.
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4. Operators with variable coefficients.

We start by stating the theorem.

THEOREM 1, Tiae integer n’ is restricted by 1 n’  n. Let d E 

dj = 1,1  j  n’, dj
Tlae multi-indices 03B2 E R8, 6 E R’1, yk E R8, ak E 1 1  k  N. They are

restricted by

The functions f (y, x), ak (y, X), 1 S k S N, belong to y (0, 0, d). To every
r &#x3E; 0, there exist a p E P and a C1 ~ 0 s1tch that

and

The functions ak are further restricted by

and

It follows that the Goursat problem

has one and only one solution u in y 6, d).

PROOF. We shall prove the theorem by successive approximations. We
define the sequence by letting uO = 0 and

It follows from (4.5) and the continuity that for a fixed r there exists
 1, I such that
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The sum is taken over k with ak d + I = I fJ I + 16 1. Let C be the

constant in (3.8) and c the constant in lemma 1. If in (4.2) and (4.3)

then we make a coordinate transformation

The new coefficients are of the form

It is obvious that (4.5) is true for the new coefficients too in the com-

pact set D in the primed space that corresponds to I y I + x, S r in the
original coordinates.

We also get

We differentiate and get

It follws from (4.3) that with

witi I we get

There exists an E, 0 [ t ~ 4-1 such that

It follows from this that we may choose t so great that with Ci == (1- 
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and

Since D is compact there is always a new r such that

We shall prove that converges in D. It will follow from the proof
that we may assume that (4.2)’ and (4.3)’ are true when (y’, x’) E D is sub-

stituted by I + S r, with the new r. Maybe the inequalities are false
outside D, but we only use the result inside D, which corresponds to

I y I + I x s r, with the original r. Since we do not use (4.3) for those k
with ak d + yk ~ _ ~ -~- ~ ~ ( we may delete the primes in (4.2)’ and (4.3)’
and assume that (4.2)’ and (4,3)’ are true with t =1, D given by the new
r, and ~=(l2013~)/8~cC. This we will do in the following.

We now assert that with a, K, and p chosen as in the hypothesis of
lemma 2

We see that (4.8) is true for q = 0. We shall prove that if (4.8) is true,
then it is also true when q is substituted by q + 1.

Let

It follows from (4.8) and lemma 2 that

If t = ~d then ak depends on y only and ak is a term in the sum in

(4.5). We get
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Let

It is obvious that e ~ 0.
If for those k I + 16 &#x3E; 0 we redefine t in (4.9) by

then (4.9) is still true because of our choice of p,
Now we shall use this, (4.5) with I I tit I s;: A  1, (4.2) and (4.3). We

remember that exp -~- tlp (t)) a () y + ) is an increasing function in t.

Further it is not smaller that 1. We get

Now we may 38 well assume that k is chosen so great that

~ 0 then we have

It’ $ ~ 0 we rewrite the inequality
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We look at

If we let ($ - v) d = t, and vd = s, then $d = t -~- s. Let

If we can prove that g (t) ~ C with C from lemma 3, then we use lemma 3,
lemma 1, (4.10), and - Â)/8NOc on (4.11). We get

So we look at g (t). log g (t).

Then we obtain

We choose k great. Then it follows from (2.1)-(2.4) that

Since ~;log(4-~-)-~)~p(-t-~ t great, it follows that f’ (t)  0, t

great, 0 ~ ~ ~ ~ ~ uniformly in s. So g (t) is bounded. We may as well

assume that g (t) S C, C from lemma 3. By that we have proved (4.8).
Now we assert that
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We have just proved that (4.12) is true for q = 1. We shall prove that

if (4.12) is true for q, thon it is also true if q is substituted by q + 1.
We substitute uq by llq - uq-l in the computation above letting f = 0 and
using (4.12). Then it is immediately seen that (4.12) is true for all q. Since

2-~-}-1);1, it follows from (4.12) and lemma 2 that all derivatives

Di Dy ad + [  [ fl I -t- ) ~ 1, converges uniformly when +
+ ( ~ ~ ~ r. It also follows from (4.8) and lemma 2 that the limit function it
with a new C satisfies

This happens in the new coordinate system. We go back to our original
space and our original r.

