Scuola Normale Superiore di Pisa

Classe di Scienze

Izu Vaisman
 The curvature groups of a space form

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3^{e} série, tome 22, no 2 (1968), p. 331-341
http://www.numdam.org/item?id=ASNSP_1968_3_22_2_331_0

L'accès aux archives de la revue «Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

THE CURVATURE GROUPS OF A SPACE FORM

by Izu Vaisman

Following an idea, developed in another manner in [7], we shall define the curvature groups of a connection on a principal bundle and we shall study these groups for the case of a Riemannian connection of constant curvature.

1. First, we shall remember some formulas, which can be found in CHERN [2]. Let $B \xrightarrow{p} X$ be a differentiable, principal bundle (X is a C^{∞}. manifold of dimension n; differentiable will always mean C^{∞}), with group G and let $g_{U V}$ be his transition functions, corresponding to a covering $\{U\}$ of X by coordinate neighbourhoods. Then a connection on B is defined by a collection $\left\{\theta_{U}\right\}$ of 1 -forms on U with values in the Lie algebra g of G and such that, in $U \cap V$, we have

$$
\begin{equation*}
\theta_{V}=\omega\left(g_{V V}\right)+\left(a d g_{\bar{V}}^{-1}\right) \theta_{V} . \tag{1}
\end{equation*}
$$

Here ω is the g-valued form on G, attaching to each tangent vector of G the corresponding left invariant field.

Let R be a linear representation of G on a finit dimensional linear space E. A tensor p fform on X, of type R is a collection $T=\left\{T_{U}\right\}$ of p forms on U with values in E and such that

$$
\begin{equation*}
T_{V}=R\left(g_{L^{*} V}\right) T_{V} . \tag{2}
\end{equation*}
$$

For instance, the 2 forms

$$
\begin{equation*}
\Theta_{U}=d \theta_{U}+\frac{1}{2}\left[\theta_{U}, \theta_{U}\right] \tag{3}
\end{equation*}
$$

Pervenuto alla Redazione il 30 Dicembre 1967.
(the notations are those of Chern [2]), define a tensor form Θ of type ad G, which is the curvature form of the connection θ.

For the tensor forms, there is an operation of covariant differentiation given by

$$
\begin{equation*}
D T_{U}=d T_{U}+\widetilde{R}\left(\theta_{U}\right) \wedge T_{D} \tag{4}
\end{equation*}
$$

where $\widetilde{\boldsymbol{R}}$ is the representation of g associated to R and the following formulas hold

$$
\begin{gather*}
D \Theta_{V}=\mathbf{0}, \tag{5}\\
D^{2} T_{V}=\widetilde{R}\left(\Theta_{U}\right) \wedge T_{D} .
\end{gather*}
$$

The formula (2) shows that the tensor p-forms of type R on X define a module \mathscr{T}^{p} over the ring \mathcal{F} of differentiable functions on X and (6) shows that the p-forms $\left\{D^{2} T\right\}$ define an \mathscr{F}-submodule \mathscr{D}^{p} of \mathscr{T}^{p}.

Following the classical case of Kodaira.Spencer [5], we will define a tensorial p-jet-form of type R on X as a pair (T, S) of tensor forms of type R and of degrees p and $p+1$ respectively and will denote by J^{p} the \mathcal{F} module of these forms.

Consider now the formula [7]

$$
\begin{equation*}
D(T, S)=\left(D T-S, D^{2} T-D S\right) \tag{7}
\end{equation*}
$$

It is easy to see, that it defines an operator (homomorphism) $D: J^{p} \rightarrow J^{p+1}$, whose square is zero and such that the cochain complex $\left(\bigoplus_{p=0}^{n} J^{p}, D\right)$ is acyclic.

Let K^{p} be the submodule of J^{p} defined by jet-forms (T, S) such that $S \in \mathcal{D}^{p+1}$. Then $K=\left(\underset{p=1}{\oplus} K^{p}, D\right)$ is a subcomplex of the preceeding one, which is no more acyclic.

