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CONCERNING THE ENVELOPE OF HOLOMORPHY
OF A COMPACT DIFFERENTIABLE SUBMANIFOLD

OF A COMPLEX MANIFOLD

R. O. WELLS, JR. (*)

Introduction.

A classical theorem due to Hartogs says that any function holomor-

phic in a neighborhood of the unit sphere in C’~ (for n &#x3E; 1) can be
continued analytically to the interior of the sphere. This result can be

phrased by saying that the envelope of holomorphy of S2n-l contains the
interior of S2n-1 , an open set in More generally, it can be shown that

any compact hypersurface S in On has an envelope of holomorphy 
which contains an open set in C~. Intuitively, E (S) is the largest set (not
necessarily contained in 0" due to multiple-valued continuation) to which

all functions holomorphic in a neighborhood of S can be continued analy-
tically. A precise definition is given in Section 1.

Our main result in this paper is that any compact smooth submani-
fold M in a Stein manifold X of real codimension two has the property that
its envelope of holomorpliy E (M) contains a smooth submanifold of X of

real codimension one (Theorem 4.1). This is a precise analogue of the Har.
togs theorem for hypersurfaces S as stated above, where E(S) jumps one
dimension to an open set. Moreover, there are examples to show that, in
general, E(M) can jump at most one dimension (see Remark 2.7).

Recent work initiated by H. Lewy in [6] and [7] and stimulated by
Bishop’s fundamental contribution [1] has led to a general local theory con-
cerning envelopes of holomorphy of diflerentiable submanifolds of Cn (see
[3], [10], ~11~, and [12]). One basic result states that a local submanifold of

Pervenuto alla Redazione il 25 Luglio 1968.
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generic holomorphic tangent dimension with a nonvanishing Levi form has
a local envelope of holomorphy containing a one higher dimensional subman-
ifold. In this paper we use global data on compact submanifolds M and
deduce somewhere on M the local data necessary to use the local theory.
The parts of E (M) we construct are therefore local in nature and do not
indicate the global extent.

In Section 1 we introduce the concept of envelope of holomorphy B (K)
of a compact subset g of a Stein manifold X and define .K to be holo-

morphically convex when .g = E (g) (following [5]). We show that no com-
pact oriented smooth submanifold ~VI in a Stein manifold X is holomorphic-
cally convex if dimR M &#x3E; dima X. This is a simple cohomology argument
using a result from [5], and is analogous to a similar theorem for polyno-
mial convexity in [2]. In Section 2 we show that for « almost all &#x3E;&#x3E; embed

dings of a compact smooth manifold M in a complex manifold X, where
dimR .E (M ) contains a smooth submanifold N c X where

dimR N = (here « almost all » is in the category sense). In Sec-
tion 4 we show this is true for ald embeddings of a compact smooth mani-
fold M in a Stein manifold X, where and M has real codimen-

sion two in X (Theorem 4.1). The techniques used here also work for codi-
mension one, but not for codimension higher than two. The proof of Theorem
4.1 depends on a result of independent interest (Theorem 3.1) concerning the
Silov boundary r~ (A (M)) of the holomorphic function algebra A (M) for a
smooth submanifold M in a Stein manifold ~.’ ; namely, 8 (A (.~II)) must con-
tain a nonempty open subset of the submanifold M. This is similar to re-

sults of Bremermann and Rossi concerning peak points on certain types of
smooth hypersufaces in C~ . Theorem 3.1 is reduced to a theorem in Cn by
the proper embedding theorems for Stein manifolds, and the proof there
involves ending extremal points of a certain kind, leading to holomorphic
peak points. ¥

1. Holomorphic Extension and Holomorphic Convexity. y

Let X be a complex manifold (’) and let 0 = Ox denote the sheaf of
germs of holomorphic functions on X. Suppose U is an open subset of X,
then we let denote the Frechet algebra of holomorphic functions on
U. If !~ is any compact subset of X, we let

(t) We shall assume all differentiable manifolds under consideration have a countable
basis for their topology.
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be the inductive limit with the natural (locally convex) inductive limit to-
pology. Thus 0(7C) is a topological algebra over C, and we denote by 
the spectrum (2) of 0 (K). Let g : .g --~ E (1~) be the usual evaluation map,

