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SOME INEQUALITIES
INVOLVING TRIGONOMETRIOAL POLYNOMIALS

E. BOMBIERI and H. DAVENPORT

1. Introduction.

Let ~Y be a positive integer and let he any real or

complex numbers. Define

Let Xs ’ be any real numbers which satisfy

denotes the difference between 8 and the nearest integer, taken

positively and 0 ’ d  1positively, and 0  ! . 2013 .
In a recent paper 1) proved that

and that

the latter represents au improvement on the former if N and 3-1 are of

about the same 

Pervenuto alla Redazione il 96 Ciiuguo }968,
(t) tbft large method, U1Jd ~ur

An Landaii, V0P18g deo Wissenschaften, Horlil1 1968.

I. Narrn. 
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In the present paper we investigate more deeply the two cases in

which N 6 is either large or small. The factor on the right of (3) is a little
greater than N in the first case, and a little greater than 6-1 in the se-

cond case. Our object is to determine the order of magnitude of the term

that must be added to N or ~-1, as the case may be, to ensure the vali-

dity of the inequality. 
‘ 

‘

For the case large, we prove :

THEOREM 1. If then

r 
On the other hand, if c is a constant less than 1 there exist 8utns S (x)

with 6 arbitrarily 8mall and N 6 arbitrarily large for which

There are two features in the proof of (4), as compared with the

proof of (3) in our previous paper. The first of these is a maximization

argument (Lemma 1), which has the effect of allowing us to limit ourselves
to sums S (x) in which the I have a measure of approximate
equality. The second feature is the use of the function 0, (t), defined in
(13), in place of the simpler function 4Y (t) of our previous paper.

For the small, we prove:

THEOREM 2. If N 6 1 then -’ 

THEOREM 2. I f N G 1 p then ..

On the otlte1’ hand there exist sums (x) with N 6 arbitrarily 81nall for
whic4

This case represents a problem which is entirely different from that

of the first case; it has much in common with the problem of approxima-
ting to a Riemann integral by a finite sum. The arguments used in the

proof of (6) are quite delicate.
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The present paper is self-contained, except for the general inequality
(27), due to Davenport and Halberstam, which is needed for the proof of (4).

2. The ikiaxiiiiizatioii argument.

Let 0 ..., be fixed. For each positive integer N, we define

G (N) by 
n

and the maximum is taken over all complex numbers at ... , aN satisfying

The maxiinum is obviously attained, and we call a set of coefficients

an for which it is attained a maximal set.

LEMMA 1. Suppose N is such that G (N) ~ 0 and

Tlten, for a set of coefficients, we have

where I 9 ! I,  1 and G = G (N) ; and this holds all M, H satisfying

Proof. Write e (0) = e2ni9, and

where A 7~ &#x3E; 0 and a~~ is real. For a maximal set of coefficients we have a

stationary value subject Hence we must have
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for some A. Writing --- Ss, and noting tbat

we see that the conditions are

If this is multiplied by A,~ and summed for m = 1, ... , N, it gives

whence

If however the sum is restricted to in = M + 1, ... , M + H, we get

where

Hence

Now

Also, by the definition of G (H) and the hypothesis (11), we have

Hence
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that is,

N

This is on the hypothesis that NE I a, 12 = 1. Piainly that hypothesis
1

can be omitted if we modify the inequality so that it reads

We can obtain a complementary inequality by applying this to the
sums over

and

and subtracting from the complete sum. We obtain

The two inequalities together prove (12).

3. A particular Fourier series.

LEMMA 2. Let

Suppose that 1 ) ~ I ex I + 1. Then
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Proof. (14) is almost immediate, for since sin 03C0t  nt we have

To prove (15) we start from the relations

we have

if A = n (1 + a -1 ) Hence

where
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To estilnate .I (x) we rotate the line of integration through an angle

; in the complex plane, so that it becomes the line 1 + iu, u &#x3E; 0. The
2
contribution of the quadrant at infinity vanishes.

We get

Hence

Putting this, for a in (16), ive obtain (I

3. that If satisfies &#x3E; 2. Let No be any positive in-

teger. There exists it. Fourier series

1l,ith real coefficients bn b-,, = bn, such that

and, for 

P,’oof. We define A = (No -~- K) ð, and R~e define 1p (x) for x I c ~ by
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We define y (x) for other real x hy periodicity with period l. Then

11’ (.v) is an even function of x and satisfies (18). The Fourier coefficients bn
of 1f’ (.1’) are given by

where a = ~z~.

By Parseval’s formula,

Hence, by (14) of Lemma 2,

It remains only ca prove (20). For n ~  1V’, , we have

By (15) of Lemma 2,

Now

and for 0  [ 1, we baveand for 0 (y ; 2013 
we have

46

Hence

Since 4.2 03C0-3  1/7 this gives (20), on recalling that
7
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4. Proof of the first part of Theorem 1.

We observe first tha,t there is no loss of generality in taking M = 0
in the definition in (1), for we can reduce the general case to this
by hutting n = 3i -~- Thus we can take S (.r) to be defined by (9).

For fixed 6 and fixed xl , ,...,.r~ let N be the least positive integer
for which G (N), defined in § 2, satisfies

if there is no such integer the desired conclusion holds. For this N, the
hypothesis (11) of Lemma 1 is satisfied. For a maximal set of coefficients,
(12) holds ; and of course we also have

Suppose first that N is odd, say N = 2NO + 1. We define

and have

(24)

where

By (12),

if 

Suppose next that N is even, say N = 2No .
We define a’n as above in (23) for 2013  and put aNo = 0.

