Annali della Scuola Normale Superiore di Pisa Classe di Scienze

PIOTR BESALA PAUL FIFE

The unbounded growth of solutions of linear parabolic differential equations

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze $3^e\,$ série, tome 20, nº 4 (1966), p. 719-732

http://www.numdam.org/item?id=ASNSP_1966_3_20_4_719_0

© Scuola Normale Superiore, Pisa, 1966, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

THE UNBOUNDED GROWTH OF SOLUTIONS OF LINEAR PARABOLIC DIFFERENTIAL EQUATIONS (*)

PIOTR BESALA (Gdansk) and PAUL FIFE (Minneapolis)

Introduction.

The object of this paper is to study the behavior for large t of positive solutions u(x, t) of the general second order linear parabolic inequality

$$(0) Lu + cu - u_t \leq 0,$$

where

$$Lu \equiv a_{ij} u_{ij} + b_i u_i$$
.

Here the summation convention is used, and subscripts on u denote derivatives: $u_t = \frac{\partial u}{\partial t}$, $u_i = \frac{\partial u}{\partial x_i}$, etc. The coefficients are functions of $x = (x_1, x_2, \dots, x_n)$ and t. The parabolicity is assumed to be uniform in t but not necessarily in x.

When $c \leq 0$ and the above inequality is reversed, a variety of theorems (see, for example [3-5]) are available concerning the limiting behavior as $t \to \infty$ of solutions defined in $E^n \times (0, \infty)$. An example from [4] is the following. Suppose $\Sigma (a_{ii} + b_i x_i) > \alpha > 0$ for all x and t, and suppose u(x, t) satisfies $Lu - u_t = 0$ for t > 0. If $\lim_{|x| \to \infty} u(x, 0) = 0$, then $\lim_{t \to \infty} u(x, t) = 0$ uniformly in x.

In the present paper, on the other hand, we require that c > 0 for certain values of its arguments, and investigate under what conditions positive solutions will approach ∞ as $t \to \infty$. The results show that the behavior of positive solutions as $t \to \infty$ is intimately related to the possible

Pervenuto alla Redazione il 15 Aprile 1966.

^(*) Research (partially) sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant No. 883-65.

^{5.} Annali della Scuola Norm. Sup. · Pisa.

behavior as $|x| \to \infty$ of positive solutions V(x) of the corresponding elliptic inequality (with c = 0).

More specifically, the results in a large part framed in terms of barriers and antibarriers of L. These concepts were used in [6] and elsewhere; they are positive functions V(x) satisfying $LV \leq 0$ for large |x| and for each t. Barriers approach 0 and antibarriers approach ∞ as $|x| \to \infty$. It is known from [6] that if an operator has a barrier, it cannot have an antibarrier. Explicit conditions on the coefficients are given in [6] (see our corollaries to Theorems 1 and 4) which insure that one or the other of these functions exists. In the case of the Laplace operator, a barrier exists when $n \geq 3$, and an antibarrier when $n \leq 2$. If an antibarrier exists, $c \geq 0$, and $c \not\equiv 0$, then positive solutions of the parabolic problem treated here tend to infinity exponentially (Theorem 1). If a barrier exists, this is not always true (Theorem 4), but is true in any case if $c \geq 0$ and c is large enough for x in some domain (Theorem 2). Theorem 3 shows that exponential growth is possible even when $c(x,t) \to -\infty$ as $|x| \to \infty$ provided that c is large enough for x in a fixed domain and a growth condition is placed on the coefficients. Furthermore an explicit lower bound for u (x, t can be obtained in this case.

A regular solution of (0) will be taken to mean a function continuous for $t \ge 0$ whose second spacial derivatives and first time derivatives are continuous for t > 0, and which satisfies (0) for t > 0.

The following functions will be used extensively in the argument:

$$A(x, t) = a_{ij}(x, t) x_i x_j / |x|^2$$

$$B(x, t) = a_{ii}(x, t) + b_i(x, t) x_i.$$

The authors gratefully acknowledge stimulating discussions with, and the interest shown by D. G. Aronson.

1. Main Theorems.

THEOREM 1. Assume there exist positive continuous functions $\varkappa(x)$ and M(x) such that for all $\xi_1, \xi_2, \ldots, \xi_n$,

(1)
$$a_{ij}(x,t)\,\xi_i\,\xi_j \geq \varkappa\,(x)\,\sum_{1}^n\,\xi_i^2\,;$$

$$\left| a_{ij}(x,t) \right|, \left| b_i(x,t) \right| \leq M(x).$$

Assume there exists an antibarrier V(x) defined in a neighborhood of infinity such that $LV \leq 0$ for each t, and $V(x) \to \infty$ as $|x| \to \infty$.

