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COMPARISON OF HOMOLOGIES

by J. DUGUNDJI (1)

To Reinhold Baer for hi8 65th birthday

Our purpose in this paper is to present a simple principle (3.1) for the
comparison of homology theories. As applications, we will obtain elementary
and particularly short (in fact, without computation) proofs of (1) the various
invariance properties of the simplicial homology groups of a polytope,
of (2) Serre’s « Vietoris mod e » theorem [3 ; 270] when the base is a

finite polytope, and of (3) a special case of Leray’s theorem [3 ; 213] on
nerves of coverings.

Even though the principle itself (and its proof) is entirely elementary,
the principle has apparently not been explicitly formulated or used before ;
it is vaguely related to the acyclic model theorem [3 ;29] but it is generally
easier to use and, as the above-mentioned applications will show, its use

can give some deep results rather trivially. Since there is no requirement
that the complexes be bounded below, or that the dimension axiom (or even
the homotopy axiom) be fulfilled, it can be also applied to extraordinary
homology theories.

1. Structures.

1.1 DEFINITION. Let X be a topological space. A structure for ~ is a

lattice (2) 9C containing X and z, which satisfies the descending
chain condition (3).

Pervenuto alla Redazione il 18 Marzo 1966 ed in forma definitiva il 13 Luglio 1966.
(i) This research was partially supported by the Universitat Frankfurt and by the

Centro Ricerche Fisica e Matematica.

(2) For all lattices of sets in this paper, the lattice operations are understood to be
union and intersection.

(3) Explicitly, we require of 9( = (A ) that, if c)(, then A u B, A 0 B also belong
to fll, and that every descending sequence -A. :D A2 ... ... is finite.
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An element 8 E 9( is called indecomposable if it is not expressible in
the where A, B e 9C and 

It is clear that

1.2 If P is a finite polytope, then the set of all its subpolytopes consti-
tutes a structure 9( for P, and the indecomposables are precisely the closed

simplexes 0.

Further examples of structures can be found by using the trivial

1.3 Let c)C = (Xa a E T) be a structure for X and let p : E -+ X be any
surjective map. Then _p-1 (c)C) _ ~ yl a E 92) is a structure for E (called
the structure in E induced by p) and the indecomposables of (c)C) are

precisely the sets (S) where S is an indecomposable of ge.

2. Holnology theories on structure categories. 
,

2.1 DEFINITION. If 9C is a structure for X, the structure category C (Ti.
Is that in which (a) the objects are all pairs (A, B) such that A, B E A &#x3E; B,
and (b) the set of morphisms (A, B) --~ (C, D) consists of the inclusion map
if A c C, B e D, and is empty otherwise.

As is customary, we abbreviate (A, 0) by A.

2.2 DEFINITION. By a homology theory on a structure category C 
is meant a sequence h = ~hq ~ q E Z) of covariant functors C (g an)
abelian category) together with natural trasformations aq : hq (A, B) ~ (B)
one for each q and (A, B), such that

(a). For each (A, B) E C (9l ), the sequence

is exact (iq,jq are the morphisms corresponding to the inclusion maps i,j),
(b). For each A, B E CJC, the inclusion map i : (A, A n B) - (A U B, B)

corresponds to an isomorphism ( excision isomorphism »)

for every q E Z.

Observe that the morphisms in the category C (K) are simply the inclu-
sion maps, so that no homotopy invariance is required of h.

By the standard dualizing process [1; 15] the notion of a « cohomology
theory on C (gc)&#x3E;&#x3E; is clear.
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3. The comparison principle.

A subcategory cS of a category X is called fult whenever (1) Y E cS and
Z N Y implies Z E cS (2) Y, Z E cS implies Mord and (3)
the composition law in c5 is that induced by the one in ~. A Serre subcategory
92 of an abelian category q is a full subcategory having the property :
whenever 0 - G1--~ G~ --~ 0 is exact in g, then G, E 92 if and only
if both Go and G2 belong to 92. If 92 is a Serre subcategory of 91 a morphism
u in q is called an R-isomorphism whenever both ker u and coker u belong (4)
to Cf2. Using this terminology, we now state the comparison principle :

3.1 THEOREM. Let C be a structure category in a space X, let
h : A --&#x3E; h (A), h : A -+ h (A) be two homology theories on C with values

in the abelian category 91 and let 92 be any Serre subcategory of G. Assume
that there is a natural transf ormation t : h -&#x3E; h and that is an

-

R-isomorphism for each indecomposable Then t (A, B) : h (A, B) --&#x3E; h (A, B)
-

is an R-isomorphism for every and, in particular, 
is an R-isomorphism.

