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A MAXIMUM PRINCIPLE FOR NONLINEAR
PARABOLIC EQUATIONS

by D. G. ARONSON and JAMES SERRIN

(University of Minnesota)

This paper deals with a large class of second order nonlinear parabolic
type partial differential equations with divergence structure. For equations
in the class under consideration, we prove that every solution has bounds
which depend only on the boundary and initial data, and on the structure
of the equation. This result includes as a special case the standard weak max-
imum principle for the equation + with smooth coeffi-

cients. In the usual proof of a maximum principle some form of comparison
argument is ordinarily employed (cf. [3], [9]), and it is necessary to assume

that the differential operator has appropriate monotonicity properties. Here
we use an extension of the iterative techniques introduced by Moser and
further developed by Serrin, and accordingly can dispense with monotoni-
city conditions on the operator. As a consequence our result applies to equa-
tions which are not accessible to comparison methods, and which may not
even be parabolic in the usual sense. Moreover our results hold not only
for classical solutions but also for suitable types of weak solutions.

We let x = (xl x,,) denote points in n-dimensional Euclidian space
and t denote points on the real line. Let S~ be a bounded domain in .E n ,
and consider a space-time cylinder Q = S~ X (0, T] for some fixed T &#x3E; 0.
We shall here treat the second order quasilinear equation

where -,7f is a given vector function of (x, t, u, u~)~ c)3 is a given scalar func-
tion of the same variables, and ux = (au/ax1 , ..., aulOx,,) denotes the spatial
gradient of the dependent variable u = u (x, t). Also here div nl refers to the
spatial derivatives of the vector sIl, that is div ~4 = The structure

of (1) is determined by the functions and cB (x, t, u, _p). We as-
sume that they are defined and continuous for all (x, t) E Q and for all values
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of u and p. Moreover, we suppose that there are constants a &#x3E; 1, a &#x3E; 0
and b, c, d, f, g &#x3E; 0 such that

and

(if a ---1 we may suppose without loss of generality that d = g = 0, and
correspondingly omit terms in the subsequent work which involve these
coefficients). These hypotheses are patterned after the elliptic type structure
of reference [7], though for simplicity we have taken b, c, to be cons-

tants rather than functions of x and t. It is to be noted that no upper
bounds are required for the expression sae (x, t? 2c, j)) itself.

Our main result, Theorem 2, states that every solution of equation (1)
is bounded in terms of its values on I’= (Q X (t = 0)) u ( 8Q x [0, T]) and
the structure constants a, n, T, and a through g. This is true without

qualification for 1  (x 2 ; for a &#x3E; 2 we must require in addition that I Q I
be sufficiently small (depending again on the structure constants). Theorem
2 is a relatively simple consequence of Theorem 1, which in turn asserts
that solutions of equation (1) are bounded in terms of their values on I~’,
their ~La (Q) norms, and the various structure constants. Theorems 1 and 2

here correspond respectively to Theorems 3 and 4 of reference [7] ; cf. also

[8, pp. 237-238~.
For simplicity we have restricted the discussion to classical solutions

of equation (1). This restriction is by no means necessary. Moreover, the
quantities b, c, d, f~ g in (2) and (3) need not be constants, but can in fact
lie in certain appropriate Lebesgue spaces. For the case a = 2 these gene-
ralizations are proved in reference [1] ; for a ~ 2 these generalizations are
contained, along with other results, in the University of Minnesota dis-

sertation of R. A. Hager.
Note that the class of equations under consideration include (for a = 2)

second order linear parabolic equations with divergence structure. Several
autlrors have proved maximum principles for such equations, even when the
coefficients are unbounded, cf., for example, references [2], [3] In this paper
our main interest is in nonlinear equations and, in particular, in the case
(X =f= 2. On the other hand, in reference [1] we consider only the case a = 2
and study it in great detail.