Let c(x, t) be a function satisfying $c(x, t) \ge 0$ and $c(x, t) \ge c_1$ for $|x| < \delta$ where c_1 and δ are some positive numbers. Let $u(x, t) \ge 0$ be a regular solution of $Lu + cu - u_t \le 0$ in $E^n \times (0, \infty)$. If $u(x, 0) \not\equiv 0$ then

$$\lim_{t\to\infty}u\left(x,t\right)=\infty;$$

in fact, there is a function $\psi(x) > 0$ and a number $\gamma > 0$ such that

$$(3) u(x, t) \ge \psi(x) e^{\gamma t}$$

for $t \ge 1$.

REMARK 1. It will be clear from the proof that in place of (2) one need merely assume that $A\left(x,\,t\right)$ and $B\left(x,\,t\right)$ are locally bounded from above, uniformly in t:

$$(2') A(x,t) \leq \overline{A}(x); B(x,t) \leq \overline{B}(x)$$

REMARK 2. For $\varrho > 0$ let $\Gamma_{\varrho} = \{x : |x| < \varrho\}$. The theorem may be strengthened slightly by requiring only that u be a positive solution of $Lu + cu - u_t \le 0$ in $\Gamma_{\varrho} \times (0, \infty)$. Then the conclusion (3) holds for $x \in \Gamma_{\varrho}$ provided that ϱ is large enough (depending on L and ϱ). In fact, it will be clear from the proof that ϱ may be chosen $\ge R$, where R is defined following (7) below.

COROLLARY. Let c(x, t) and u(x, t) be as in Theorem 1. If $\frac{B(x, t)}{A(x, t)} \le 2 + \varepsilon(|x|)$ for large enough x and for all t, where ε is such that

$$\int_{-\infty}^{\infty} \exp\left\{-\int_{-\infty}^{r} \varepsilon(s) \, ds / s\right\} dr / r = \infty,$$

then the conclusion (3) follows.

The corollary follows because under these conditions an antibarrier is constructed explicity in [6].

PROOF OF THEOREM 1. It follows from Nirenberg's strong maximum principle that u(x,t) > 0 for t > 0. By shifting the origin of the t axis if necessary, we may assume with no loss of generality that u > 0 for t = 0 as well.

We say that a function f(x, t) has Property P if it is continuous, has bounded piecewise continuous first derivatives, and is twice continuously differentiable in x except on a finite number of smooth surfaces. Furthermore, the directional derivative in the direction of traversal of such a surface suffers a nonpositive jump discontinuity. The following simple extension of the maximum principle holds, as noted for example by Π in [4, 5].

Maximum principle: Let S be a bounded domain in x-t space contained between the planes t=0 and $t=t_1$. Let $u\left(x,t\right)$ be a function defined in S satisfying Property P and $Lu+cu-u_t\leq 0$ wherever u is regular. If $u\geq 0$ on the boundary of S exclusive of points with $t=t_1$, then u>0 throughout S.

We shall need the following lemma, whose proof will be given in section 3.

LEMMA 1. Under the hypotheses of Theorem 1, there is a function $V_1(x)$ defined for $|x| \ge \delta$ satisfying Property P and also:

$$LV_{1}(x) < 0$$

for all t and all regular points of V_4 ;

(5)
$$V_{1}(x) = 0 \text{ for } |x| = \delta;$$

$$V_{1}(x) \to \infty \text{ as } |x| \to \infty.$$

$$\mathrm{Set}\ w\left(x\right) = \begin{cases} \beta_{1} - \mid x\mid^{2} & for\ \mid x\mid \leq \delta, \\ \beta_{1} - \delta^{2} - \beta_{2}\ V_{1}\left(x\right) & for\ \mid x\mid \geq \delta, \end{cases}$$

where β_1 will be given below, and β_2 is taken small enough so that (-w) will satisfy Property P.

For
$$|x| < \delta$$
,

(6)
$$Lw + cw = -2B(x, t) + cw \ge -2B + c_1(\beta_1 - \delta^2).$$

Now choose β_1 so large that $\beta_1 - \delta^2 > 0$, and also

$$(7) Lw + cw \ge 1$$

for $|x| < \delta$. Since $V_1 \to \infty$, there exists a number $R > 2\delta$ such that w < 0 for $|x| \ge R/2$.

Let Ω be the set of points in E^n for which w(x) > 0.