We shall say that K is holomorphically convex if and only if g is a bijective
map onto K. Suppose X is now a Stein manifold (3), then it is shown in

[5] that there is a natural map ~c : E ( K ) -~ X, so that the following is a

commutative diagram

where i is the inclusion map. Moreover E is a compact Hausdorff’ s.pace
and g is a homeomorphism onto its image in E (K). One can define (by in-
ductive limits) a « holomorphic » sheaf over E (K ) so that the restric-
tion map

is an algebraic isomorphism (see [5]). This turns out to be a proper gene-
ralization of the now classical theory of envelopes of holomorphy for domains

spread over On ’(see [4], Chapter I). Thus we call E(K) the envelope of ho-
lomorphy of K. For a given g e X we would like to know the structure of

which is related to the question of holomorphic convexity of K, i. e.,
when K = E (K) (under the identification of K with its image g (g ) in E (K)).

If ~ is not Stein, one can still define the envelope of holomorphy E (~)
to be the spectrum of but much less is known about it. However,
we can introduce the concept of extension or extendibility of a compact set K
in X. Suppose .g is compact in a complex manifold X, and suppose there is

some compact set K, and such that R’ is connected to K. We shall
=

say that ,g is extendible to ,g’ if the natural restriction map

is onto. It follows and hence K’ is naturally injected
into E (K). We say K is extendible if there is some .K’ U K to which K is

#

extendible (or to which K extends). If Q is any set in X, then we say that K

(r) The nonzero continuous homomorphisms of C~ (K) into C.
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is extendible to Q if Ki s exendible to some set Q, where and
=

.K’ is connected to K. From these definitions it follows immediately that:

(1.1) If .g is extendible, then g is not holomorphically convex.

(1.2) If K is holomorphically convex, then .g is not extendible.

However it is unknown whether extendibility of I~ follows from the as-
sumption that g is not holomorphically convex. In fact, it is unknown

whether 03C0 (E (K)) = K implies IT = .E (K) (4).
In this paper we study primarily the extendibility (and consequently

the partial structure of the envelope of holomorphy) of compact C°° subman-
ifolds of a complex manifold. By a Cm k-inaitifold embedded in a complex
manifold X we shall mean an m-times continuously differentiable subman-

ifold (not necessarily closed) of real dimension k of the underlying differen-

tiable manifold in X, where 0  k  2 dima X, and 1 ~ oo. A

compact Cm k manifold M means compact without boundary. Our first

theorem concerns the holomorphic convexity of compact submanifolds of X.

(1.3) THEOREM : Let M be a compact oriented C’ k-manifold embedded
in a Stein manifold X, and suppose that k &#x3E; dima X, then 1~ is not holo-

morphically convex.
The proof is a simple application of the following theorem proved in [5].

(1.4) Suppose K is a compact holomorphically convex subset
of a Stein manifold X, then

PROOF OF THEOREM 1.2: Suppose M were holomorphically convex,
then by Theorem 1.4 we have Hk (M, 0) = 0, which contradicts the fact
that for orientabie compact (connected) k-manifolds, C.

q. e. d.

(1.5) REMARK 1

1. ITnder the lypotheses of Theorem 1.3 (letting X = it was known

that M could not be polynomially convex if k ~ n (see [2]).

(3) See e. g., [4] for basic concepts of several complex variables.
(16) This is however true in the classical case where 1) is a domain in Cn, and E (D)

is the spectrum of C~ (D).
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2. If T = {z E on : I = 1), then T is a compact oriented n-manifold
embedded in Cn, and T is holomorphically convex. So the dimensions in (1.3)
are the best possible.

This theorems, along with various examples, lead us to make the following

(1.6) CONJECTURE : Suppose l~ is a compact C°° k-manifold embedded

in a complex manifold X, where lc = 1, then :
a) M is extendible.

.b) M is extendible to a Cnz submanifold of X of real dimension (k -~-1),
for any positive ’In.

c) M is extendible to a C- submanifold of X of real dimension (k -~-1).

