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THE UNBOUNDED GROWTH OF SOLUTIONS
OF LINEAR PARABOLIC

DIFFERENTIAL EQUATIONS (*)

PIOTR BESALA (Gdansk) and PAUL FIFE (Minneapolis)

Introduction.

The object of this paper is to study the behavior for large t of posi-
tive solutions u (x, t) of the general second order linear parabolic inequality

where

Here the summation convention is used, and subscripts on u denote deri-

vatives : etc. The coefficients are functions of x = 

x2 , ... , and t. The parabolicity is assumed to be uniform in t but not

necessarily in x.
When c C 0 and the above inequality is reversed, a variety of theorems

(see, for example [3-5]) are available concerning the limiting behavior as
t - o0 of solutions defined in E n X (0, oo), An example from [4] is the fol-

lowing. Suppose E + bi xi) &#x3E; a &#x3E; 0 for all x and t, and suppose u (x, t)
satisfies Zu - ut = 0 for t &#x3E; 0. If lim u (x, 0) = 0, then lim u (x, t) = 0

Ixl-OQ 
’ 

t-·oo

uniformly in x.
In the present paper, on the other hand, we require that c &#x3E; 0 for

certain values of its arguments, and investigate under what conditions po-
sitive solutions will approach oo as t -+ oo. The results show that the be-
havior of positive solutions as t --~ oo is intimately related to the possible
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behavior as x ~ --~ o0 of positive solutions IT (x) of the corresponding elliptic
inequality (with c = 0).

More specifically, the results in a large part framed in terms of bar-
riers and antibarriers of L. These concepts were used in [6] and elsewhere;
they are positive functions V (x) satisfying LV  0 for large |x| I and for
each t. Barriers approach 0 and antibarriers approach oo as 2013&#x3E;- oo. It

is known from [6] that if an operator has a barrier, it cannot have an an-

tibarrier. Explicit conditions on the coefficients are given in [6] (see our
corollaries to Theorems 1 and 4) which insure that one or the other of these
functions exists. In the case of the Laplace operator, a barrier exists when
n h 3, and an antibarrier when n c 2. If an antibarrier exists, c h 0,
and c ~ 0, then positive solutions of the parabolic problem treated here

tend to infinity exponentially (Theorem 1). If a barrier exists, this is

not always true (Theorem 4), but is true in any case if c h 0 and c is large
enough for x in some domain (Theorem 2). Theorem 3 shows that exponen-
tial growth is possible even when c (x, t) -+ - oo as x ~ I -+ oo provided
that c is large enough for x in a fixed domain and a growth condition is

placed on the coefficients. Furthermore an explicit lower bound for u (x, t

can be obtained in this case.

A regular solution of (0) will be taken to mean a function continuous
for t h 0 whose second spacial derivatives and first time derivatives are
continuous for t &#x3E; 0, and which satisfies (0) for t &#x3E; 0.

The following functions will be used extensively in the argument:

The authors gratefully acknowledge stimulating discussions with, and
the interest shown by D. G. Aronson.

1. Main Theorems.

THEOREM 1. Assume there exist positiroe continuous functions x (x) and
M (x) such that for all ~1, ... , $,1 ,
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Assume there exists an antibarrier V (x) defined in a neighborhood of in-

finity such that L V c 0 for each t, and V (x) --~ oo as x I -+ 00.
Let c (x, t) be a function satisfying c (x, t) :~&#x3E; 0 and c (x, t) &#x3E; Ci for x ~ I  6

it,here C1 and 6 are some positive numbers. Let u (x, t) &#x3E; 0 be a regular
solution of .

in fact, there is a function 1p (x) &#x3E; 0 and a number y &#x3E; 0 such that

REMARK 1. It will be clear from the proof that in place of (2) one need
merely assume that A (x, t) and B (x, t) are locally bounded from above,
uniformly in t :

REMARK 2. For o &#x3E; 0 let The theorem may be

strengthened slightly by requiring only that u be a positive solution of
Lu + cu - in Fe X (0, oo). Then the conclusion (3) holds for x E JTp
provided that e is large enough (depending on L and c). In fact, it will be
clear from the proof that p may be chosen &#x3E; R, where R is defined follo-
wing (7) below. ,

COROLLARY. Let c (x, t) and u (x, t) be as in Theorem

for large enough x and for all t, where s is such that 
’

then the conclusion (3) follows.
The corollary follows because under these conditions an antibarrier is

constructed explicity in [6].

