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FATOU’S THEOREM
FOR GENERALIZED HALFPLANES

A. KORÁNYI and E. M. STEIN

The Poisson integral for generalized halfplanes was defined and studied
in [2]. For holomorphic functions in the corresponding Hardy classes the
existence of boundary values almost everywhere was shown in [4]. In the
present paper we show that the Poisson integral of any Loo - function on a
generalized halfplane has boundary values 11. e. on the distinguished boun-

dary. For certain special cases of generalized halfplanes which are symmetric
domains in the sense of Cartan such results hold also for the Poisson in-

tegrals of Lp-functions (p &#x3E; 1), in some cases even for the Poisson inte-

grals of measures ([7, Ch. XVII], [3], (6], [5]).
Following the notations of [2), let

be a generalized halfplane. where Vi , 7 V2 are complex vector spaces, Q a re -
gular cone in Re and 0 an Q.positive hermitian form. The distinguished
boundary is

and 11 is the group of affine holomorphic automorphisms x = (a, c) (a E Re Vi,
c E V2) of D acting by

Pervenuto a~lla Redazione il 13 Ottobre 1967.
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It is immediate to check that the composition rule in lll is

~ is clearly nilpotent of step 2. For we define

1 c I denote some norm on Vt, V. which we consider fixed once
and for all. It is easy to see from (1) that g-1 |=||g|| and that there

exists a constant C (depending only on 0) such that

for all g, g’ E 11.
Let G (!J, Ø) be the group of all pairs

that and

such

for E This group acts on D in the obvious way, and together
with 11 it generates what is called the group of affine automorphisms of D.

1

For t &#x3E; 0, G (0, fi) always contains the element 1). For brevity
we shall denote the result of applying this transformation to z = (zi , Z2)
by i. e.,

Using the definition of P in [2] it is easy to check that, for all t ~ 0,

where n = dim V, -f- dim V2. In fact, with the same effort one can see that,
for all A == (Al A2) E G (S2, ~),

but this will not be used here. It is also easy to check that, for all I 
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Now let a &#x3E; 0 and be a proper subcone of D, i. e. an open cone

such that a) c Q - (0). The set

will be called a restricted admissible dontain at

the set

will be called a restricted admissible at ito.
Let f be a function on B and I’ a function on D. We say that F con-

verges to f’ restrictedly and admissibly a.. e. if for all a, wand almost all ito E B,

This is the same notion as in [3], [6] ; in the case of a product of one-
dimensional halfplanes it reduces to restricted nontangential convergence
in the sense of [7, Ch. XVII].

It is worth while to mention that restricted admissible convergence is

a notion invariant under affine automorphisms of D. In fact, this is obvious
from the definitions for elements of Ð. For elements A = A 2) in (~ (Q, 4S)
one checks easily that there exists a constant K (depending on A) such that

for all a and cu, whence the assertion follows at oncee

For r &#x3E; 0 we define

The proof of our main result is based on the following extension of the
classical Lebesgue theorem. (WTe use the measure B defined in [2]).

LEMMA. If f is a locally integrable function on B, then for almost

all 
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PROOF. The function f can be lifted to lll, (in fact B can even be iden-
tified with i)); it is known [2] that fl lifts then to a Haar measure on 11.
The assertion of the Lemma is equivalent to

with = (g ~~ c~ i~ C i-1, and this follows by classical methods from an ex-
tension of the Ilardy-Littlewood Maximal Theorem [1]. (In fact, this exten-
sion takes a particularly simple and natural form in the case of the nilpo-
tent group 11, and was obtained by the second named author independently
of’ (1]; I see e. g. [5]).

THEOREM. Let f be a bounded measurable function on B and let F be

its Poisson integral. Then F converges to f restrictedly and admilssibly a. e.

PROOF. Let be a point for which the statement of’

the Lemma holds and let a, co be given. Let z = go 0) E (uo) (y E 11),
and let c &#x3E; 0 be given. shall show that I is

small enough.
We use a trivial estimate, then (4) and (3) with appropriate changes

of variable to get

’rhis we write as



111

where we choose l’ &#x3E; 0 so that

for all yEw. (This is possible since an r of this kind can be found for every
fixed y E co ; by continuity this i- then works for a whole neighborhood ofy.

and it only remains to notice that the set of the .2013. (y 6 w) is compact).

By the choice of i- it is clear that the first integral in (5) is ( 2013 .2
Next we note that P I is bounded by some number M for

E Br , since it is a continous function on a compact set. So the se-

cond integral in (5) is majorized by

where we have made some changes of variable. By the definition of admis-
sible domain and by (2) the last expression is further majorized by

By the Lemma, this integral is for small enough I y I , and the proof
is finished.
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