LEMMA 2. Let $m(t) = \inf_{\Omega} \frac{u(x,t)}{w(x)}$. There are constants K > 0, $\gamma > 0$ such that $m(t) \ge Ke^{\gamma t}$.

Proof:

Let α be a real number such that $0 < \alpha \le 1$ and α is small enough that

(8)
$$w + 2\alpha \leq 0 \text{ for } |x| \geq R;$$

(9)
$$Lw = -\beta_2 LV_1 \ge \alpha \text{ for } \delta < |x| < R.$$

Let $v(x, t) = w(x) + \alpha t$, and let $S = \{(x, t) : v(x, t) > 0 ; 0 < t \le 2\}$. One sees that in S.

$$(10) Lv + cv - v_t \geq 0.$$

In fact, by (7) we know that for $|x| < \delta$, $Lv + cv - v_t = Lw + cw + c\alpha t - \alpha \ge 1 - \alpha \ge 0$. And by (9), $Lv + cv - v_t \ge Lw - \alpha \ge \alpha - \alpha = 0$ in the remainder of S as well (note that (8) insures that S is contained in the cylinder $\{|x| < R\}$).

Let $\partial_1 S$ be the lateral boundary of S; i.e., the part of the boundary for which 0 < t < 2; and let $\partial_0 S$ be the base $\Omega \times \{t = 0\}$.

Let $\zeta(x,t) = \frac{u(x,t)}{m(0)} - v(x,t)$. By the definition of m(0), $\zeta \ge 0$ on $\partial_0 S$. On $\partial_1 S$, $\zeta = u/m(0) \ge 0$ by assumption. Finally in S, we know from (10) that $L\zeta + c\zeta - \zeta_t \le 0$ except at the irregular points of ζ . However -v, hence ζ , has Property P, so we conclude that $\zeta \ge 0$ in S; i. e.

$$\frac{u}{m(0)} \ge w + \alpha t$$

 \mathbf{or}

$$\frac{u\left(x,t\right)}{w\left(x\right)} \geq m\left(0\right)\left(1 + \frac{\alpha t}{w\left(x\right)}\right) \geq m\left(0\right)\left(1 + \frac{\alpha t}{\beta_{1}}\right). \text{ Setting } t \geq 1$$

and taking the infemum with respect to x in Ω , we obtain the conclusion

$$m(t) \ge m(0) \left(1 + \frac{\alpha}{\beta_1}\right) = km(0)$$
 for $1 \le t \le 2$.

Applying this result successively yields $m(t) \ge k^N m(0)$, for $N \le t \le N+1$. The conclusion of the lemma follows immediately, for some K and γ which could be found in terms of k and m(0). We now state a lemma which will be proved in section 3.

LEMMA 3. Let L satisfy (1) and (2'), and let $u(x,t) \ge 0$ be a solution of $Lu - u_t \le 0$ in $E^n \times [0,1]$. Let $\delta > 0$. Then there is a positive function $\chi(x)$ depending only on $\kappa, \overline{A}, \overline{B}$, and δ such that

$$u(x, 1) \geq u_0 \chi(x)$$

provided $u(x, 0) \ge u_0$ for $|x| \le \delta$.

The proof of Theorem 1 is now completed by combining Lemmas 2 and 3 as follows. For fixed t set $u_0 = (\beta_1 - \delta^2) \ Ke^{rt}$. Thus for $|x| \le \delta$, $u(x,t) \ge Ee^{rt} \ w(x) \ge u_0$. Hence by Lemma 3, $u(x,t+1) \ge \psi(x) \ e^{r(t+1)}$, where we have set $\psi(x) = (\beta_1 - \delta^2) \ Ke^{-\gamma} \ \chi(x)$. This finishes the proof.

THEOREM 2. Assume the hypotheses of Theorem 1 to hold, except that it is no longer required for an antibarrier to exist. There is a number C depending only on \varkappa , M, and δ such that the conclusion (3) of Theorem 1 holds provided that $c_1 \geq C$.

REMARK: The remarks following Theorem 1 apply here as well. In this case ϱ may be chosen arbitrarily, except that $\varrho > \delta$; then C will depend on ϱ also. To see this one chooses β_1 below so that $0 < \beta_1 - \delta^2 < \beta_2 \varphi(\varrho)$.

PROOF of THEOREM 2. The proof utilizes the following lemma.

LEMMA 4. Assume hypotheses (1) and (2') of Theorem 1. Then for any $\delta > 0$ there exists a function $\varphi(r)$ defined for $r \geq \delta$, satisfying $\varphi(\delta) = 0$, $\varphi'(r) > 0$ for $r \geq \delta$, and $L\varphi(|x|) < 0$.