Let

$$
\begin{equation*}
H^{i}(X, \theta, R)=H^{i}(K)=\operatorname{Ker} D^{i} / \operatorname{Im} D^{i-1} \quad(i=1,2, \ldots, n) \tag{8}
\end{equation*}
$$

be the cohomology groups of the complex K. We shall say that these groups are the curvature groups of type R of the connection θ.

Suppose now θ is a linear connection on X defined by the matrices of 1 -forms $\theta_{V}=\left(-\omega_{i}^{j}\right)$ and with curvature forms $\Theta_{D}=\left(\Omega_{i}^{j}\right)$ and let the tensor forms of type R employed be the usual vector forms on $X[3, i]$ denoted for instance by $\lambda\left(\lambda^{i}\right)$ where λ^{i} are scalar p-forms on U. The other
notations remain as above. Then we have the formulas

$$
\begin{gather*}
\Omega_{i}^{j}=-d \omega_{i}^{j}+\omega_{i}^{k} \wedge \omega_{k}^{j}, \tag{9}\\
D \lambda^{i}=d \lambda^{i}+\omega_{j}^{i} \wedge \lambda^{j}, \\
D^{2} \lambda^{i}=-\Omega_{j}^{i} \wedge \lambda^{j} .
\end{gather*}
$$

The corresponding curvature groups will be noted by $H^{\boldsymbol{i}}(X, \theta)$ and called the curvature groups of the linear connection θ. Part of them were called in [7] the cohomology groups of θ and some of their properties were established.

We shall remark that on X there is a canonical 1-form $\omega\left(d x^{i}\right)$ where x^{i} are coordinates in U and, if θ is without torsion, $D \omega=0$. If we note by A^{p} the module of scalar p-forms on X, one may consider the monomorphism

$$
\begin{equation*}
h: A^{p-1} \rightarrow J^{p} \tag{12}
\end{equation*}
$$

given by

$$
\begin{equation*}
h(a)=\left(a \wedge d x^{i}, 0\right) \tag{p-1}
\end{equation*}
$$

and it is easy to find

$$
h D=D h .
$$

It follows that there is a homomorphism

$$
\begin{equation*}
h^{*} ; H^{p-1}(X, R) \rightarrow H^{p}(X, \theta), \tag{13}
\end{equation*}
$$

$H^{p-1}(X, R)$ being the real cohomology groups of X.
A vector form of the type $a \wedge d x^{i}$ will still be noted $a \wedge \omega$. More general, the sign \wedge will always note componentwise exterior product.

If θ is a Riemannian connection, his curvature groups will be called the curvature groups of the respective Riemannian space; it is in particular the case of a Riemannian space of constant curvature, which is our object of study in the next.
2. Let $X=V_{n}$ be a pseudo-Riemannian space with metric $g\left(g_{i j}\right)$ and let θ be the corresponding Levi-Civita connection. By the formulas

$$
\begin{equation*}
\Omega_{\imath}{ }^{j}=\frac{1}{2} R_{i k h}^{j} d x^{k} \wedge d x^{h}, \quad R_{i j k h}=g_{j s} R_{i k h}^{s}, \tag{14}
\end{equation*}
$$

we get the curvature tensor of the space. It is known [8] that the space V_{n} has constant (sectional) curvature k if and only if

$$
\begin{equation*}
R_{i j k h}=k\left(g_{i k} g_{j h}-g_{j h} g_{j k}\right) . \tag{15}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\Omega_{\imath}^{j}=k \varepsilon_{i} \wedge d x^{j}, \tag{16}
\end{equation*}
$$

where $\varepsilon_{i}=g_{i k} d x^{k}$ is a covector ε with Pfaff forms as components; the calculus with such tensorial forms will be employed in the next without other references.

The formula (11) becomes now

$$
\begin{equation*}
D^{2} \lambda^{i}=k d x^{i} \wedge a, \quad a=\varepsilon_{l} \wedge \lambda^{i} \tag{17}
\end{equation*}
$$

and the module \mathcal{D}^{p} is defined by vector p-forms ξ of the type

$$
\begin{equation*}
\xi=k \omega \wedge a, \tag{18}
\end{equation*}
$$

a being a scalar $(p-1)$ form. In fact, for $p \geq 1$, it is easy to see that $a=\varepsilon_{i} \wedge \boldsymbol{\nu}^{i}$, hence $\xi=D^{2} \boldsymbol{v}$.

