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SOME NON-HOMOGENEOUS SYMBOLS
AND ASSOCIATED

PSEUDO-DIFFERENTIAL OPERATORS

S. ZAIDMAN

1. Introduction.

In connection with a recent paper by Kohn and Nirenberg [1] we con-
sider here a class of symbols a (x, ~) not necessarily homogeneous with respect
to the ~-variable and its associated pseudo-differential operators. Estimates
of the norm of a pseudo-differential operator modulo lower order operators

through the numbers max (x, ~) ~ I and lim max I a (x, ~) I are

x E R It xE R51

obtained, following ideas of [1] ] and of a preliminary version of it.
A main technical tool is a partition of the unity constructed in [2], for

similar (but there different) purposes.

2. Notation and Definitions.

We start by defining the space cS consisting of C°° complex valued func-
tions u (x), x = (x1... ,xn), defined in y which, together with all their deriva-

tives die down faster than any power of x ~ at infinity. The Fourier transform

is, as ’a function of

again in cS, Here we denote

Pervenuto alla Redazione il 20 Feb. 1967 ed in forma definitiva il 19 Apr. 1967.

Supported by the N.R.C. of Canada.



548

Denote by c5’ the dual of cS, the space of temperate distributions in Rn.
The Fourier transform is defined on cS’ too and maps c5’ onto itself. For

any real numbr s we define the norm I I lis by

and denote by gs the Hilbert space obtained by the completion of c5 in
this norm.

We make use of the familiar notation

--... "OJ

for ot = (oc, ... oc,,) a multi index with tbe Ctj integers 0. Then Da u = ,, U

and, by Parseval’s theorem, if s is a non-negative integer, then

where C, c’ are positive constants. Here II II denotes the L2 norm and

= 11 u 110 (by Parseval). A linear operator from cS into c3’ is said to

have order r, or to be of order r, if for each real s there exists a constant

C8, such that 11 Lu for u E cS.
Following a notation in [1], if 0 (~) is a given function of $ we shall

denote by 0 (D) the operation of multiplying the Fourier transform of a
function by 0 (~) and then applying the inverse Fourier transformation.

3. Pseudo-Differential Operators of Order Zero.

Let a (x, $) be a complex-valued function defined for all x and $ # 0.
Assume that a (x, $) has a limit a (oo, ) as x -- oo for each f + 0, and that
a’ (x, ~) ._-- a (x, ~) - cc (oo, $), as a function of x, defines a temperate distri-
bution for any $ # 0. About the Fourier transform a’ (r~, ~), ~ # 0 of

a (x, ~) - a (oo, ~), we suppose it to be a function of q such that
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where k (1]) is a measurable function such that

About the function (oo, ~) we assume that it is bounded in Rn - JOJ
and that

Finally we snppose that, for x E .Rn and $ # 0, the formula

holds.

It follows from the representation (iv) that every symbol a (x~ ~) is in-

definitely differentiable with respect to x and we have with constants Ca that

REMARK 1. Let a (x, ~) be a complex-valued function, defined for x E R’z

0, such that Dx ~,~, ~) exists for each multi-index a and for each
multi-index fJ with ,8 C 1.

Suppose

Let us suppose also

(that is ac (x, ~~ is a homogeneous symbol in Kohn-Nirenberg’s sense [1~~,
It can be proved that such a symbol is also a symbol in our sense ;

(see for the proof our forthcoming paper [4].

REMARK 2. Let us give a non-trivial example of a non-homogeneous
(in our sense) symbol.

Put a (x, ~) = a (x) f (~), when a (x) E c5 and

It can be proved (see [5]) that
then the other conditions are easily verified.

Define an operator a (x, D) = A associated to a (x, ~) and mapping cS in
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by the formula

the Fourier transform of a (x, D) 2c is taken in cS’ . But the right hand side

is, for it E cS, bounded by

an integrable function of $. So we can take the classical inverse Fourier

transform and get a (x, D) ic, a bounded continuous function of for

each u E c~.
We see also easily that for 2c E cS, the useful formula

holds.

Using the definition (3.3) we shall give first a proof for

THEOREM 1. A hccs order zero.

Proof. Since obviously the operator ac (oo, D) maps Hs boundedly into
H, we shall only consider the remaining term in (3.3). We have to estimate
the L2-norm of

r

in terms of the L2-norm of (1 + q ~2y~2 u (~).
This is done easily, as in [1], applying the elementary inequality (Min

kowski) 
1 1I ,

together with the simple one (Peetre)

which is found in [1] and [6] pag. 39 and the property (i) from the Defini-
tion of a symbol.
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4. The main estimate (1).