PROOF. Let
$$\tau(r) = \underset{\|x\|=r}{\operatorname{Max}} \frac{B(x,t)}{A(x,t)}$$
, and set

$$\varphi'(r) = \exp\left[-\int_{\delta}^{r} (\tau(\varrho)/\varrho) \ d\varrho\right] > 0,$$

from which $\varphi(r)$ may be determined. We find that

$$L\varphi\left(\mid x\mid\right) = A\left(x,t\right)\left[\varphi'' + \left(\frac{B}{A} - 1\right)\varphi'/\mid x\mid\right] < A\left(x,t\right)\left[\varphi'' + \frac{\tau\left(\mid x\mid\right)}{\mid x\mid}\right]\varphi' = 0,$$

which establishes Lemma 4.

Let

$$w\left(x\right) = \begin{cases} \beta_{1} - \mid x \mid^{2} & \text{for } \mid x \mid \leq \delta, \\ \beta_{1} - \delta^{2} - \beta_{2} \varphi\left(\mid x \mid\right) & \text{for } \mid x \mid \geq \delta, \end{cases}$$

where β_2 is chosen small enough so that (-w) satisfies Property P, and β_1 is chosen so that $0 < \beta_1 - \delta^2 < \beta_2 \lim_{r \to \infty} \varphi(r)$. Now observe that (6) holds. It remains only to choose c_1 large enough so that (7) holds for $|x| < \delta$. By virtue of the choice of β_1 , there still exists a finite R such that w < 0 for $|x| \ge R/2$. The remainder of the proof of Theorem 1 is repeated verbatim.

THEOREM 3. Let u(x, t) be a regular solution of

$$(11) L_1 u \equiv Lu + cu - u_t \le 0$$

in $S_0 = E^n \times (0, \infty)$. We assume that

(i) there exist A', B', C' > 0, $0 \le \alpha \le 2$ such that

$$|a_{ij}| \le A'(|x|^{2-\alpha}+1), |b_i| \le B'(|x|+1), |c| \le C'(|x|^{\alpha}+1),$$

(ii)
$$a_{ij} \, \xi_i \, \xi_j \geq \varkappa \, |\xi|^2, \qquad \varkappa = \text{const} > 0,$$

(iii) there exist constants β , γ ($\gamma > 0$, $\beta > \beta_0$, β_0 being a positive number which depends among others on A', B', C' and \varkappa) and a point $\overline{x} = (\overline{x_1}, \overline{x_2}, \dots, \overline{x_n})$ such that for large t' s, say $t \ge t_0 \ge 0$, the following inequality is satisfied:

$$\beta^2 \sum a_{ii} (x_i - \overline{x_i}) (x_j - \overline{x_i}) - \beta \left[\sum a_{ii} + \sum b_i (x_i - \overline{x_i}) \right] + c - \gamma \ge 0,$$

iv)
$$u(x,t) \ge -M \exp(K |x|^{\alpha})$$
, if $0 < \alpha \le 2$,

and

$$u(x,t) \ge -M_0(|x|^{K_0}+1), \text{ if } \alpha=0,$$

for some

$$M, K, M_0, K_0 > 0,$$

$$(\mathbf{v}) \quad u(x,0) \geq 0,$$

(vi)
$$u(x,0) \not\equiv 0$$
.

Then $\lim_{t\to\infty} u(x,t) = +\infty$, the convergence being of exponential order and uniform on every compact x-set. More precisely, there exists $\lambda > 0$ such that

$$(12) \qquad u\left(x,\,t\right) \geq \lambda \, \exp\left[-\,\frac{\beta}{2}\,|\,x-\overline{x}\,|^2 + \,\gamma\,(t-t_0)\right] \text{ for } t \geq t_0\,.$$

726

REMARK: The following example shows the necessity of assumption (iii): the equation

$$u_{xx} + (2 - 4x^2) u - u_t = 0$$

has the bounded solution $u = e^{-x^2}$. In this example (iii) is not fulfilled.

PROOF. We shall make use of the following Theorem T (see [1] Theorem 1): If u(x,t) is a regular solution of $L_1 u \leq 0$ in S_0 satisfying (iv) and (v) and if the coefficients satisfy (i) and $a_{ij} \xi_i \xi_j \geq 0$, then $u(x,t) \geq 0$ in S. (Note that the both-sided growth condition for u in the first part of Theorem I in [1] and the stronger growth condition in case of $\alpha = 0$ are not essential. Furthermore, Theorem T is valid for any domain D contained in S_0 ; this again follows from Bodanko's paper).