PROOF OF THEOREM 1. It follows from Nirenberg’s strong maximum
principle that u ~x, t) &#x3E; 0 for t &#x3E; 0. By shifting the origin of the t axis if

necessary, we may assume with no loss of generality that u &#x3E; 0 for t = 0

as well.
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We say that a function f (x, t) has Property P if it is continuous, has
bounded piecewise continuous first derivatives, and is twice continuously
differentiable in x except on a finite number of smooth surfaces. Further-

more, the directional derivative in the direction of traversal of such a sur-

face suffers a nonpositive jump discontinuity. The following simple exten-
sion of the maximum principle holds, as noted for example by Il’ in [4, 5].

Maximum principle : Let S be a bounded domain in x - t space con-

tained between the planes t = 0 and t = ti . Let u (x, t) be a function de-

fined in 8 satisfying Property P and Lit + cu - ut ~ 0 wherever u is re-

gular. If u h 0 on the boundary of S exclusive of points with t = t1, then
u &#x3E; 0 throughout S.

We shall need the following lemma, whose proof will be given in
section 3.

LEMMA 1. Under the hypotheses of Theorem 1, there is a f unction V, (x)
defined for I x:~~ 6 satisfying Property P and also :

for all t and all regular points of V~ ;

where Pi will be given below, and f32 is taken small enough so that (- ~c,~
will satisfy Property P.

For 

Now choose Pi so large that P, - 62 &#x3E; 0, and also

for C 6. Since Vi -+ oo, there exists a number R &#x3E; 26 such that w  0

Let {J be the set of points in En for which w (x) &#x3E; 0.
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. There are constants K &#x3E; 0, y &#x3E; 0 such

Proof :
Let oc be a real number such that 0  0153 ~ 1 and oc is small enough that

Let v (x, t) = w (x) + at, and let

One sees that in S,

In fact, by (7) we know that for [ s  d, Lv + cv - vt = .Lw + cw +
--cx 2013 xl 2013 x0. And 
in the remainder of S as well (note that (8) insures that S is contained in
the cylinder {I 0153  RD.

Let a1 S be the lateral boundary of ,S ; i. e., the part of the boundary
for which 0  t  2; and let ao S be the base D X (t = 0).

I by assumption. Finally in S, we know from (10)
that L~ + c~ - ~’t  0 except at the irregular points of ~. However - ro,
hence has Property P, so we conclude that C &#x3E; 0 in S ; i. e.

or

and taking the infemum with respect to x in Q, we obtain the conclusion

Applying this result successively yields m (t) &#x3E; (0), for N ~ t c N -~-1.
The conclusion of the lemma follows immediately, for some K and y which
could be found in terms of k and m (0). We now state a lemma which will
be proved in section 3.
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LEMMA 3. Let L sa,tisfy (1) and (2’), and let u (x, t) &#x3E; 0 be a solution of
Lu - 0 in .E’t X [0, 11. Let 6 &#x3E; 0. Then there is a positive function X (x)
depending only on x, A7 B, and 6 such that

provided ~
The proof of Theorem 1 is now completed by combining Lemmas 2 and

3 as follows. For fixed t set Uo = (Pi - (2) Key,. Thus for I x S 6, u (x, t) &#x3E;

~ Keyt w (x) :;~! uo. Hence by Lemma 3, u (x, t + 1) :-=-:! 1jJ (x) ey(t+l), where we
have set 1jJ (x) = (~1- ~N) Ke-Y y (x). This finishes the proof.

THEOREM 2. Assume the hypotheses of Theorem 1 to hold, except that it

is no longer required for an antibarrier to exist. There is a number C depen-
ding only on x, M, and 6 such that the conclusion (3) of Theorem 1 holds
provided that Ci &#x3E; C.

REMARK: The remarks following Theorem 1 apply here as well. In this
case o may be chosen arbitrarily, except that e &#x3E; b ; then C will depend
on e also. To see this one chooses P, below so that 0  B1 - ð2  ,82 qJ (o).