PROOF. We first show that t (A) is an 0e-isomorphism for every A E 9(.
The proof is by contradiction, so we assume that there is some B E ex such
that t (B) is not an R-isomorphism.

Then there exists a such that t (C) is not an R-isomorphism, but
t (D) is an 92-isomorpbism for every proper subset D E 9( of C. Indeed, star-
ting with B, if there is some proper subset B1 c B such that t (Bi) is not

an R-isomorphism, replace B by Bi and repeat the search; this gives a
descending chain B n ... which, by 1.1? is finite and so C = Bn
is the required set.

By the hypothesis, C is not an indecomposable, so C = where

D, E 69C are proper subsets of C and, consequently, D n E E 9( is also a proper
subset of C. Because t (D) and t (D f1 B) are %-isomorphisms, the commutative
diagram of exact sequences

(4) Alternatively stated : If T : rg - is the canonical functor from g to the quotient
category a morphism u in g is an R-isomorphism if, and only if, Tu is an isomor-

phism in 
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and the 5-Lemma of e-theory (a proof of which is given in [4 ; 263]) shows
that is an ~-isomorphism. Because of excision, we find that

t (D U E, E) is also an R-isomorphism. Writing down the analogous diagram
as above for the (D U E, E) exact sequences, recalling that t (E) is an

r-isomorphism, and using the 5-Lemma of 6-theory once again, we find that
t (D U E) is an £Q-isomorphism. Since this is the required con-
tradiction.

Thus, t (A) is an 92’isomorphism for every A E 9( and, applying the 5-Lem-
ma of e-theory once again, this time to the diagram of (A, B) exact sequences,
it follows that t (A, B) is an E-isomorphism for every (A, B) E C (K ). This

completes the proof.

In view of 1.2, we obtain the immediate

3.2 COROLLARY. Let P be a finite polytope and let 0 (c)() be the structure

category of its subpolytopes. Let be two homology theories on C (K )
- 

-

and assume that there is a natural trasnformation t : h --&#x3E; h. Then, if t (o) is

an r-isomorphism for every closed simplex g, t (A, B) is an R-isomorphism
for every (A, B) E 0 

3.3 REMARK. Because the proof of 3.1 is functorial, it is clear that 3.1

and 3.2 are also valid whenever h, h are cohomology theories on C (K).

4. Applications.

(a). Topological invariance of simplicial homology on a finite polytope.
Let 6(c)C) be the structure category of the subpolytopes of P, let h (K, L)

represent the simplicial homology of (K, L) E C ( ) and let h (K, L) represent
its singular homology. It is well known that h has the strong excision property;
and so also does h, since subpolytopes are strong neighborhood deformation

-

retracts [1; 72,31]. There is [1; 200] a natural trasformation fl: h -&#x3E; h induced
by associating with each oriented o the singular simplex T : 4,, -~ P that

maps 4n affinely on a.

-

4.1 (K, .L) N Iz (, L) for every (K, L) E C (9().
PROOF. We first note that fl : li (o) for every closed simpleg a since

(using augmented groups to cut down calculations) both sides are zero. By 3.2,
the proof is complete.

In the same way, one can show that the homology of ordered chains

on P is isomorphic to the homology of oriented chains on P.
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(b). Invariance of simplicial homology under barycentric subdivision.
Structure the complex P by its subcomplexes, and for each (K, .L) E C (9C)

let h (K, L) denote the simplicial homology of (K, L). Let P’ be the barycentric
subdivision of P and for each (K, L) E C (9( )~ let Iz (K, L) denote the simplicial
homology of the pair (K’, L’). There is a well-known [1; 177] natural transfor-
mation ---&#x3E; h.

-

4.2 h.

PROOF. We note that Sd : h (o) z h (a) for each simplex o since (using
augmented groups) we have h (o) = 0 because a is a cone over a face and
- - -

h (0) = 0 since (o)’ is a cone over its boundary. By 3.2, the proof is complete.
(c). Block decomposition.