For $k \neq 0$, the forms (18) may be written as

$$
\begin{equation*}
\xi=\omega \wedge b \tag{19}
\end{equation*}
$$

and conversely. But, for $k=0$, the forms (18) vanish. In that case, we shall also consider the modules \mathcal{D}^{p} given by (19) and shall get cohomology groups by the scheme (8); they will be called the special groups of the corresponding flat space.

It is clear that $\omega \wedge a=0$ if and only if $a=0$, because dey $a \leq n-1$, hence if ξ is of the form (19) the corresponding b is uniquely determined. We find then, that the modules $K^{p}(p=1, \ldots, n-1)$ are isomorphic with the modules L^{p} defined by pairs

$$
\begin{equation*}
(\lambda, a), \tag{20}
\end{equation*}
$$

where λ is a vector p-form and a a scalar p form.
Applying the formula (7), we find that, by the above isomorphism, I) induces on L^{p} an operator, noted again by D, whose square is zero and which is given by the formula

$$
\begin{equation*}
D(\lambda, a)=\left(D \lambda-\omega \wedge a, d a+k \varepsilon_{i} \wedge \lambda^{\prime}\right) . \tag{21}
\end{equation*}
$$

(Remember that θ is, at us, without torsion).

It is natural now to extend the definitions of L^{p} and D for $p=0$ and $p=n$ and to obtain the cochain complex $\left(L=\bigoplus_{p=0}^{n} L^{p}, D\right)$. We remark that, for a direct verification of $D^{2}=0$ it is necessary to employ the relations

$$
\begin{equation*}
D \varepsilon_{i}=0, \quad \varepsilon_{i} \wedge d x^{i}=0 \tag{22}
\end{equation*}
$$

which follow from the properties of $g_{i j}$ to be covariantly constant and symmetrical.

As a conclusion of the above discussion we will consider the groups

$$
\begin{equation*}
H^{i}\left(V_{n}, L\right)=H^{i}(L) \quad(i=0,1, \ldots, n) \tag{23}
\end{equation*}
$$

i.e. the cohomology groups of the complex L and, in the next, they will be the curvature groups of the space V_{n}, or the special groups in the case of a flat space.

We shall now show that the special groups of a flat space can be interpreted as cohomology groups of V_{n} with coefficients in a sheaf.

Let us begin with the remark that, in an euclidian n-space and in cartesian coordinates x^{i}, the equation

$$
\begin{equation*}
\frac{\partial^{2} \boldsymbol{F}}{\partial x^{i} \partial x^{j}}=C \delta_{i j} \quad(C=\text { const } .) \tag{24}
\end{equation*}
$$

caracterises the functions $F^{\prime}(x)$, such that $F(x)=$ const. is a hypersphere.
We can try then to define hyperspheres in a general pseudo Riemannian space V_{n} as hypersurfaces which may be given by an equation $\boldsymbol{F}(\boldsymbol{x})=$ const. such that

$$
\begin{equation*}
\boldsymbol{F}_{l i j}=f(x) g_{i j} \tag{25}
\end{equation*}
$$

But, by a derivation of (25) we get

$$
R_{i}{ }_{k j}^{s} F_{l s}=f_{l k} g_{i j}-f_{l j} g_{i k}
$$

and contracting with $g^{i h}$, then contracting $h=j$ and noting

$$
r_{k}^{s}=g^{i j} R_{i}{ }_{k i}^{s}
$$

we get

$$
\begin{equation*}
r_{k}^{s} \boldsymbol{F}_{\mid s}=(n-1) f_{\mid k} \tag{26}
\end{equation*}
$$

whence, by a new derivation and by employing Bianchi's identities

$$
\begin{equation*}
g^{i j} R_{i k m \mid j}^{s} F_{l s}=0 \tag{27}
\end{equation*}
$$

Hence, in the general case, \boldsymbol{F} is constant on the connected components of V_{n} and, from (25), $f(x)=0$. It follows that such hyperspheres as we intended to define do not generally exist. However, for a space of constant curvature, (27) is verified identically and we may hope to find such hyperspheres. (More generally, (27) is verified for any symetric space V_{n}).