PROOF of THEOREM 2. The proof utilizes the following lemma.

LEMMA 4. Assume hypotheses (1) and (2/) of Theorem 1. Then for any
ð &#x3E; 0 there exists ac function qa (r) defined for r ~&#x3E; ð, satisfying or (b) = 0,

PROOF.

from which (p (r) may be determined. We find that

which establishes Lemma 4.
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Let

where is chosen small enough so that (- w) satisfies Property P, and Pi
is chosen so that 0 - 62 (r). Now observe that (6) holds. It

remains only to choose el large enough so that (7) holds for x (  8. By
virtue of the choice of Pi, y there still exists a finite R such that w  0 for

I x ~ ( h R / 2. The remainder of the proof of Theorem l. is repeated verbatim.

THEOREM 3. Let u (x, t) be a regular solutions of

We assume that

such that

B I A I - ne i I

(iii) there exist constants p, y (y &#x3E; 0, fl &#x3E; flo , Po being a positive number
which depends among others on A’, B’ , C’ and x) and a poznt x = (xl 7 X2 7 - - -
.., , such that for large t’ s, say t ~ to &#x3E; 0, the following inequality is

satisfied :

and

f or some

the convergence being of exponential order and uni.

forma on, every compact x-set. More precisely, there exists ~, 0 such that
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REMARK : The following example shows the necessity of assumption
(iii): the equation

has the bounded solution u = e-1". In this example (iii) is not fulfilled.

PROOF. We shall make use of the following Theorem T (see [1] Theo-
rem 1) : If u (x, t) is a regular solution of 0 in So satisfying (iv) and
(v) and if the coefficients satisfy (i) &#x3E; 0, then it (x, t) ~ 0 in S. (Note
that the both-sided growth condition for u in the first part of Theorem I
in [1] and the stronger growth condition in case of a = 0 are not essential.
Furthermore, Theorem T is valid for any domain D contained in So ; this

again follows from Bodanko’s paper).
By this theorem (u (x, t) ~ 0 in Now by (VI) and by -Nirenberg’s

strong maximum principle, u (x~ t) &#x3E; 0 in So.
At first we shall show that there are 1, ~8o &#x3E; 0 such that

For this purpose consider the function

The positive constants /-l, )1 can be chosen so that

Indeed, we have

Now we use the inequalities

to derive
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Let po (q) be the largest root of the equation

Putting

we see that the function

satisfies J be fixed. We define

Since u (x, t) &#x3E; 0 in S, A is a positive number.
The function

satisfies the inequality

are able to use Theorem T again to conclude that 1V (x, t) ~&#x3E; 0 in the region

we have

v . ,

From the definition of A it follows that inequality (14) remains true in the
whole strip X [to - 1, to]. Substituting, in particular, t = to and putting
.. a

Now the function
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satisfies, by assumption (iii), Li z  0 for t to. Furthermore, from (13), it
follows that z (x, to) h 0. Consequently, by Theorem T, z (x, t) ¿ 0 for t &#x3E; to, I
x E .E n , which was to be proved.

2. A Coulltertheorem. 
’

THEOREM 4. Let the operator L satisfy (1), (2’) of Theorem 1. Also as-

sume it has a barrier near in, finity ; i. e. a positive function W (x) defined for
1 x ~ ~ ~ such that L W  0, and V (x) -+ 0 as 1 x 1-+ oo. Finally assume
the coefficients aij and bi are Hölder continuous functions of all their argu-
inents. Then there exists a smooth function c (x) &#x3E; 0 with c (x) fl 0, and a po-
sitive but bounded solution u (x, t) of Lu + cu - ut = 0.

REMARK. This theorem shows a result by Szybiak [7] to be incorrect.

COROLLARY. Let L satisfy (1), (2’) and have Hölder continuous coef,fi-
cients as in 4. If ) for large enough x and for

c

all t, where -i’ then the conclusion of Theorent

4 holds.

The corollary follows because under these conditions a barrier is con-

structed explicitly in [6].
The proof of Theorem 4 will employ the following lemma.