With the same t &#x3E; 1 as was used in the definition of the transform

tion we now get

It follows from above, from p - + oo, when d~ -+ + oo, and

from lemma 4 that u E y 6, d). The existence of a solution is proved.
Let ii be the difference between two solutions of (4 6) in 6, d). For

the r we have just considered there are always a PI E P and a 0 such that

But then (4.13) is true in the transformed system with new C2, and r.
This is said with the same reservation as before. Maybe the inequality is

false outside the compact set D, that corresponds to I y -~- ~ x ~ m r in the

original system. If the new p, happens to violate (2.1) or (2.2), then it is

only divided by a suitable constant. So we assume that (4.13) is true with

pi E P. If now

with the p used in (4.2) and (4.3), then we choose C2 minimal in (4.13),
where P, has been substituted by e-k p ( p (t)). With .I~ adjusted to e~-k p ( p (t))
a computution as that which lead to the proof of (4.12), leads to a contra-

diction if C2 ~ 0. Then the uniqueness is proved in that case.



406

If (4.14) is not true, then we proceed in the following way. It follows

from (2.1), (2.3), and (2.5) that there exists a to such that

If ko &#x3E; 1 is great then

We then see that

We now choose ko such that (4.15) is true. Then we choose p’ E P such that

Then we use p’ as our new p. The uniqueness proof can now be completed
just as in the first case. The proof of the theorem is finished.

5. Operators with constant coefficients.

We now treat the special case of constant coefficients. We have ab-

stained from formulating the theorem for the more general case when the
coefficients depend on y only.

THEOREM 2. Tlae restricted by 1  n’ 

has the follo2cing property

The multi-indices 03B2 E R8, 6 E Rn, yk E p8, «k E Rn, 1 S k --- N, are restricted by

The function f (y, x) belongs to y (0, 0, d). So to every r &#x3E; 0 there exist8 it

p E P and a con8tant C1 -,,&#x3E; 0 such that
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The constants ale --- k -,- N. Tk6y are restricted by

It follows that the Gour8at problem

has one one (p, 6, d).

PROOF. We choose new coordinates by 
’

By analogy from the proof of theorem 4 we choose t 80 big that (5.3) in

the new coordinate system has C~  (Jt 2013 1)/8 and ,~ ~ ~ (1 - ),,)/8, the
8um taken over k - yk ( + (~ -~ ~ 0. We define the sequence

as in (4.7). We assert that 

in the new system. Since = 0, (5.6) is true for q = 0. If it is true for a

certain q, we get from above and from lemma 5, noting especially (3.18), that

So (5.6) is true for all q. Then we prove the analogue of (4.12) just as in

section 4. By that we have proved that a solution u exists, and that in
the transformed system u satis6ee (5.6).

Since ~(~)/(1 -t-p(~)/~)2013~ + oo when it follows from lemma
4 and lemma 5 that there exist a p, E P and constants 01 and 0. such that
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We may adjust p, such that

In the original system this corresponds to

From lemma 4 it then follows that u E y d), since only those coordinates
with dj ~ 0 are involved in the rigth member.

Let ro be the difference between two solutions in y (fl, 6, d). If v in the
transformed system satisfies

with C chosen minimal, then we get a contradiction if C # 0, just as in

section 4. If we must choose some pi E P, pi (t) -,- _p (t), and insert pi instead
of p in (5.7) for this inequality to be true, then we operate just as in the
corresponding case in section 4. Thus the solution is unique in y (f3, 3, d~.
Theorem 2 is proved.

6. Comments.

The proof of the theorem shows that (4.5) in the hypothesis of the

theorem can be weakened. We shall prove below that it is sufficient to re-

quire that to every given compact set D c there exists a linear coor-

dinate transformation of the type

such that the inequality in (4.5) is true in the compact set D’ in the pri.
med space that corresponds to D. Indeed, if

then
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Since d~ &#x3E; 1, 1 it is clear that for fixed t and b

According to lemma 4 there must exist a p’ E P such that

From this and from (6.1) it follows that for some C’ &#x3E; 0

The same applies to the coeffieients ak. The proof then shows that a solu.
tion u exists in D’. There is a p’ E P and a C’ j 0 such that

It follows from (6.1) that

Since

lemma 4 says that there exist a p E P and a constant 0 such that

The solution ic then belongs to y (p, 8, d) since D is arbitrary. We have here
tacitly used compact sets defined by

This is obviously enough. See the definition of y (fl, a, d).
The uniqueness goes along the same lines. We start with the difference

ro between two solutions in y (p, ð, d). The estimates of v in D gives estimates
of v in D’. These estimates in their turn give estimates in the transform
of D’ used in the proof in section 4. It follows that v must be zero.
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Even this weakened from of (4.5) is not a necessary condition although
0

it is essential for our method of proof. The counterexample in Garding [1],
p. 152, note 1, due to Gyunther [2], also applies to entire functions.