1. Preliminary Results. It is necessary to deal with functions of (x, t)
which belong to different Lebesgue classes with respect to the variables x
and t. We shall say that f (x, t) E (Q) if f is defined and measurable on
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Q, while f (x, t) E LP (Q) for almost all t E (0, T] and

It will be convenient, moreover, to introduce the norms

and

Here p, p’ may be any real numbers &#x3E; 1 ; and with the obvious use of L°°
norms rather than integrals we can allow p or p’ to have the value 00 .

LEMMA 1. then and

provided that

Proof. By Hblder7s inequality

provided that Continuing in the same way we find that

LEMMA 2. that u has strong derivatives ... , 

which belong to La· a (Q~. Suppose also tha.t u = h in the neighborhood of
aS~ x [0, T ]. Then if x we have

where a* ---- - a) is the Sobolev conjugate of a. If a &#x3E; n, then

In both cases the constant depends only on oc and n.
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Proof. Suppose a  n. By Minkovski’s inequality and Sobolev’s inequality

and the assertion follows easily from Minkowskils inequality. For a &#x3E; ~i &#x3E; 1

again using Sobolev’s inequality, we have

where 2a is the Sobolev conjugate of 3, that is = 2(x~/(2x -F 7z). When
~c =1 the result is elementary.

2. The Fundamental Estimate. Here we shall derive an upper bound
for solutions it of (1), involving the data of the problem and the Ll (Q)
norm of 2c. In order to obtain a maximum principle from such a bound it

is necessary to have an estimate for the norm of u in terms of the

data. This will be obtained in the next section.

In the following., we sball say that u c M on the boundary set r if
for every E &#x3E; 0 there exists a neighborhood of r in which u  NI + 8. By
u  IV on F we mean that there exists a 6 &#x3E; 0 such that it c M - 6 on r.

THEOREM 1. be a classical sol2ction of (1) in Q, such that u ---- M
on I: Therc in Q

-

ivhere 7i = max (0, u - and A, C, k a,re positive constants depending only
on the structure of (1). In particular A = ea-2, 0 = 0 (a, n, T, Q, a, b, c, d), afad

Proof. be an element of which vanishes in some

neighborhood of r. Moreover, suppose ø has strong derivatives with respect
to x which belong to .La (Q). Multiplying both sides of (1) by  integrating
over Qt = Q X (0, t], and applying the divergence theorem, we obtain
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for 0::;: t ~ T. In what follows we shall work with the equation in this
weak form.

We assume temporarily that ~ =1 and iV  0 and shall prove that

where

and C = C (a, n, 2’~ a, b, c, d). This will then be used to obtain the general
result.

Let fl be a fixed exponent greater than or equal to 1, and introduce
the function 0 = ïïJ3 Since M = x near 1° it is clear that fl is a suit-
able test function in (4). On the set where (P + 0 we have u = it + x and

The term in braces is non-negative and vanishes when 4Y = 0. Thw, in

fact, (6) holds almost everywhere in Q. Moreover, when 0 # 0

since and Similarly

By Young’s inequality

Thus

Note that (7) and (8) also hold almost everywhere on the set where 0 = 0,
and hence almost everywhere on Q. Therefore, if we set 0 = UP - xfl in
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(4), and use (6), (7), and (8), there results

valid for 0 ~ t c T.

Let ocr = a ---1 and set

(9) implies
Then and

where we have used the fact that fl ~ 1. Suppose n. Then according
to Lemma 2 (with S~ ~ = 1)

the constant g depending only on a and n. Thus, in view of (10) and the
fact that x c I 2c (a~. , we have

where Similary, if a we obtain

Using Yoang’s inequality once more, we find

Consequently (9) also implies
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for 0 - t  T. It follows that

It is easily verified and fl + 1 ~ 2x~. Thus the previous
inequality can be rewritten

or finally

if a 2 and I it la1’ &#x3E; 1, or if a  2  1

otherwise,

where 03 = 8cxaOi T + 2a.
The next goal is to rewrite inequalities (11) and (12) in a form suit-

able for iteration. To this end, suppose first that a  n. We seek numbers

I, 11 &#x3E; 0 aud s ~ 1 such that ), + It === 1 and

According to Lemma 1 this requires the relations

and

whence we find easily

and

In particular, since 1 m r  oo it is clear that

if

if
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Combining (11) and (12) with (13) yields

and

and

otherwise,

where C4 = C2 C3 and 8 = À.x +2u = a (11 + 2)/(n + oc).
In case a &#x3E; n we must replace a~ on the right hand side of (13) by