By this theorem $(u(x, t) \ge 0 \text{ in } S_0$. Now by (VI) and by Nirenberg's strong maximum principle, u(x, t) > 0 in S_0 .

At first we shall show that there are $\lambda, \beta_0 > 0$ such that

(13)
$$u(x, t_0) \ge \lambda \exp\left(-\frac{\beta_0}{2} |x - \overline{x}|^2\right) \text{ for } x \in \mathbb{E}^n.$$

For this purpose consider the function

$$v\left(x,t\right) = \exp\left(-\frac{\mu\left|x-\overline{x}\right|^{2}-\nu}{t-t_{0}+\eta}\right), \, 0 < \eta < t_{0}.$$

The positive constants μ , ν can be chosen so that $L_1 v \ge 0$ in $E^n \times [t_0 - \eta, t_0]$. Indeed, we have

$$\begin{split} L_1 v &= \frac{v}{(t-t_0+\eta)^2} [4\mu^2 \sum a_{ij} (x_i - \overline{x_i}) (x_j - \overline{x_j}) - 2\mu (t-t_0+\eta) \sum a_{ii} \\ &- 2\mu (t-t_0+\eta) \sum b_i (x_i - \overline{x_i}) + c (t-t_0+\eta)^2 - \mu |x - \overline{x}|^2 + v]. \end{split}$$

Now we use the inequalities

$$t - t_0 + \eta \le \eta, |x_i| \le |x|, |\overline{x}| \cdot ||x - \overline{x}|| \le \frac{1}{2} (|\overline{x}|^2 + |x - \overline{x}|^2), \\ |x|^2 \le 2 |x - \overline{x}|^2 + 2 |\overline{x}|^2$$

to derive

$$\begin{split} L_1 v &\geq \frac{v}{(t-t_0+\eta)^2} \Big\{ [4\varkappa\,\mu^2 - (8\eta\,\,nA' + 4\eta\,\,nB' + 1)\,\mu - 4\eta^2\,\,C'] \,|\,x - \overline{x}\,|^2 - \\ &- (8\eta\,\,n\mu A' + \eta n\,\,\mu B' + 4\eta^2\,\,C') \,|\,\overline{x}\,|^2 - 4\eta\,\,\mu A' - \eta n\,\,\mu B' - 2\eta^2\,\,C' + \nu \Big\} \,. \end{split}$$

Let $\mu_0(\eta)$ be the largest root of the equation

$$4 \times \mu^2 - (8 \eta \ nA' + 4 \eta \ nB' + 1) \mu - 4 \eta^2 \ C' \approx 0.$$

Putting

$$\mathbf{v}_0 = (8\eta \ n\mu_0 \ A' + \eta n \ \mu_0 \ B' + 4\eta^2 \ C^2) | \ \overline{x}|^2 + 4\eta \ n\mu_0 \ A' + \eta n\mu_0 \ B' + 2\pi^2 \ C',$$

we see that the function

$$\mathbf{v}_{0}(x,t) = \exp\left(-\frac{\mu_{0} |x - \overline{x}|^{2} - \mathbf{v}_{0}}{t - t_{0} + \eta}\right)$$

satisfies $L_1 v_0 \geq 0$ in $E^n \times [t_0 - \eta, t_0]$. Let $R > \sqrt{\frac{\mu_0}{r_0}}$ be fixed. We define

$$\lambda = \min_{\substack{|x-x| \leq R \\ t \in [t_0-\eta, t_0]}} u(x, t).$$

Since u(x, t) > 0 in S, λ is a positive number.

The function

$$w(x, t) = u(x, t) - \lambda v_0(x, t)$$

satisfies the inequality $L_1 w \leq 0$ in $E^n \times [t_0 - \eta, t_0]$. Furthermore $w(x, t) \geq 0$ for $|x - \bar{x}| = R$, $t \in [t_0 - \eta, t_0]$ and for $|x - \bar{x}| \geq R$, $t = t_0 - \eta$. Now we are able to use Theorem T again to conclude that $w(x, t) \geq 0$ in the region $|x - \bar{x}| \geq R$, $t_0 - \eta \leq t \leq t_0$. Since

$$v_0(x,t) \ge \exp\left(\frac{\mu_0 \mid x - \overline{x}\mid^2}{t - t_0 + \eta}\right)$$

we have

$$(14) \quad u\left(x,t\right) \geq \lambda \, \exp\left(-\frac{\mu_{0}\,|\,x-x\,|^{2}}{t-t_{0}-\eta}\right) \, \text{for} \, \left|\,x-\overline{x}\,\right| \geq R, \, t_{0}-\eta \leq t \leq t_{0}.$$

From the definition of λ it follows that inequality (14) remains true in the whole strip $E^n \times [t_0 - \eta, t_0]$. Substituting, in particular, $t = t_0$ and putting $\frac{\mu_0}{\eta} = \frac{\beta_0}{2}$ we get (13).