In this case, by (15) and (26) we get $f_{l h}=-k F_{\mid h}$, whence $f=$ $=-k F+C$ and (25) becomes

$$
\begin{equation*}
F_{i j}=(-k F+C) g_{i j} \tag{28}
\end{equation*}
$$

if $k=0$, we get an equation equivalent to (24). The functions F on V_{n}, verifying (28), or equivalently (25), will be called S-functions. For a flat space and in cartesian coordinates these functions are locally

$$
\begin{equation*}
F=C\left(\delta_{i j} x^{i} x^{j}+a_{i} x^{2}+b\right) \quad\left(a_{i}, b, C=\text { const. }\right) \tag{29}
\end{equation*}
$$

Each S-function F determines a field of contravariant vectors, i.e. a vector 0 -form λ - the normal field of the hyperspheres $F=$ const, which, by (25), is verifying the condition

$$
\begin{equation*}
\lambda_{l j}^{i}=f \delta_{j}^{i} . \tag{30}
\end{equation*}
$$

Conversely, if a vector 0 -form λ satisfies (30), we get

$$
\lambda_{i j j}=f g_{i j}
$$

which shows that λ_{i} is the gradient of an s function F. The vector 0 forms λ, characterized by (30), will be called S.fields.

The \mathbb{N}-fields of V_{n} define an additive abelian group but not an \mathcal{F}-mo dule. It is clear that, for a given S-field λ, the function f in (30) is uniquely determined and is of the form $-k F+C$.

Let us note by S the group of S-fields on V_{n}. Then, by the above remarks we get a monomorphism

$$
\begin{equation*}
i: S \rightarrow L^{0} \tag{31}
\end{equation*}
$$

given by $i(\lambda)=(\lambda, f)$ and, if we note by δ, \mathcal{L}^{p} the sheaves of germs as. sociated to S, L^{p} respectively, we get a sequence of sheaves and homomorphisms

$$
\begin{equation*}
0 \rightarrow \delta \xrightarrow{i} \mathcal{L}^{0} \xrightarrow{D} \mathcal{L}^{1} \xrightarrow{D} \ldots \xrightarrow{D} \mathcal{L}^{n} \xrightarrow{D} 0 \tag{32}
\end{equation*}
$$

which is exact at δ and where the sheaves \mathcal{L}^{p} are fine. Moreover we have $I^{2}=D i=0$ (because of (30) and $f=-k F+()$.

Suppose now we are in the case of a flat space, hence $k=0$, and suppose we have an element ($\hat{\lambda}, a$) of L^{p} which belongs to the kernel of D, i.e.

$$
\begin{equation*}
D \lambda=\omega \wedge a \quad d a=0 . \tag{33}
\end{equation*}
$$

Then, by the Poincaré lemma we have locally $a=d b$. Moreover, it is known that we can choose, locally, cartesian coordinates and get $D \lambda^{i}=d \lambda^{i}$, such that the first relation (33) will become

$$
d \lambda^{i}=d x^{i} \wedge d b
$$

whence

$$
\lambda^{i}=d \sigma^{i}-d x^{i} \wedge b=D \sigma^{i}-d x^{i} \wedge b .
$$

Hence (33) implies locally $(\lambda, a)=D(a, b)$ and we conclude that the sequence (32) is exact (the exactity at \mathcal{L}^{0} is trivial).

So, we got the interpretation looked for: the special groups of a paracompact, flat, pseudo-Riemannian space are the cohomology groups of the space with coefficients in the sheaf of germs of the S-fields of the space.

We still remark here that for the curvature groups of a space V_{n} the homomorphisms (13) remain valid.
3. In this section we shall suppose that the space ∇_{n} is Riemannian (g-positive definite), compact and oriented, i.e. ∇_{n} is a compact oriented space form and shall obtain a theory of «harmonic forms» for the curvature groups.