(1.7) REMARK : I

1. Examples show that, in gneral, M can be extended to only one higher
dimensions (see Remark 2.7).

2. If M is generic at each point (see Definition 2.1 below), then a) was
proven in [12]. Also b) for k = n + 1 was proven in [12] and a proof for
general k is given in [3]. But these techniques do not give c).

3. For k = 21t - 1, a), b), c) reduce to the classical Hartogs’ theorems
for compact hypersurface which bound a domain in Cn, n j 1.

As stated in the introduction, we prove b) for « almost all » &#x3E; embeddings
of a given k-manifold M in X, for k &#x3E; n = 2, (Section 2), and for
all embeddings of codimension 2 of a k-ulanifold in a Stein manifold X, for
dima X &#x3E; 2, (Section 4).

2. Enibeddiiigs of compact manifolds in a complex manifold.

Let M be a C°° k-manifold and let X be a complex manifold of complex
dimension n. Let .E (M, X ) denote the set of all embeddings of M in X (which
ma,y be empty for a given and X ). Letting X) denote the topological
space of C°° maps from M to X with the usual C°° topology (5), we let E (M, X)
have the induced topology. If M is compact, then is an open set

in C°° (M, X ). If Y is a differentiable manifold, then we will denote the real
tangent bundle of Y by T(r) with fibre 1.’’1 (Y), for y E Y.

Suppose f E ~ (M, X ) ~ ~~ for a given M and X, then let Mf denote
the submanifold of X given by f (M). Suppose x E M, then, since f is an

(5) is metrizable and complete with respect to the usual C°° metric of
uniform convergence on compact subsets of all derivatives.

della Scuoia Norm. Sup.. Piaa,
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embedding, the R-linear map, (the real Jacobian)

has maximal rank. Since has the structure of an n-dimensional

vector space over C, it’s clear that dfp extends naturally (by linearity) to a
C-linear map (the complex Jacobian)

- 

(2.1 ) DEFINITION: We say that x = f ( p) is a generic point of Mf if

dfp has maximal rank as a C-linear map.
This definition agrees with that given in [3] and [12], and we shall, of

course, say that x E Mj is non-generic if x is not generic. For real hypersur.
faces in X, ald points are generic, however for higher codimension there are
topological obstructions to this being the case in general (see [13]).

Locally we can express Mf in the following manner. For there

is a neighborhood U of x in ~ and a C°° map g : U- so that

and moreover the real Jacobian

has maximal rank at each point U. Also we have the complex Jacobian

where d = a -f - a, as usual, and ag = ... , Then let

which is a subspace of Tx (Mf) = Ker dg.,. We call Hx (Mj) the holomorphic
tangent space to M~ at x (cf. [3], [12]), and note that Bx (Mf ) is the maximal

complex subspace of Tx (X) contained in Tx (Mf). We have the relationship,
setting x = f ( p),

which is easy to check. If ranka d fp is constant for p near po E M, then we
say that Mf is a CR-submanifold of X near x0 = j (Po) (cf. [3]). In this case
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we can define the Levi forin at any x near xo, 7

defined by 1" Jp}, vhere Yis a local section of H(Mf) such that
Yp = t, Y, Y ~~ is the Lie bracket evaluated at p, and 

is the natnral projection (see [3], [11], [121). Suppose l~f
is generic at x, then it follows easily from the definition of the Levi form
that .Lx # 0 if’ and only if the vector

is not zero for some and this is all wle shall need in this paper.
We now state the following result which relates these various concepts. In
the following theorems ill are as described above, with k

and dimo X = M.

(2.3) THEOREM : Suppose k (M, X) 0. If x E is a

generic point and Lx (Mj) ~ 0, then any compact neighborhood IT of x in

Iflf is extendible to a Crn-submanifold 1~’ ~"~~ of X where dimR 1V-(-) = k -~- 1,
and 1U may be any positive integer.

This theorem is proved in [12] for k = n -~-1, and in [13] for arbitrary 1~.