2a. Proceeding as before, one finds that now Â = 2 , - 1 , and s =
- 1- , - 

3 ’ 3

Clearly (14) then holds with these values of

s and It, and with - = ~1a + 2p = 2 (a + 1 )/3.

This being shown, suppose now that a  2. Let o = 1 + and set
n 

.

r = for 1n = 0, 1, .... Writing

(14) then implies
if

if ,

that is

if

if

since °4 and « are greater than one. Thus

where v= Ym is either 1 or
I

Since v c 1 we have by iteration

(1) Or s ~ 3/2 if n = 1 and 1  a  2. This case regnires separate treatment in the
following paragraph, but is omitted for brevity.
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the sums and product running from j = 0 to j = in. Clearly  o0

 oo and IIYj  1. Thus we can let m tend to infinity in (15) to obtain

where C5 = C5 (a, n, T, a, b, c, d). Now

that is A  1. Therefore, whether I it 1,,,  1 or I u 1,, &#x3E; 1, we have
- 

A
max u  65 ( 11t la + I it 1.).

Now suppose a &#x3E; 2. We take a = (7i + 2)ln if a  n and a = (a + 1)/oc
if oc ~ ~a? and similarly take 8 = oc + 2)/(it + a) if a = 2 (a + 1)/3
if Using the notation of the preceding paragraph, it follows from

(14) that
if

if

where r = o"~ . Since ar - p (a - 2) &#x3E; 81" 1, this implies

where v is either 1 or Since v &#x3E; 1, we have by iteration

the sums and product running from j = 0 to j = i)z.
It is easily verified that It (a -  1/2 for all m = 0, 1, 2, ....

Moreover, if 0  1/2 then (1- c 1 + 2y. Thus

Hence Consequently we can let 112 tend to infinity in (16) to
obtain

where 06 = C6 (a, n, T, a, b, c, d). Whether I u la  1 la ~ 1 we therefore
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have C6 (I u la -~- ~ it 1-4). This completes the proof of (5), with C =
= Max (°5, C6).

We now use (5) to obtain the general assertion of Theorem 1. Let 6 &#x3E; 0
be arbitrary and put U = 2c - M - 6. Then U  0 on ~’. Moreover, since
it is a solution of (1), we have

where U + M + 6, P) and
+ M + 6, P). In view of (2) and (3)

and

Hence the hypotheses of the earlier paragraphs are satisGed and (5) applies,
yielding the result

where U - max (0, U) + = const. ( (b + c~~ -f -- 9! + f + g 1, and C =
- C (m, n, T, a, 2b, c, 2d). Since 6 is arbitrary the last inequality implies

where 

Finally suppose it is a solution of equation (1) in Q, and S~ I + 1.
Introduce new space variables Xl = Xl for 1 = 1, ... , n. It is easily
verified that in the new variables u satisfies an equation of the form (1)
in a cylinder Q’ with I Q’ I = 1. Moreover, for the new equation (2) and

(3) are replaced by

and

respectively. In view of the result in the previous paragraph, this completes
the proof of Theorem 1.

If l~ ~ 0 we may omit the step involving IT in the above proof. This

yields an alternative version of Theorem 1, worth noting here.
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THEOREM 11. Let it satisfy the hypothesis of Theorem 1. Then in Q we have

n n n

A, C a1’e as in Theoreni 1, 1J1 = max (0, AI), it = (0, 1t - ill) and

The reader can easily check that Theorems 1, 1’ remain valid whenever
u satisfies the differential inequality

rather than the full differential equation (1). A similar remark applies also
to the following Theorem 2.