First we remember [2,6] that, in this case, we have a global scalar product of scalar p-forms given by

$$
\begin{equation*}
\langle a, b\rangle=\int_{V_{n}} a \wedge * b \tag{34}
\end{equation*}
$$

and the pairs of adjoint operators $d, \delta ; e(a), i(a)$, the last two being re. spectively the exterior and interior products; they are linked by

$$
\begin{equation*}
\delta=(-1)^{n p+n+1} * d_{*}, i(a)=(-1)^{n(p+1)} * e(a) * \tag{35}
\end{equation*}
$$

when acting on p forms and deg $a=1$. Then, we have the Laplace operator

$$
\begin{equation*}
\Delta=d \delta+\delta d \tag{36}
\end{equation*}
$$

which is self-adjoint and commutes with $d, \delta, *$.

Let $\lambda\left(\lambda^{i}\right)$ be a vector p-form. Then, it is easy to see that the forms $* \lambda^{i}$ define a vector $(n-p)$ form $* \lambda, e(a) \lambda^{i}$ define a vector form $e(a) \lambda$ and $i(a) \lambda^{i}$ a vector form $i(a) \lambda$.

For the vector p-forms $\lambda\left(\lambda^{i}\right), \mu\left(\mu^{i}\right)$ we have again a global scalar product given by [5]

$$
\begin{equation*}
\langle\lambda, \mu\rangle=\int_{v_{n}} g_{i j} \lambda^{2} \wedge * \mu^{j}, \tag{37}
\end{equation*}
$$

which is clearly positive definite and commutative and, with respect to it, the operators $e(a)$ and $i(a)$ are again adjoints.

Further we have

$$
\begin{array}{r}
0=\int_{V_{n}} d\left(g_{i j} \lambda^{i} \wedge * \mu^{j}\right)=\int_{V_{n}} D\left(g_{i j} \lambda^{i} \wedge * \mu^{j}\right)=\int_{V_{n}} g_{i j} D \lambda^{i} \wedge * \mu^{j}+ \\
\\
\left.+(-1)^{p-1} \int_{v_{n}} g_{i j} \lambda^{i} \wedge * *-1 I\right) * \mu^{j}
\end{array}
$$

whence the operator

$$
\begin{equation*}
\bar{D}=(-1)^{p} *^{-1} D *=(-1)^{n p+n+1} * D * \tag{38}
\end{equation*}
$$

is adjoint to D and satisfies the relation

$$
\begin{equation*}
\langle D \lambda, \mu\rangle=\langle\lambda, \bar{D} \mu\rangle . \tag{39}
\end{equation*}
$$

We get then the following expressions for D and \bar{l}

$$
\begin{equation*}
D \lambda^{i}=d \lambda^{i}+e\left(\omega_{j}^{i}\right) \lambda^{j}, \bar{D} \lambda^{i}=\delta \lambda^{i}-i\left(\omega_{j}^{i}\right) \lambda^{j} . \tag{40}
\end{equation*}
$$

Let now (λ, a) and (μ, b) be elements of L^{p}. Then, the formula

$$
\begin{equation*}
\langle(\lambda, a),(\mu, b)\rangle=\langle\lambda, \mu\rangle+\langle a, b\rangle \tag{41}
\end{equation*}
$$

defines a positive definite and commutative scalar product on L^{p} and we wish to find the adjoint of the operator D on pairs.

We remark, first, that $e\left(d x^{i}\right)=e(\omega)$ and $e\left(\varepsilon_{i}\right)=e(\varepsilon)$ may be applied componentwise to tensor forms, this operation leading again to tensor forms with a contravariant, respectively covariant, index more. This implies that $i(\omega)$
and $i(\varepsilon)$ may also be applied to tensor forms. A straightforward calculation gives

$$
\begin{align*}
\langle e(\omega) a, \mu\rangle & =\left\langle a, i\left(\varepsilon_{j}\right) \mu^{j}\right\rangle, \tag{42}\\
\left\langle e\left(\varepsilon_{i}\right) \lambda^{i}, b\right\rangle & =\langle\lambda, i(\omega) b\rangle .
\end{align*}
$$