Let P be an oriented complex. A block is an integral chain b = °i +
+ +,g,,, where each gi is positively oriented and the ui need not have
same dimension ; the support of b is the set s (b) = ~2 ~ U .., u I ~~ I .
Call a collection (b) of blocks a block-decomposition of P if (1) P = U s (b),
(2) each a belongs to a unique b, and (3) ab is a block-chain for each b.

Now let (b) be a block-decomposition of P, and structure P by block-
subcomplexes (i, e., unions of sets s (b)). On 0 (CX) we place two homology

-

theories : h is the block-chain homology, and h is the simplicial homology.
-

Since there is a natural trasformation t : h - h induced by setting t (b) _
= t (oi + ... + g.) = gl + ... + On, and since the sets 8 (b) are the indecom-
posables, we find from 3.1 that

-

4.3 THEOREM. If t : h [s (b)] (b)] for each block b, then t : h (P) N h (P).

(d). Serre’s « Vietoris mod C &#x3E;&#x3E; theorem.

4.4 THEOREM. Let (E, p,B) be a Serre fibration, with B a finite connected
polytope and each fiber F = (b) path-connected.

Let H denote augmented singular homology, and let 92 be any Serre
class. Then if Hi (F) E 92 for all i &#x3E; 0, the projection p+: Hi (E) -+ Hi (B) is

an 92-isomorphism for all i ~ 0.
PROOF. Structure E by (9C)? where 9( is the structure of all sub-

polytopes of B (see 1.3). On the structure category C define two

homology theories by setting
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N -

and observe that the projection p induces a natural transformation p : lz -+ h.
According to 1.3, the indecomposables of C (p-I are the sets p-1 (o). For
i = 0, we have ho (p-l (o)) ( p-1 (a)) = 0 because augmented groups are

used ; and for i &#x3E; 0, we have that (o): Hi (~w (~)) -+ = 0 is an

~-isomorphism because, in Serre fibrations, g~ (6)) ~ gy (b)) for any
vertex b 60. Thus, p p-1 (a is an R-isomorphism for each p-1 (a) so, by 3.1,
the proof is complete.

Observe that 4.4 is actually an extension of Serre’s proposition 6B, in
that we do not require that the base B be simply-connected; however, we
do require that B be a finite polytope. Note also that the proof of 4.4 applies
whenever p is merely an h-fibration, i. e. for each and each vertex

b E ~, the inclusion h [p-1 (b)] --~ h [p-1 (Q)] is an isomorphism.

(e). Leray’s theorem.
Let X be a compact metric space, and a finite closed covering.

Let N(F) be the nerve of and, for each 0 E N (F), let ~(a) c X
be the intersection of the sets corresponding to the vertices of o. Let Tr (0)
be the closed traverse (5) of a E N (F) ; in another paper we have proved (under
much more general conditions) that there exists a continuous map l:X-+N(F)
such that 1-1 (Tr 0) = .g (6) for each a E N (F).

4.5 THEOREM. Let X be a connected compact metric space and let
v

be a finite closed covering. Let H denote augmented Cech coho-
mology. Then, if each finite intersection of the Fi is 02-acyclic (6), ~,+ : 

- H(X) is an ~-isomorphism.
PROOF. Structure N (F) by traverse-complexes, and let ~~-i (~C ) be the

induced structure on X. Define two cohomology theories on C (9()) by
setting

(5) If [a] represents the barycenter of a, and (1  a that o is a proper face of z, then
the simplexes of the barycentric subdivision N’ of N are all sequences [~Z],...,[c?.])
such that al  °2  ...  Or’ The closed traverse Tr (6) of J E N is the closed subcomplex
of N’ consisting of all simplexes
together with all faces of such simplexes.

(6) Precisely ; Hn (Fyl ... 92 for every combination and every n &#x3E; 0.
1 1.8
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~ v

We note that h has the strong excision property because Cech cohomology
is invariant under relative homeomorphisms of compact pairs [1 ; 266]. To

.11

apply 3.1, we need observe only that (1) A+: h - h provides a natural tran-
sformation, (2) the indecomposables are the sets and (3)
H (Tr a) = 0 since is contractible, whereas .g (g (6)) E LR so that

is an ~-isomorphism for each K (o). This completes the proof.

( f ), We remark that, if are two complexes, and if the cartesian

product L is structured by (KA x L), where (Ki) is the of subcomplexes
of K, then the use of 3.1 permits a simple proof of the Künneth formula

in the form ; the obvious details are omitted.

Università di Pisa
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