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THE STABILITY OF THE BOUNDARY
IN A STEFAN PROBLEM

J. R. CANNON (Lafayette) and JIM DOUGLAS, Jr. (Houston)

SUMMARY - An a priori bound on the difference between the positions of the free bonn.
daries in two Stefan problems is derived in terms of the initial conditions and the
heat influxes.

1. Introduction. 
°

A typical Stefan problem is the determination of a function x = s (t),
0  t  T, and a function u (x, t), 0  x  s (t), 0  t C T, such that

and either
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The boundary x = s (t) represents the free boundary occurring at a phase
change, such as the boundary between water and ice, and must be found
at the same time as the temperature distribution it. Existence and unique-
ness of the solution have been established for (1.1)-(1.2) and (1.1)-(1.3) by
several authors [2-7] under various hypotheses on the data a (t), b, and
q (x) ; in fact, Kyner [7] has shown both existence and uniqueness for a
nonlinear generalization of (1.1)-(1.2). It is clear that his argument also
extends to the problem (1.1) (1.3).

Let us assume that a (t) is a continuous, positive function for 0 ~ x c T
and that, for (1.3)~ ~ is continuously differentiable for 99’ (0) =
- - a (0), rp (b) = 0, and (p (x) &#x3E; 0 for 0  x  b. It follows from the re-

sults of Kyner (at least after trivial modification of the argument of Lemma
1 in the case (1.1)-(1.3)) that

and

The object of this paper is to establish an a priori estimate on the

dependence of the boundary on the data a (t), b, and cp (x). The result will

be stated here in terms of two problems of the form (1.1) - (1.3). Let

(si (t), ui (x, t)), i = 1, 2, denote the solution of (1.1)-(1.3) with data ai (t), bi,
and ggi (x), respectively. Assume that, for some B &#x3E; 0,

Then, the following theorem will be proved :

THEOREM. If {s~ , ui) is a solution of (1.1)-(1.3) for data ai, bi and 9gip

~==1~2y satisfying (1.6) and the conditions stated above and if 

then the free boundaries 81 (t) and 82 (t) satisfy the inequality



85

where C = C (B, T) is given by (2.33). In case b1 = 0 or b1 = b2 = 0 the
relevant terms on the right hand sides of (1.6) and (1.7) disappear; the
constant C (B~ T) is unchanged.

A continuous dependence theorem for small T is easily obtainable from
the argument of Friedman [4]; our result is global.

2. Proof of the Theorem.

It is very useful to obtain an integral relation expressing the conser-
vation of heat by integrating the differential equation over the domain

(0  x  s (r)y 0  T  t). It follows from (1.1)-(1.3) that

Let

It follows from (2.1) and (2.2) that, if b1  b2 , 9
J.

where j is chosen so that uj is defined for a (t} C x  ~ (t). Obviously, j
can vary with t. The proof consists primarily in relating the last two terms
to ð (t) and then estimating the solution of an integral inequality.

Note that (1.5) and (1.6) imply that

First, let us estimate the integral of ul - U2 on [0, a (t)]. Set
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where each vk satisfies the heat equation in the domain given and the
boundary and initial conditions are chosen as follows :

The fact that a (t), being the minimum of two continuously differentiable
functions with bounded derivatives, is Lipschitz continuous implies the
existence of 11i’ v2 , and 11a.

The integral of v1 can be estimated as follows. The maximum principle
[6] implies (x, t) I is not greater than the solution of the heat equa-
tion satisfying the first two conditions of (2.6) and given initially by
I ~1 (x) - f(J2 (~)! ? and this function is in turn maximized by a solution w1
of the heat equation in the quarter-plane ~x, t &#x3E; 0) such that

Thus,

the equality expressing conservation of heat for w~ .
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The function I v21 is maximized by the solution tV2 of the heat equation
again in the quarter-plane (x, t &#x3E; 0) such that 

-

Thus,

The estimation of the integral of v3 requires something more than just
the maximum principle, although it is again useful to apply it to obtain a

simplification. Note that, as a consequence of (2.4), ] is dominated by
where w~ (a (t), t) = Bb (t) and the other two relations in (2.8) are retai-

ned. Since (0, t) = 0, the domain can be reflected about the line x = 0
ax

and w3 defined for - a (t)  x  0 by w3 (- x, t) = w3 (x, t) to obtain the

solution of the heat equation for which w 3 (+ a (t), t) = Bb (t) and w3 (x, 0) = 0

The function z has the well known representation [4, 6]

where

and
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It follows from the standard jump relations for the fundamental solution
.~ that

It follows from (1.4) that

Hence,

Let us appeal to the following lemma [1, Lemma 2, page 380], the proof
of which is obtained by applying the technique used to solve Abel integral
equations.

Let

Then the lemma implies that
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Collecting,

u

the integral involving the initial values disappearing if 0.

Consider now the integral of Uj from (a (t), t) to (fl (t), t). If ð (t) = 0,
then oc (t) = fl(t) and the integral vanishes. If 3 (t) &#x3E; 0, then two cases

arise, namely when 6 (1) &#x3E; 0, 0 c r and when there exists at least one

value to, 0  to  t, such that 6 (to) = 0. Let us treat the case for which
6 (1) &#x3E; 0, 0 T c t, first. Then, the choice of j is the same for 0 m « S t,
and, by (2.4) and the maximum principle, Uj is dominated by the sum of
two functions zi and z2 , where

and

Since CfJ2 (x) ] 0 for b1 c x  b2 , y it follows from the maximum principle
that ~i,a?(x(~)~)~&#x3E;0 and Hence, heat is flowing out of the
medium and

~-

The estimation of the integral of x2 can be made in exactly the same man-
ner as that for v3 above ; consequently,
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In this case,

If 6 (t) vanishes for some r, 0 c ~  t, let

In the interval [to, t] the choice of j is constant, and ttj is dominated by
the solution Zs of the heat equation in the region a ()  x  8 ()r tQ  c t
such that z3 (a (r), r) = B6 (a) and Z3 (fl (r), r) = 0 ; in turn, z3 is dominated

by z4 , where

It is clear that the analysis of x¢ is the same as that of z2 , I except that
the initial time becomes to . Thus,

therefore, the estimate (2.28) holds in any case.
The estimates above can be applied to (2.3) to obtain

Another application of the lemma completes the proof of the theorem, and
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