3. The Maximmn Principle. Theorem 1 gives us an estimate for a

solution of equation (1) in terms of its La (Q) norm and the data. We now
derive a bound which involves only the data.

THEOREM 2. Zet u satisfy the hypothesis of 1. either

or b + c + d = 0 we have

where e depends only on T, S~ I, the structure constants of (1) and the
dimension. If 2 and b + c + d ~ 0 the same conclusion holds provided
that S~ is suitably s1nall.

It is of interest to consider the specific dependence of C? on the various
parameters listed in the theorem, particularly :1B1. First we dispose of the

special case where the structure constants b, c, c1 vanish.

When b + c + d = 0 there exists a constant depending only on a, n, T, ) S~ I
and a such that e = iii -‘- const. [f + g + ( f + 

In the general case the results depend significantly on the value of the
exponent a, with the ranges a = 2, a  2, and a ) 2 best being treated
separately. We use the notation of Theorem 1, where k=(b+d)M+(f+g)
and C denotes a constant depending only on a, n, T, 10 I, cu? b, c, and d. Then

the following specific conclusions hold :

(A) When a = 2 we have e = J1f + Clc.
(B) There exists a positive constant S having tlae property that when a 2,

if

if
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while if oc &#x3E; 2,

provided that 1 --- S. Here S depends only on a~, b, c, d, a and n.

It is clear that Theorem 2 follows directly from the sharper conclusions
noted above. Hence we may turn immediately to the proof of these results.
As in Theorem 1 it is convenient to begin with a preliminary result,
assuming ’it  0 on 1° and Q I = 1.

- 
,

Taking ø = 1ae = max (0, u) as a test function in (4) we easily derive

valid T. By Hölder’s and Young’s inequalities, if 1,

for arbitrary 6 &#x3E; 0. Thus, setting one finds

This relation remains valid for a =1 provided we drop terms involving d,
g, and 0.

Suppose now that 1 c a  2. By putting 0 -1 in (17) we find easily
for all values of a under consideration
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where x = f + g. By Holder’s and Young’s inequalities again

Thus if we set

then

Therefore by integration

or, since

To prove (A), set a = 2 and take the square root to obtain

Introducing the new dependent variable U = u - M - 6 and the new

independent variables xl’ _ ~ Q and proceeding as in the proof of
Theorem 1 we then find

where lil == max (0, u - M) and k = (&#x26;-)-%) If + f + g. Inserting this esti-
mate into the conclusion of Theorem 1, and recalling that A = 1 in the

present case, proves (A).
Next suppose Lx  2. It is evident from (18) and the simple inequality

x«  1 + x2 that

for some constant depending only on a, a, b, c, d, and T. Making the usual
transformations in the case where u F 4= 1, and then apply-
ing Theorem 1, we obtain
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(here we have used the fact that yA C 1-f - y, since A  1). This proves
the second part of (B), even without the restrictions I Q &#x3E; S.

The remaining conclusions are derived by a somewhat different process.
Dropping the first term on the left hand side of (17) and setting t ; T,
there results 

-

where 0 = 8-llt«-u or 1, whichever is greater. Now from Lemma 2 (with
h = 0) and Holder’s inequality, we have Hence

Making the usual changes of variables when u  on I’ and

now leads to

the constant depending only on a. If I is so slnall that

we may choose 8 such that

Therefore whenever (19) holds we have

the constant depending only on a, a, n, and | Q I.
The remaining parts of (B) now follow from (20) and Theorem 1, with

S = [a/4D .

In conclusion, if b, c, d, vanish, then D = 0. Thus (19) is automatically
satisfied and (20) holds without restriction. A final application of Theorem
1 then yields

where (since b, c, d, vanish) we have k = f -~- g. This completes the proof
of Theorem 2.

It almost goes without saying that a minimum principle corresponding
to Theorem 2 also holds. In particular, 1~T on 7~ then under the

various hypotheses stated in Theorem 2 we have e in Q.

ltote. This research was partially supported by the United States Air
Force Office of Scientific Research under Grant No. AF-AFOSR 883-65.
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