(2.4) REMARK : In this theorem, we do not need to assume M is C°°,
but it is necessary (for the proof) to have Mf be a submanifold where

1 (ri) depends linearly on it = due to the fact that Sobolev’s lemma

is used in the proof. Therefore we restrict ourselves to C°° submanifolds in

the hypotheses. On the other hand, the present proof does not allow us to
conclude that Mj extends to some C°° submanifold. We now have the following.
proposition concerning 1l[ and X.

(2.5) PROPOSITION : If A &#x3E; ra, and if ~I is compact then there is an open
dense set such that then there is a point such

that : i

c~) x is generic
b) ~x (Mf ) # O.

Assuming this proposition we have immediately, in conjunction with
’rheorem 2.3,
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(2.6) THEOREM: Suppose M is a compact 000 k-manifold, and 
= dima X, where .X is a complex manifold such that E (M, X) 0. Then
there is an open dense set Uc E (M, X ) such that if f E U,. then exten-

dible to a Cm-submanifold N(m) of X, where dimx N (1n) = k + 1, and w may
be any positive integer.

(2.7) REMARK : Under the hypotheses of the above theorem, cannot

be more than (k + I)-dimensional in general, as we shall show by an example,
although there is very likely an open dense set of embeddings Uc E (M, X)
so that E (M) contains an open set in X. As an example, let Sk-l be the

standard (k -1)-sphere in Rk, and let Bk be the closed unit ball in Rk.

Then we have

where we assume that n  k - 1  2n - 1. We shall put a complex structure
On R2,, so that L’ (Sk-’) = Bk, with respect to this complex structure. If

k = 21 is even, then we merely give Rk a complex structure, Ca, and we have

If k = 21 + 1 is odd, then we have 821c which we consider as Cl X R,
and similarly R2?&#x3E;-k = R’l~’t~i-’~+’, which we can consider as R X C’a"i-1, thus
we obtain

and we give It x R a complex structure also obtaining an embedding S2lC Cn.
In each embedding it is easy to see by classical methods of several complex
variables that (Sk) - 

PROOF OF PROPOSITION 2.5 : First, it’s clear that the set of f E 
which satisfy conditions a) and b) in Proposition 2.5 is an open set. So we

must only prove that for any given fo E E (31, X), we can perturb 10 so that
a) and b) hold. One can apply the general Thom transversality theory to

such questions, but since we only need to work locally we can give a direct
elementary proof.

We shall first perturb fo to rind a generic point (hence the name gene.
ric 1). Let xo be any point in 31. Take local coordinates t = (tl ... , tk) at xo, I
so tbat xo = (o, .., , 0) in Rk, and let z = ... , Zit) be local coordinates at

f (xo) E X, so that f (xo) = (0, ... , 0) 6 C"’. Then can be represented as a

linear map
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where Ck is the complefiification of Rk. If Ao has maximal rank, then there
is nothing to prove, since xo would then be generic. Suppose Ao is not of

maximal rank, then there is a sequence of linear maps Ay of maximal rank
which converge to Ao in the ugnal topology of the set of all linear maps
from ek to en, since the set of linear maps of lower rank is nowhere dense

Then, letting 99 be a Co function in Rk with y - 1 near t ,= 0, we set

Then at t = 0, we have, in these coordinates,

Also, is a map which is defined on all of since cp had compact sup-
port. Moreover, f(v) converges to f0 in the C°° topology on and has

maximal rank at xa. For v large we E E ~Y), and thus the set

with at least one generic point are dense.
Suppose now that ./* E E (.,II, ~l’) and Xo is a generic point of Iff. Let U

be a neighborhood of x~ and g a C°° map defined in U,

so that

Rlno

has maxima,l ranl; at ea;li x E n 1’. Suppose U is a coordinate patch, which
we may consider as a domain in with coordinates ~==(2’~...~) where
Xo = (0, ... , 0). Then let 99 E Co ( L~), with 99 = 1 near z = 0. For small

constant E we set

where g = (gl.... , g21l--k). and then

Since q has compact support in U, it’s clear that for small t, (0) is a

closed C °° submanifold of T7 which coincides within Mf U U near the boundary
of U. Thus we can define a new perturbed submanifold M with the property
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that 4= Mf outside U, and l~l g-I (0) in U. For small B, this new sub-

manifold M is diffeomorphic to JI, and we let , for some 

A s ~ --~ 0, it’s clear that f, - f in E X).
We must now show that Lx (Mj) # 0, for some x near xo. Either i)