(Of course the degrees of the forms are taken in the necessary manner). The following calculation holds now

$$
\begin{aligned}
& \langle D(\lambda, a),(\mu, b\rangle\rangle=\langle D \lambda, \mu\rangle-\langle e(\omega) a, \mu\rangle+\langle d a, b\rangle+ \\
& +k\left\langle e\left(\varepsilon_{i}\right) \lambda^{i}, b\right\rangle=\langle\lambda, \bar{D} \mu\rangle-\left\langle a, i\left(\varepsilon_{j}\right) \mu^{j}\right\rangle=\langle a, \delta b\rangle+ \\
& +k\langle\lambda, i(\omega) b\rangle=\langle(\lambda, a), \bar{D}(\mu, b)\rangle,
\end{aligned}
$$

where

$$
\begin{equation*}
\bar{D}(\mu, b)=\left(\bar{D} \mu+k i(\omega) b, \delta b-i\left(\varepsilon_{j}\right) \mu^{j}\right) \tag{43}
\end{equation*}
$$

is the adjoint operator of D.
Further we shall consider according to the known scheme the self adjoint Laplace operator on L^{p}

$$
\begin{equation*}
\square=D \bar{D}+\bar{D} D \tag{44}
\end{equation*}
$$

and the pairs in Ker \square will be called harmonic pairs.
We get

$$
\square(\lambda, a)=(\square \lambda+k D i(\omega) a-\bar{D} e(\omega) a-e(\omega) \delta a+k i(\omega) d a+
$$

$$
\begin{equation*}
+e(\omega) i\left(\varepsilon_{j}\right) \lambda^{j}+k^{2} i(\omega) e\left(\varepsilon_{j}\right) \lambda^{j}, \Delta a-d i\left(\varepsilon_{j}\right) \lambda^{j}+ \tag{45}
\end{equation*}
$$

$$
\left.+k \delta e\left(\varepsilon_{j}\right) \lambda^{j}+k e\left(\varepsilon_{i}\right) \bar{D} \lambda^{i}-i\left(\varepsilon_{i}\right) D \lambda^{i}+k^{2} e\left(\varepsilon_{j}\right) i\left(d x^{j}\right) a+i\left(\varepsilon_{j}\right) e\left(d x^{j}\right) a\right)
$$

whereλ is given by (44) applied to vector-forms.
The formulas (40) and (45) show that \square is a strongly elliptic operator as considered for instance in [1]. Hence, by classical theorems [1] we have the decomposition in direct sum

$$
\begin{equation*}
L^{p}=\operatorname{Ker} \square \oplus \operatorname{Im} \square \tag{46}
\end{equation*}
$$

which gives the decomposition

$$
\begin{equation*}
L^{p}=\operatorname{Ker} \square \oplus \operatorname{Im} I \oplus \operatorname{Im} \bar{I} \tag{47}
\end{equation*}
$$

12. Annall della Scuola Norm. Sup. - Pisa.
the three terms being mutually orthogonal. Moreover, we have

$$
\begin{equation*}
\operatorname{Ker} \square=\operatorname{Ker} D \cap \operatorname{Ker} \overline{\boldsymbol{D}} \tag{48}
\end{equation*}
$$

and it is a real linear space of a finite dimension.
If we note by \square^{p} the action of \square on L^{p} we see from (47) and (8) that there are isomorphisms

$$
\begin{equation*}
H^{p}\left(\nabla_{n}, L\right) \approx \operatorname{Ker} \square^{p} \quad(p=0,1, \ldots, n) \tag{49}
\end{equation*}
$$

hence

$$
\operatorname{dim} H^{p}\left(\nabla_{n}, L\right)=l_{p}\left(\nabla_{n}\right)
$$

are finite, non negative, integers. They will be called the curvature numbers of ∇_{n}. The sum

$$
\begin{equation*}
\chi\left(V_{n}, L\right)=\sum_{p=0}^{n}(-1)^{p} l_{p} \tag{50}
\end{equation*}
$$

will be the curvature characteristic of V_{n}.
The problem of effective calculation of the numbers l_{p} seems to be difficult. We shall remark that this is the problem of finding the number of independent solutions of the equation

$$
\begin{equation*}
\square(\lambda, a)=0, \tag{51}
\end{equation*}
$$

or of the equivalent system

$$
\begin{gather*}
D \lambda-\omega \wedge a=0, d a+k \varepsilon_{i} \wedge \lambda^{i}=0, \bar{D} \lambda+k i(\omega) a=0, \tag{52}\\
\delta a-i\left(\varepsilon_{j}\right) \lambda^{j}=0 .
\end{gather*}
$$