Then (24) is still valid, with the same definition (25). Also (26) is still va-

lid, provided 0 
Let 1p (x) be any even function of period 1 satisfying the condition (18)

of Lemma 3. It was proved by Davenport and Halberstam (2) that

(2) « The values of a trigonometrical polynomial at well spaced points Mathematika

13 (1966), 91-96, and 14 (1967), 229-232.
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With the particular of Lemma 3, this gives

where

In view of (22) we can write the result as

where

Applying partial summation, and using the fact that C-n = we obtain

Since c,n &#x3E; 0 0, vca can apply the inequality (26) in

the inner sum on the right, This gives

Since + 1 ~ ~, the last term in the bracket can be omitted.
Substitution in (28) gives

where

By the inequality of the arithmetic and geometric means, we have
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and since -I 2 N this implies that

Since the function Cn, for a continuous variable n, has a positive
second derivative, we have

We now take If ~ 26-1 . and have

Also

Hence

From (30) we now ohtain

which gives a contradiction to (21). This contradiction proves the first part
of Theorem 1.

VVe have not used the hypothesis that 1, but the result (4)
becomes of little value if Nb  1.



234

5. Proof of the second part of Theorem 1.

We give a simple example, with 3 arbitrarily small and N3 arbitrarily
large, for which 

-

This suffices for (5), since ð-l - 1 &#x3E; if 6 is sufficiently small.
Let h and L be arbitrarily large positive integers, and take

For this sum, regarded as a case of (1), we have

Take 6 =1/(2h + 1), and take the points x, to be

At each of these points we have S (x) = 2Z + 1, and therefore

Also

This proves (31).

6. Lemmas for Theorem 2.

As observed at the beginning of § 4, we can take M = 0 in (1), so

that S (x) is defined by (9). We suppose that
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by

We note that in every term 16 (111 - n) I  !~ ~ -.- .
LEMMA 4. lve have

Since

we have

The result now follows from

5. Let F (z) = S (x) 12. Then

zafcere the Ck ai,e positive constants, and c = 2-, and, J*o)- 0  0  2n,T4

For any 9 with I 9 I  2~, we have
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1 00 -2 2where the Ck are positive constants. Also from 03A3n-1 = Put-
24 1 6

ting 0 = 2n 6 (itt - it) and substituting in (33), we obtain

Now

These two equations yield (35).

LEMMA G. For any positive integer k,

Let T (z) = X (z), so that F (z) = S (z) ~’ (z), By Leibniz’s formula,

By Cauchy’s inequality,

Now

whence

There is a similar result for the integral containing T. Finally
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LEMMA 7. Let E denote the set of real considered modulo 1,
.for 1vlticll

Then

1’roof. By Lemma 4 the left hand side is

and by (2) the intervals ot’ integration are disjoint. We have

the latter being a consequence of the definition of 0 (z) in (33), since the

terms with ~o = n in the double sum have coethcients 0. It follows that

where ~’ (z) = ( S (z) ~2 as before, and where ~’ denotes the complement of
the set of intervals (xr - !/2, xr + 8/2), The integral in the last expression
can only be increased if ve replace E’ by E, since jE7 comprises all z for

which the integrand is positive.

7, Proof of the Crst part of Theorem 2.

If we represent numbers z by points on the circumference of a circle

of perimeter 1, the set ~’ of Lemma 7 consists of a finite number of open
intervals. Each interval has length less than 6, for by Lemma 4 it is im-

possible for (38) to hold throughout any interval of length !.

We divide the intervals of E into two types. The first type are those

for which F’ (z) does not vanish in the interval, and we denote the union

of these by Et 8 The second type are those for which ~" (z) vanishes at some
point of the (open) interval, and we denote the union of these by .E~.
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Let I be one of the intervals of E1. Since 03A6 (z) - F (z) = 0 at the end
points of I, we have

for any real number y. Since F’ (z) is of constant sign, we can choose y
in I so that

V’e now have

Hence

By lemmas 5 and 6, the right hand side is

We now turn to the set Since F (z) ~ 0 always, we have

By Lemmas 5 and 6, this is
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It remains to estimate the integral over E2 of F’’ (z). Suppose first that

~;4 consists of only one or two intervals; as noted earlier, each has length
less than 6. Thus in this case

Now

and therefore

Ilence7 in the present case,

Now suppose that .~’2 consists of at least 3 intervals, say ~1), ···
... , 

By the definition of E2 ) each interval (aj, Pj) contains some $; for which

By Rolle’s theorem, there exists some qj between 03BEj and for which

We make the obvious convention that $s+1 = ~1’ and so on.
We have

Both qj-l and z are contained in the interval (f~-i, Hence, since
pj - (Xj  6,

2. Annali della Scuola Norm. Sup.. Pi8a.



240

The intervals (~1-1, $j+,) cover the whole interval of length 1 twice.

Hence

by Lemma- 6. Comparing this witit (42), we see that (43) is valid in both

the two cases.

It follows from (41) that

Adding to this the estimate in (40) for the integral over and sub-

stituting in (39), we obtain

where

Since el 1 this impliesSince c1= 24 
this implies

By (36) with 0 = n, we have

Hence, f’or NG  IHence, for N6  4 - 1

This proves (6).
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8. Proof of the second part of Theorem 2.

We take N = 2, and

so that (x) ~2 = 4 cos2 We have

V1’e take the points xr at

where

and 0  ~  1 . Note that the gap (mod 1) between m 6 and - m6 is

1 - 2 1n ð &#x3E; ð.
We have

Now (2~a -E- 1) b = 1 - C ð, so sin (2m+ 1);76=sinnC6.
H ence

where

For fixed (, as 6 --&#x3E; 0, we have

and on taking ~ = IjV3 we get

Since - this example satisfies (7).