LEMMA 5. Assume hypotheses (1) and (2’). Then for any 6 &#x3E; 0 there exists
a function 99, (r) defined foi- r &#x3E; ~, satisfying 99, (b) = 0, op’ (r) &#x3E; 0 for r ¿ ð,
and ( ] r ) ) &#x3E; 0.

PROOF : The proof is the same as that of Lemma 4, except that now
we set

PROOF OF THEOREM 4. Let m = Min W (x) and a number such

and be positive numbers so
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where ~1 is the function obtained in Lemma 5, and a, are positive num-
bers chosen as follows. First - is chosen so that then
is chosen so small that Wi has Property P near I x _ ; finally a is cho-
sen so that a - flb2 = 1tt. Thus by construction IV, (x) has Property P for
all x, and satisfies

Let c (x) &#x3E; 0 be a function such that c ~ 0 for Clearly

We require that but that c be small enough so that + c Wi -
-  0 for all x where defined.

Let 990 (x) be a smooth function satisfying 0  ~o (x)  ~y1 (x).
We shall construct a solution u (x, t) satisfying 0  u (x, t) (x),
u (x, 0) = fPo (x). For any R &#x3E; 0, let 7~ be the ball {) x  R), and let
uR (x, t) be the solution in X (0, oo) of cuR - = 0 ; UR (Xi 0) =
= ~o (x) ; uR (X, t) = 0 for x = R. Since ( W1- uu) satisfies Property P and
is nonnegative on the boundary, y we have that uR (x, t) ~ W~~ (x) for all By

and for (x, t) E FR &#x3E;C (0, oo), Let R - oo ; then the uR form an increasing
bounded sequence approaching some limit it (x, t) (x). By the Schauder
estimates [2], for each bounded set the derivatives and are equi-
continuous. A subsequence of the uR is therefore termwise differentiable to
these orders of differentiation. If follows that Lu + cu - ut = 0, u (x, 0) =

990 (x), and 0  u  Wi. This completes the proof.

3. Proofs of the Lemmas.

PROOF OF LEMMA 1. Suppose the antibarrier Tr(x) is defined for

&#x3E; X ~ 8. Let 99 (1 x 1) ) be the function constructed in Lemma 4, and let
m1= 9~ (~)~ ~2 = ~’ (X ~-1) ~ ~n1. Let V2 (x) = ai Y (x) -~- a2 ~ there ai &#x3E; 0
and a2 are constants chosen so that
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for .J is likewise an antibarrier. Let

Condition (17) assures that V3 (x) will be continuous, and the fact that
it is the minimum of two regular functions guarantees the proper jump re-
lation for V3 (x) to satisfy Property P. Finally let ~1 (x~ = V3 (x) ( ~ x ~ ) i
(4) follows since Lw  0.

PROOF OF LEMMA 3. It follows from the strong maximum principle that
there exists such a function x depending on .~; our task will be to find
one depending only on x, A, B, and 6. For this we use two auxiliary lemmas.

LEMMA 6. Let 6 and u be as in .Lemma 3. There is a number 6 ~ 0

depending onty on x, A, B, such that

PROOF : We shall construct a function satisfying

calculate

Hence

wherever

wherever
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where r and a and are chosen so that h and h’

are continuous at r = ro. Then for ro c r  8,

and for 0 ~ r ~ r~ ? I

Since the coefficient of A is positive, we may choose A large enough so that
Lv 0 throughout.

Now let V (x, t) = ~° ro (x, t) ; clearly for t = 0 and also for r = 6.
a

in particular i
IoN

for r S a67 0 c t c 1, and an appropriately chosen a. 

’

LEMMA 7. Given any numbers .R &#x3E; 0 and p &#x3E; 0, there is a number _pl

PROOF : We define v (x, t) = uo f (t (.R + 2 - r)), where f (s) == and

p, will be determined later. Then

We assume ,

have, setting

where
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in the annular cylinder

This completes the proofs of Lemmas 6 and 7.

Lemma 3 is proved now as follows. By assumption u (x, 0) &#x3E; 0 in
some interval; suppose it is the interval r c 8. Then Lemma 6 provides a
lower bound for u in the region r c 1. Now apply
Lemma 7 successively with Ry = o~ -~- v, v = 0, 1, 2,... to obtain the

conclusion. 
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