Another equation equivalent to (51), is

$$
\begin{equation*}
\langle\square(\lambda, a),(\lambda, a)\rangle=0, \tag{53}
\end{equation*}
$$

which, after some calculations are done, gives

$$
\begin{gather*}
\langle\square \lambda, \lambda\rangle+\left\langle i\left(\varepsilon_{j}\right) \lambda^{j}, i\left(\varepsilon_{j}\right) \lambda^{j}\right\rangle+k^{2}\left\langle e\left(\varepsilon_{j}\right) \lambda^{j},\right. \\
\left.e\left(\varepsilon_{j}\right) \lambda^{j}\right\rangle+\langle\Delta a, a\rangle+\left(p k^{2}+n-p\right)\langle a, a\rangle+2\left\langle a, k \delta e\left(\varepsilon_{j}\right) \lambda^{j}+\right. \tag{54}\\
\left.+k e\left(\varepsilon_{j}\right) \bar{D} \lambda^{j}-d i\left(\varepsilon_{j}\right) \lambda^{j}-i\left(\varepsilon_{j}\right) D \lambda^{j}\right\rangle=0 .
\end{gather*}
$$

From (52), we get that if $k=0$ and $p=n$, a pair $(0, a)$ is harmonic if and only if a is so; hence $l_{n} \geq 1$. In the same case $p=n$, even if $k \neq 0$,
there are no non vanishing harmonic pairs of the form ($\lambda, 0$). In the gene. ral case, $\lambda=0$ for a pair implies $a=0$. We still remark that the last term in (54) does not allow us to apply the methods used for instance in [4].

Finally, we make another remark which holds good for the general case of a pseudo-Riemannian manifold of constant curvature.

In [3] it is given a relation of F-Relatedness between the vector forms of two manifolds linked by an application $F: X \rightarrow Y$. From the definition given there it follows that, if F is a convering mapping, to every vector p-form on Y there corresponds a form on X which is F-related to the given one. Now, if X, Y are pseudo Riemannian spaces of constant curvature and F a covering, locally isomorphic mapping, it is obvious that we get, in the indicated manner, monorphisms

$$
\begin{equation*}
H^{i}(Y, L) \rightarrow H^{i}(X, L) \tag{56}
\end{equation*}
$$

If X, Y are Riemannian, compact, orientable spaces, this means

$$
\begin{equation*}
l_{n}(Y) \leq l_{n}(X) \tag{57}
\end{equation*}
$$

The same relations for Betti numbers are classical [4].

REFERENCES

[1] Baily, Walter L., Jr, The decomposition theorem for V-manifolds. Am. J. of Math., vol. 58 (1956), p. 862-888.
[2] Chern S. S., Complex manifolds Lecture notes. Univ of Chicago, 1955-1956.
[3] Frölicher A., Nijenhuis A., Invariance of vector form operations under mappings. Comm. Math Helv., vol. 34, p. 227-248.
[4] Goldberg S. I., Curvature and Homology. Academic Press, New York London 1962.
[5] Kodaira K., Spencer D. C., Multifoliate structures. Ann. of Math., vol. 74 (1961), p. 52-100.
[6] Lichnerowicz A., Théorie globbale des connexions et des groupes d'holonomie. Edizioni Cremonese, Roma, 1955.
[7] Vaisman I., Remarques sur la théorie des formes-jet. C.R. Acad. Sc. Paris t. 264 A, 1967, p. 351-354.
[8] Wolf J. A., Honogeneous Manifolds of Constant Curvature. Comm. Math. Helv., vol. 36 (1961), p. 112-147.