~ ~ 0 for some generic x near xo or ii) Lx = 0 in a neighborhood
of xo . In the first case we have b) is satisfied for e = 4. Suppose we have

ii), then this is equivalent to saying, by (2.2), that vanishes for

all t E Hx for all x near xo in Mf. We now compute a a g~ at z = 0,
noting that for therefore Xo in X is still a point of our

perturbed submanifold We note that

since

and

Thus llxo (Alf) = Hxo We obtain, therefore, for

and the first term vanishes by ii) above, and the second term is positive
for E &#x3E; 0 ; hence

for small e ~ 0. It’s clear that xo is still a generic point of llf, I and thus

a) and b) are satisfied for M’fE at xo - q. e. d.

3. Holomorphic Peak Points of Smooth Submanifolds.

Let K be a compact subset of a complex manifold X. We shall call a

point x E g a holomorphic peak point if there exists a function f E 0 (K) such
that, for any we have

Let h (K) denote the set of holomorpbic peak points on K. Let be

the Banach algebra of continuous complex valued functions on K, with the
maximum norm, and let A (K) be the closure of the image in C (K).
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I I

Let ~~~ (A ( l~ )) be the boundary (6) ot’ A (K), then it’s clear that

and moreover, h (IC) S sometimes dense in (K)). (see [8]). some sets

.R it is well known is a  lower dimensional set » in K. For

instance, if R is the topological boundary a4 of the unit polydisc d in Cn,
n &#x3E; 1, then b (A (K)) is the distinguished boundary of A, which has real

dimension n. Our next result shows that this is due to the fact that ad is

not a smooth snbmunifold of C~.

(3.1) THEOREM : Let jtf be a compact C2 subrnanifold of a Stein mani-
fold X. Then li contains a non-empty open subset of 111.

(3.2) REMARK : It’s perhaps true is open in ilf, but our

proof does not give us this.

PROOF (7) : By the Remmert-Bishop proper embedding theorem for Stein
manifolds it’s clear that we may assume that 3i is a compact U2 submani-
fold of C", for some (see [4], Chapter VII).

Since 11f is a compact set in C", the function I assumes a
maximuni R at some point z. E ilf. Let

and suppose that by translation xo becomes the origin in 011. Identifying
with we have the subspaces

Let Q denote the orthogonal complement to To (S) in C’~, let IS’ = Q EB To (M ),
and let 7r be the orthogonal projection from Cn onto W.’ Let a (M) = K,
which is a compact subset of W, and let S’ = 8 n W be the sphere of
radius B (centered at -xo in the new coordinates) and we have 

It follows readily that for some neighborhood U of I Ufl 31 is
a diffeomorphism onto its image, although in general 03C0 will be a many to

(’e) See (4), Chapter I.

(~) The anthor would like to thank T. Sherman for a helpful suggestion concerning
this proof.
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one map. Of course we and set which

is a hypersurface in V defined near 0. Note that

Consider now in some coordinate system on W centered at 0, with real

coordinates (x , .,. , xk), (k = dimR M ), normal to To (N ) at 0,o axo
and x = (Xi’ ..., xk) are coordinates in To (N). In these coordinates N and

S’ can be represented near 0 as the graphs of C2 functions

And locally we have near x = 0,

since iT c B’. Since the real Hessian of h, (hXiXj) (0), i, j = l, ... , k, is positive
definite at 0, it follows easily from (3.3) that the real Hessian of g is po-
sitive definite at 0, and hence in some neighborhood of 0. Let 
then we have