From (3.2) with a = 0, it follows that a symbol a (x, $) is bounded for

x E R~ , ~ # 0. Denote

THEOREM 2. For any 8 &#x3E; 0 there is a constant Oe such that

holds. 

Proof. Some Lemmas will be involved in the proof.
Consider the function qJ (;) = 0 for ’  1, = 1 for ) $ ) I 2 = ] $ - 1

for 1 c ~ ~ , 12 ; for real t ) 0 consider the operator defined on

We have

LEMMA 4.]. Suppose that for any 8 &#x3E; 0 there exists tE &#x3E; 0 and OE &#x3E; 0

s uch that

Then Theorem 2 follows.
We have in fact for 8 &#x3E; 0

This gives, by use of (4.4)

Remark now that
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(by Th. 1) ; then, from (4.6), (4.7), we deduce

hence the lemma.

A main tool in the following proof is a certain partition of the unity
in the ~-space which was constructed in [2] for similar purposes.

Precisely, it is a sequence (~)11- . of indefinitely differentiable func-
tions with compact support in R’ , y such that

For a &#x3E; 0 all 1jJo. are null in a fixed neighborhood of the origin.

and

We have, for real s and u E cS (and also for u E Hs~
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Hence, for any t &#x3E; 0 and u E cS

Take to such that supp
We may have : supp

case

for other values of a ; in that

We deduce, from (4.10) that

the sum ~’ being taken over those a such that supp
Moreover we remark that

where, as usual

the commutator of two operators 1/’a (D) and a (x, D).

Hence from the relation which is

true for any b &#x3E; 0, we obtain, from (4.13)

From (4.12) we get, for 0
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An estimation of the second term in the right hand side, a result similar

to one in [2], is given here in

LEMMA 4.2. yYe have for t &#x3E; to a constant Gto, such that

Remark first that for uE cS the Fourier transform Ia (~) of the function

is given by

Consider now an arbitrary sequence (W .. ($))- 0, of functions Wa (~) E L2 a
such that We shall estimate the expression (where (, ~o is

the .L2 scalar product)

We have:

Remember property (c) of the partition of the unity that is
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In (4.19) we may consider When it follows

On the other hand, if we obtain

hence and

Hence for any

We get now, from (4 19)

apply the simple inequality

taking
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and obtain, as

This implies the estimate

that is (4.16).

From (4.15) we deduce that for any ð &#x3E; 0, the relation

holds, for u E cS, t &#x3E; to , the sum ~’ being taken over that a for which

supp. 1pa n ~ toj % o.
We prove now the main step in the Theorem 2, iaamely the

LEMMA 4.3. For any s &#x3E; 0 there is a constaut C &#x3E; 0 and t, &#x3E; to , I such
that for u E c5 the estimate

is verifiei, for a such that supp fl I  ; I I # W.
In fact, as K = lim max I a (x, $)I , , it follows that, s’ &#x3E; 0 being gi-

veu, there is tl, £- such that ]

and let us estimate the expression

that is by (3.4), (remarking that for &#x3E;

the .L2 norm of
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Take , E supp ¥’a, y t,, , otherwise arbitrary ; we examine hence forth
the case when supp 1fJa n {~ ; I ~ ~ tE, ) =F ~.

Write now

By Plancherel we get, as

so

To estimate the L 2-norm of (~) we write it again in the form

We have Ia  (~) = 0 for ] $ c t,, or ~ ~ supp and

and $ E supp ya
In this last case, we have

hence, for any
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which gives

Consider now the term Ia, 4 (~) ; we have the obvious estimate

Denote the sphere

Then, we have

and

Consider finally the case ~ ~ Sa . Then, first of all, using1 i) of n. 3 in (4.31),
we get

Now, for

easily seen ;
and q E supp V. we have as is

Then
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(by b) pag. 6). Then consequently

On the other part

and henceforth

which gives

The estimate is done for a ~ 0, as we supposed:

supp and supp

Then, for a fixed constant 6 independent of a, (q) = 0 for 1 27 
Then, from (4.38), for ~ ~ Sq. and q E supp 1/’0., we obtain

Hence, we obtain, using (4.37) and (4.39)

From (4.35), (4.36), (4.40) we obtain  easily &#x3E;&#x3E; (when supp

C and C, being absolute constants.
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From (4.30), (4.33), (4.41) we get, for these a

u E e, being absolute constants.
Hence, E’ ~ 0 being given, we found te, such that

for u E cS and a such that

Take s ~ 0, and choose

we have (4.28) verified.