Now the function

$$z(x,t) = u(x,t) - \lambda \exp\left[-\frac{\beta}{2}|x-\overline{x}|^2 + \gamma(t-t_0)\right], \beta \geq \beta_0, t \geq t_0,$$

satisfies, by assumption (iii), $L_1 z \leq 0$ for $t \geq t_0$. Furthermore, from (13), it follows that $z(x, t_0) \geq 0$. Consequently, by Theorem $T, z(x, t) \geq 0$ for $t \geq t_0$, $x \in E^n$, which was to be proved.

2. A Countertheorem.

Let

THEOREM 4. Let the operator L satisfy (1), (2') of Theorem 1. Also assume it has a barrier near infinity; i. e. a positive function W(x) defined for $|x| \ge X$ such that LW < 0, and $W(x) \to 0$ as $|x| \to \infty$. Finally assume the coefficients a_{ij} and b_i are Hölder continuous functions of all their arguments. Then there exists a smooth function $c(x) \ge 0$ with $c(x) \ne 0$, and a positive but bounded solution u(x, t) of $Lu + cu - u_t = 0$.

REMARK. This theorem shows a result by Szybiak [7] to be incorrect.

COROLLARY. Let L satisfy (1), (2') and have Hölder continuous coefficients as in Theorem 4. If $\frac{B(x,t)}{A(x,t)} \ge 2 + \varepsilon(|x|)$ for large enough x and for

all t, where $\int_{-\infty}^{\infty} \exp\left\{-\int_{-\infty}^{r} \varepsilon(s) \, ds/s\right\} dr/r < \infty$, then the conclusion of Theorem 4 holds.

The corollary follows because under these conditions a barrier is constructed explicitly in [6].

The proof of Theorem 4 will employ the following lemma.

LEMMA 5. Assume hypotheses (1) and (2'). Then for any $\delta > 0$ there exists a function $\varphi_1(r)$ defined for $r \geq \delta$, satisfying $\varphi_1(\delta) = 0$, $\varphi_1'(r) > 0$ for $r \geq \delta$, and $L\varphi_1(|x|) \geq 0$.

PROOF: The proof is the same as that of Lemma 4, except that now we set

(15)
$$\tau\left(r\right) = \min_{\left|x\right| = r} \left(\frac{B\left(x, t\right)}{A\left(x, t\right)} - 1\right).$$

PROOF OF THEOREM 4. Let $m=\mathop{\rm Min}_{\mid x\mid=X}W(x)$ and $R_0>X$ a number such that $W(x)\leq m/2$ for $\mid x\mid=R_0$. Let $\delta< X$ and σ be positive numbers so small that $L(\mid x\mid^2)=2$ $(a_{ii}+b_ix_i)\geq\sigma>0$ for $\mid x\mid<\delta$.

$$W_{1}(x) = \begin{cases} \alpha - \beta \mid x \mid^{2}, & \mid x \mid \leq \delta, \\ \min \left\{ \alpha - \beta \delta^{2} - \varepsilon \varphi_{1} \left(\mid x \mid \right), \ W(x) \right\}, \mid x \mid \geq \delta, \end{cases}$$

where φ_1 is the function obtained in Lemma 5, and $\alpha, \beta, \varepsilon$ are positive numbers chosen as follows. First ε is chosen so that $\varepsilon \varphi_1(R_0) = m/2$; then β is chosen so small that W_1 has Property P near $|x| = \delta$; finally α is chosen so that $\alpha - \beta \delta^2 = m$. Thus by construction $W_1(x)$ has Property P for all x, and satisfies

$$\begin{split} LW_1 &\leq -\beta\sigma < 0, \, |\, x\,| < \delta\,; \\ LW_1 &\leq 0, \qquad |\, x\,| \geq \delta. \end{split}$$

Let $c(x) \ge 0$ be a function such that $c \equiv 0$ for $|x| \ge \delta$. Clearly

(16)
$$LW_1 + cW_1 - (W_1)_t \begin{cases} \leq -\beta + c\alpha & \text{for } |x| < \delta \\ \leq 0 & \text{for } |x| > \delta. \end{cases}$$

We require that $c \not\equiv 0$, but that c be small enough so that $LW_1 + cW_1 - (W_1)_t \leq 0$ for all x where defined.