One could also give some conditions equivalent to (4.5) that appears to
be weaker. Let the inequality in (4.5) be true when the sum is taken only
over those k, ak d = ~ 8 ~, a ~ = 0, n’  i -.-- n. Then we use the

transformation

For t great enough (4.5) is true in the new coordinates. 
0o

For a still apparently weaker condition see the remark in Garding [1],
p. 152 below, due to J. Leray.

The functions in y 6, d), used in theorem 1 can be extended to func-

tions in R8 x on’ X R,,-nl , which are entire functions of the variables

(xl .,. , x,,,) Een, since we have dj = 1, 1 --,- j ---- n’. So letting 8 = 0 and

n = n’ we see that the hypothesis of the theorem in [7] is that of the theo-

rem in section 4, except that (4.5) is not explicitly satisfied. The proof in

[7] shows however that this is the case. Thus the result of this paper

generalizes the theorem in [7].
Theorem 2 is apparently stronger than theorem 1 in [6]. The argument

with transformations in the proof in section 5 shows howewer that A  1

used in theorem 1 in [6] is equivalent to (4.5). In the same way we may
allow 0 1 for some j, 1 s j S n’, and dj = 0 for some j, n’  j  n.

This is not included in theorem 2 in [6], but the proof in [6) covers this
case too with proper notation. The transformations described above for

theorem 1 do not apply to theorem 2 when some d~ = 0. So the reader

is warned on this point. We abstain from going into details how things
could be adjusted.

In the following we let 8 = 0 in theorem 2. Then we see that part of
theorem 1 in [4] is included in theorem 2. Now we let d = 0 in theorem 2.

We see that if (5.4) is true then (5.5) has a unique solution in y (07 b, 0),
without any restrictions on ak .

With our definition of y (0, 6, 0) this class is defined as those functions

the derivatives of which are uniformly bounded on every compact set. So
for n = 1, ell E y (0, 0, 0) but (0, 0, 0). We define
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If to (5.5) there is a &#x3E; 0, 1 ~ j ~ ~~, ~ak ~ b_~, 1 ~ k ~ N~ then
it is proved in [4] that (5.5) has a unique (0) if (Õ). This
is corollary 1 of the first part of theorem 1 in [4]. So it also follows from

theorem 2. The class y (0) is the class of entire functions of order one.
We now discuss the necessity of some conditions in theorem 1 and

theorem 2. Let 8 = 0 and let al &#x3E; oci 1 ~ k ~ N, in (5.5). has a

solution u E y (0~,d). 0 ~ ~ ~ ~.y -~ ~ for every f E Y (0, 0, ~), then

it follows from the second part of theorem 1 in [41 that

It is proved by a counterexample. If (6.2) is not true, then there exists

a~ f E y ~o, ~, d~~ such that the formal solution does not correspond to a
function in y (0, 6) d). So the last part of (5.2) cannot be deleted without
violating the conclusion of theorem 2. For more general theorems of this
kind, when s -- 0, 71,’ =1, and d = (1, ... , 1), see l3]. The result in 13] is

concerned with local Cauchy problems. It can however be easily extended
to cover global Cauchy problems for entire functions.

- 

The example

where f is an arbitrary entire function, shows that we cannot let dj ~ 1,
some j, 1 ~ j ~ ~’, in theorem 1.

It is shown by a counterexample in [7] that theorem 1 is false if (4.4
is excluded from the hypothesis of the theorem.

We now restate a part of theorem 1 as a theorem for a Cauchy pro-
blem for entire functions, since it brings out the essence of theorem 1 in

a simple form.

THEOREM 3. The multi-indices 3 = (b1, 0, ... , 0) E R" , aud ax E Rn ,
1 S k S ~, are restricted by

The entire functions f, ax ,1 ~ k S N, are restricted by

I ( = ~ ==&#x3E; ak is a constant.

.It follows that the Cauchy problem

icae one and only one entire solution.
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Here (4.5) in theorem 1 is easily achieved by the transformation

if t is chosen great enough.
It seems likely that the results of this paper could be extended to sy-

stems using a spectral matrix defined by analogy from this concept defined
in [1] and [5]. "7"e have, however, not done this.
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