for supp

We continue now the proof of Theorem 2. From (4.27) and Lemma 4.3
we have, given s &#x3E; 0, for any ð &#x3E; 0, after an easy passage using (4.16),
for t = t£ &#x3E; to

where ~’ is taken for a such that supp y,,, n {~ ; ~ ~ ~ to) # 0. Let us se-

parate I’ in ~i + ’¿2, r where Z’ is taken for a such that

and -y’ 2 for a such that

and supp

So
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Applying Lemma 4.3 to the sum we get,

Then, for the terms in ’¿2 we have

and (by 4.16)

so we get (4.43)

As for any so &#x3E; 0, we obtain from (4.43)
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we obtain

For hence for 6 and 80 sufficiently
small we have

or

Hence, by Lemma 4.1, Theorem 2 is proved.

5. The main estimate (II).

We give here a certain extension of Theorem 2.

Let ~ (~) be a C °° non negative function which equals one ) 1
and vanishes 1/2. Set

a real

and denote the corresponding operator by (J (D). Let a (x, ~) be a symbol
and

Then

THEOREM 3. Denote Then, for s real and

any e &#x3E; 0 there is a constant such that

a

We first note that AQ differs from (1 + ~2) 2 a (x, D) by an operator
of order 6 - I. This follows from Theorem 1 and
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LEMMA 5.1. For any real sand 1t E (1 Hs the esti1nate

holds.

It is enough to see that for

To obtain this inequality we take F (t) = (t + I ~ 12) 2and apply the mean

value theorem between t = 0 and t = 1 together with some elementary
remarks.

(1

Hence it suffices to consider the operator (1-- D 2) 2 a (x, D). Since

it is enough to consider the case a = 0.
We have now

LEMMA 5.2. For any real sand u E d, the estimate

holds where

We have the elementary inequality : i for 0  0  l.

It follows readily that

Then we remark that
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Estimating the L2-norm of this expression as in Theorem 1 we get the
Lemma.

PROOF OF THEOREM 3. We saw already that it is enough to consider
the case a = 0. Now

by Lemma 5.2 and
Then

Remark that u E cS gives (1 + D 12),9/2 it E cS too. Apply (4.2) and get for any
E &#x3E; 0 a constant C, such that

as Ilt is increasing with t.

This proves our theorem 3.

6. The main estimate (III).

We give here another extension of Theorem 2 when instead of the

whole R~z arbitrary open sets in Rn are taken into account. We have pre-

cisely the

THEOREM 4. be an open set in the « x-space » Rn and ==

. 

lim max I a (x, ~) ~ . Then, for any ~ &#x3E; 0 there is a constant 61, such that

holds.
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To prove it we need the following

LEMMA 6.1. Let a~ (x, ~) be a acn open set in Rn, KQ as before.
Then, for any 8 ) 0 there is an open set Q, such that -f- B.

As is seen from (3.2), we have, with an absolute constant

Consider then, for each (boundary of D) the sphere S (x , 
Take D, = Q U ( U S (xo , 

Then, if y E DE we have y E S or y E S (x*, OE) for an x* E The first

case will give a (y, ~) (x, ~) I, , the second one gives
Q

Hence anyway

and, as easily seen

that is, the Lemma.

PROOF OF THEOREM 4. Given E &#x3E; 0 constract DE given by the Lemma.
There exists a C1° function ~, (x) equal to one to zero outside 

such that 0 ~ ~E c 1.
Remark that C~ -functions are symbols in our sense (a very

special kind indeed) and it is also easy to see that a (x, ~) being a symbol.
’S (x) a (x, ~) is again a symbol, null outside Hence

and

Call and the pseudo-differential operator
associated to it. We have
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E cS, u = ~, it + (I - and we can hence forth write the

decomposition

In particular, when, as in our hypothesis, u belongs to Co (Q), we obtain,
as 1 - ’E = 0 in ii, that (1- ’8) ~t = 0 in Rn. It follows

We apply Theorem 2 and get

that is inequality (6.1) is proved.

7. Norns modulo lower order operators.

Our next results concern the estimate of the norm of pseudo-differential
operators modulo operators of order - oo (an upper estimate) and modulo

operators of order - 1 (a lower estimate). Remember (see [1]) that a linear2

operator T from cS into c3’ is of order - oo when

for anyuEO and 
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Also remember that T is of order if

The upper estimate is quite a simple corollary of Theorem 2. We

express it is the form of

THEOREM 5 (1). Let a (x, $) be a symbol, a (x, D) its associated pseudo-
differential operator, the cla,ss of operators of - oo.