Let $\varphi_0(x)$ be a smooth function satisfying $0 < \varphi_0(x) \le W_1(x)$. We shall construct a solution u(x,t) satisfying $0 < u(x,t) \le W_1(x)$, $u(x,0) = \varphi_0(x)$. For any R > 0, let Γ_R be the ball $\{|x| < R\}$, and let $u_R(x,t)$ be the solution in $\Gamma_R \times (0,\infty)$ of $Lu_R + cu_R - (u_R)_t = 0$; $u_R(x,0) = \varphi_0(x)$; $u_R(x,t) = 0$ for |x| = R. Since $(W_1 - u_R)$ satisfies Property P and is nonnegative on the boundary, we have that $u_R(x,t) \le W_1(x)$ for all R, and for $(x,t) \in \Gamma_R \times (0,\infty)$. Let $R \to \infty$; then the u_R form an increasing bounded sequence approaching some limit $u(x,t) \le W_1(x)$. By the Schauder estimates [2], for each bounded set the derivatives $(u_R)_{ij}$ and $(u_R)_t$ are equicontinuous. A subsequence of the u_R is therefore termwise differentiable to these orders of differentiation. If follows that $Lu + cu - u_t = 0$, $u(x,0) = \varphi_0(x)$, and $0 < u < W_1$. This completes the proof.

3. Proofs of the Lemmas.

PROOF OF LEMMA 1. Suppose the antibarrier V(x) is defined for $|x| \ge X > \delta$. Let $\varphi(|x|)$ be the function constructed in Lemma 4, and let $m_1 = \varphi(X), \ m_2 = \varphi(X+1) > m_1$. Let $V_2(x) = a_1 \ V(x) + a_2$, where $a_1 > 0$ and a_2 are constants chosen so that

$$(17) m_1 < V_2(x) < m_2$$

for $X \le |x| \le X + 1$. $V_2(x)$ is likewise an antibarrier. Let

$$V_{3}\left(x\right) = \begin{cases} \varphi\left(\mid x\mid\right), & \delta \leq \mid x\mid \leq X, \\ \operatorname{Min}\left[\varphi\left(\mid x\mid\right), & V_{2}\left(x\right)\right], & X \leq \mid x\mid \leq X+1, \\ V_{2}\left(x\right), & \mid x\mid \geq X+1. \end{cases}$$

Condition (17) assures that $V_3(x)$ will be continuous, and the fact that it is the minimum of two regular functions guarantees the proper jump relation for $V_3(x)$ to satisfy Property P. Finally let $V_1(x) = V_3(x) + \varphi(|x|)$; (4) follows since $L\varphi < 0$.

PROOF OF LEMMA 3. It follows from the strong maximum principle that there exists such a function χ depending on L; our task will be to find one depending only on κ , \overline{A} , \overline{B} , and δ . For this we use two auxiliary lemmas.

LEMMA 6. Let δ and u be as in Lemma 3. There is a number $\sigma > 0$ depending only on \varkappa , \overline{A} , \overline{B} , and δ such that

$$(18) u(x,t) \ge \sigma u_0$$

for $|x| \leq \sigma \delta$, $0 \leq t \leq 1$.

PROOF: We shall construct a function $v(x,t) = h(|x|)e^{-\lambda t}$ satisfying $Lv \ge 0$, v = 0 for $|x| = \delta$, and v > 0 for $|x| < \delta$. Setting r = |x|, we calculate

$$Lv-v_* = e^{-\lambda t} \{A(x,t)(h''-h'/r) + (h'/r)B(x,t) + \lambda h\},$$

Hence

$$Lv-v_* \ge e^{-\lambda t} \left\{ \varkappa \left(x \right) h'' + \left(\overline{B} \left(x \right) - \varkappa \left(x \right) \right) h' / r + \lambda h \right\}$$

wherever $h'' \ge 0$, $h' \le 0$; and

$$Lv-v_{*} \geq e^{-\lambda t} \left\{ \overline{A} \left(x \right) h'' + \left(\overline{B} \left(x \right) - \varkappa \left(x \right) \right) h' / r + \lambda h \right\}$$

wherever $h'' \leq 0$, $h' \leq 0$. We set $N_1 = \sup_{|x| \leq \delta} (\overline{B} - \varkappa)$, $N_2 = \sup_{|x| \leq \delta} \overline{A}(x)$, $N_3 = \inf_{|x| \leq \delta} \varkappa(x)$, and define