There is a neighborhood V of To (N) in the Grassmannian manifold of af-

fine k-dimensional subspaces of W such that any affine subspace P in V
will not intersect K’, since K’ is compact. For p E N sufficiently close to
0, we have that the affine subspace Tp (N) centered at p lies in V. Also

for p snfficiently close to 0, the affine subspace Tp (M) intersects ~’V at only
the point p, since the real Hessian of g is positive definite near 0. Thus

for some neighborhood N’ of 0 in N, we have for each point p E N’ an
(affine) real hyperplane which intersects .g at only the
point p. Moreover K - jp) lies on one side of the hyperplane Wp . It fol-

lows that

is a (real) hyperplane in C’~ which intersects M at only the single point
p’ = (p) n M, and lJtI - (p~) lies on one side of Hp. Therefore ve have
that N" = (N’) n M is a neighborhood of 0 in M with the property
that for each point q E N" there is a holomorphic linear function tq (z) such
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that

and I (q) = 0. Then define

and we have for z E M - q ), q E N",

and q is a holomorphic peak point. q. e. d..

(3.5) COROLLARY : Under the hypotheses of Theorem 3.1, S (A (M)) con-
tains a non-empty open set.

(3.6) COROLLARY : Let be a C2 compact submanifold of C’~, and let
P (M) be the algebra of uniform limits of polynomials on M. Then 8 (P 
contains a non-empty open set.

PROOF: The function fq (z) given by (3.4) which peaked at q is an en.

tire function. q. e, d.,

4. Compact Submanifolds of Real Codimension Two.

We shall use the results of the previous sections to prove the following
theorem.

(4.1) THEOREM: Suppose X is a Stein manifold of complex dimension
rc &#x3E; 2, and suppose 11/ is a compact C °° submanifold of X of real codimen-

sion two in X. Then jif is extendible to a O,n.submanifold N(m) of .g of

real codimension one, where m is any positive integer; i, e., contains
a smooth submanifold of X of one higher dimension than M.

(4.2) REMARK : In view of Remark 1.5.2, it’s clear that for n = 2, the
result above cannot bold as stated. However such a result is presumably
true for higher real codimension of M, in view of Theorem 2.5, where we
have a similar result for « almost all &#x3E;&#x3E; submanifolds, a much weaker theo-
rem. We shall see however that the proof we give breaks down completely
for higher real codimension as one of the key lemmas is false in general.

We shall prove the theorem by first reducing it to the following pro-
position in view of Theorem 2.3. Let l~ and X be as in Theorem 4.1 for

the remainder of this section.
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(4.3) PRoPosii’ioN : There exists a point x E M such that:
a,) x is a generic point of M.
b) .Lx # 0.

We shall prove this proposition by a sequence of short lemmas. Let S be
the set of nongeneric points of M, and let Q’ be the set of generic points
of M.

(4.4) LEMMA : The interior of S in if is a complex submanifold of X

of dimension it - 1.

PROOF: At a point we have that and thus

Hx (M) = Tx (i~). It follows from a classical result due to Levi-Civita that

int S in M is a complex submanifold of X of complex dimension n - 1,
where the basic fact used is that the real tangent space Tx (M) at each
point x E int S is a C-linear subspace of (see e. g. [9]). q, e. d..

(4.5) LEMMA : (~ is non-empty.

PROOF : This follows trivially from Lemma 4.4, since otherwise, 
would be a compact complex submanifold of X of complex dimension n - 1,
which is impossible. q. e. d..

(4.6) REMARK : There is an example of a compact 5-manifold ~5 in C4
such that C~ (~5) is empty. Namely, let be the standard 5-sphere in C3,
and consider the embedding

Then at a generic point of a 5-manifold M in C4, we must have

but

so all points of 85 are non-generic.

(4.7) LEMMA : There is a point x E G such that Z~(M)=~= 0.

PROOF: Suppose not, then we use the fact that if Lx (M) == 0 for

x E G, then a is locally a 2-parameter family of complex submanifolds of

X of complex dimension n - 2 &#x3E; 0. (see [3], [9], [12]). Therefore C~ and int

S, which is a complex submanifold by Lemma 4.4, cannot contain any hol~
omorphic peak points of M, since this would violate the maximum principle.
But this contradicts Theorem 3.1. which asserts that the set of holomorphic
peak points on l~ has a non-empty interior. q. e. d..
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