Denote -

Then, the relation

holds, the norm the operator norm from L2 (Rn) into itself.
We have to show that for any s &#x3E; 0 there is an operator T of order

- oo such that

To construct such an operator Ts, y consider a C°° function OR (~), depending
on R &#x3E; 0, such that 0 C 1, OR (~) = 1 on ) $ and OR (~) = 0

for I ~ I &#x3E; 2R.
The operator 2°R = - a, (x, D) (D) has order -- oo. Precisely (using

Theorem 1) we have the following estimate (for any u E c3)
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We can apply (4.2) (replacing H by and derive, for any s &#x3E; 0, that

Let us remark now that

and furthemore, that
for any

Take R,, such that Then, from (7.4), (7.5), (7.6) we deduce

for any u E cS and hence for any u E L2.

THEOREM 5 (II). Let a (x, ) be a sY1nbol a (x, D) its associated _pseudodif-
ferential the class of operators of order - 1/2.

2

Denote

Then, the relations

holds, the nornt Il II being the operator norm from L2 into itse~f.
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A main tool in the proof is the following

IlEMMA 7.1..Let a (x, ) be a symbol and lim a (.xo, ;p) = c, for some

xo E Rn and for a sequence ~~ -+ oo. Then for¡’ any E &#x3E; 0 there exists a Co
f unction Us (x) such ] u~ ~ 0 and

We postpone a bit the proof of this result and derive the final proof of
Theorem 5 (II).

Suppose by absurd that

Then for some operator Tk of order - 1/2, corresponding to any k, k* 
 k  we have

There exists at least an xo E R’2 such that

There is a sequence ~p --~ oo such that

But the set i a (xo’ I is bounded. We can extract a subsequence
such that lim exists.

It follows, As Tk is order - 1/2 we

have
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Then, applying the Lemma 7.1, we have

Hence co I - 8 C k -~- 08, co I - k c ( C -~-1 ) E, absurde for small 8 as

) lc. This ends the proof of the Theorem 5 (II), if Lemma 7.1 is assumed.

PROOF OF LEMMA 7.1. We start by considering &#x3E; 0.  ~E’,
we have (see 6.2) that I a (x, ~) - a (xo, ~) C E’ , ~ ~ 0 ; consider a fixed

function 0,, (x) indefinitely differentiable, with support in the sphere
~ ~E ~ and the sequence of functions

~p being the sequence indicated in the lemma. We start by considering an
estimate for the expression

Let f (x) be a C°° function, =1 for I x  1~ = 0 for x ~ &#x3E; 2 ; write then

we see that, with an absolute constant c, the estimate

Consider the operator (D) defined as usual by
and remark the obvious decomposition

We deduce from it, when v = up, e’ that
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and, as lim

Consider now the term

we write in the form
which

We have now

Remark that from the definition of a symbol (N. 3) we may deduce

Introducing in (7.21) we obtain

Let us consider now the term U.4 E, . We have first of all, as
.. 

P, s

Call b (x, ~) = ~(.r~)2013~(~o~ ~) the symbol associated to a (x, D) -a (xo, D).
If S (xo, 3~,) is the sphere of center xo and radius 3~, , y we have

On the other hand the functions u~,, E.= (x) belong to (xo, 58,).
Apply Theorem 4 0 and get that there is a constant C~, such that
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Let us now estimate the term

the second term

in the commutator of a (x, D) and yp (D). We obtain at once (Theorem 1) that

Then, first of all

The estimate for the commutator is given by using the formula

Hence, by using the definition of a symbol, the mean value theorem and

(7.16) we get

This last inequlity implies, by means of some elementary calculations,
that

The last inequalities that we got give us the desired bound for p namely
from (7.27), (7.28) and (7.31) 

’
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If we sum up the preceding estimates (7.19), (7.23), (7.26), (7.32) we get

Let us show now that : for any B" ~ 0 there is p (8", 8’) such that

We have

Now, given e" &#x3E; 0, there is r* (s’, 6") such that

Remark moreover that if

for p large,

then consequently

For big enough ; depending on r* (e,, s"), hence on 8’ and e" we get
1

. Then, from (7.35) and (7.36) we obtain

for that is (7.34).
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Then, from (7.33) and (7.34) we get

I

Take then e" = main I

We deduce :

and

where P depends on 6’ only. Take now B &#x3E; 0 and Then the whole

sequence of functions

ditions of the Lemma

will satisfy con-
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