$$h\left(r
ight) = egin{cases} lpha - eta r^2, & 0 \leq r \leq r_0 \ (\delta - r)^2, & r_0 \leq r \leq \delta, \ 0 & r \geq \delta, \end{cases}$$

where $r_0 = \operatorname{Max}\left[\frac{\delta}{2}, \, \delta - \frac{N_3}{N_4}\right]$, and α and β are chosen so that h and h' are continuous at $r = r_0$. Then for $r_0 \le r \le \delta$,

$$Lv-v_* \geq e^{-\lambda t} \left[2N_3 - 2N_4 \left(\delta - r_0\right) + \lambda h\right] \geq 0,$$

and for $0 \le r \le r_0$,

$$Lv - v_* \ge e^{-\lambda t} \left[-2 \beta N_2 - 2 \beta N_4 + \lambda (\alpha - \beta r_0^2) \right].$$

Since the coefficient of λ is positive, we may choose λ large enough so that $Lv \geq 0$ throughout.

Now let $V(x,t) = \frac{u_0}{\alpha} v(x,t)$; clearly $V \le u$ for t = 0 and also for $r = \delta$.

Hence $u(x,t) \ge V(x,t)$ for $r \le \delta, t \ge 0$; in particular $u(x,t) \ge \frac{u_0}{\alpha} e^{-\lambda} h(r) \ge \sigma u_0$ for $r \le \sigma \delta, 0 \le t \le 1$, and an appropriately chosen σ .

LEMMA 7. Given any numbers R > 0 and p > 0, there is a number p_1 depending on κ , \overline{A} , \overline{B} , R, and p, such that if $u(x, t) > u_0 e^{-p|t}$, for |x| = R, $0 \le t \le 1$, then $u(x, t) \ge u_0 e^{-p|t}$ for $R \le r \le R + 1$, $0 \le t \le 1$.

PROOF: We define $v(x, t) = u_0 f(t(R + 2 - r))$, where $f(s) = e^{-p_1/s}$, and p_1 will be determined later. Then

$$Lf - f_* = A(x, t)(t^2 f'' + tf'/r) - \left[\frac{B(x, t)t}{r} + (R + 2 - r)\right]f'.$$

We assume $p_1 \ge 4$; then $f'(s) \ge 0$ and $f''(s) \ge 0$ for $0 \le s \le 2$, and we have, setting s = t(R + 2 - r),

$$\begin{split} Lf - f_* & \geq \varkappa t^2 f'' + \left[(\varkappa - \overline{B}) \, \frac{t}{r} - 2 \right] f' \\ & = \frac{\varkappa}{(R+2-r)^2} \left[s^2 f'' - \frac{2 + (\overline{B} - \varkappa) \, t/r}{\varkappa} (R+2-r)^2 f' \right] \\ & \geq \frac{\varkappa}{(R+2-r)^2} \left[s^2 f'' - K f' \right] \end{split}$$

where

$$K = 2 \max_{R \,\leq\, r \,\leq\, R \,+\, 2} \frac{2 \,+\, (\overline{B}\,(x) \,-\, \varkappa\,(x)) \,/\, r}{\varkappa\,(x)} \,.$$

732

conclusion.

But $s^2 f'' - Kf' = (p_1/s)(-2 + (p_1 - K)/s)f \ge p_1(-4 + p_1 - K)f/2s$ for $0 \le s \le 2$, $p_1 \ge K$. Hence $Lv - v_* \ge 0$ for $p_1 \ge K + 4$. We now set

$$p_4 = \text{Max}\left[2p, K+4\right]$$

so that $Lv-v_* \ge 0$ for $R \le r \le R+2$, $0 \le t \le 1$; $v(x,t) = u_0 e^{-p_1/2t} \le u(x,t)$ for r=R; and $v(x,t) = 0 \le u(x,t)$ for t=0, and for r=R+2. Hence $u(x,t) \ge v(x,t)$ in the annular cylinder $R \le r \le R+2$, $0 \le t \le 1$. In particular for $r \le R+1$,

$$u(x, t) \geq u_0 e^{-p_1/t}$$
.

This completes the proofs of Lemmas 6 and 7.

Lemma 3 is proved now as follows. By assumption $u(x, 0) > u_0 > 0$ in some interval; suppose it is the interval $r \le \delta$. Then Lemma 6 provides a lower bound for u in the region $r \le \sigma \delta$, $t \le 1$. Now apply Lemma 7 successively with $R_r = \sigma \delta + r$, r = 0, 1, 2, ... to obtain the

REFERENCES

- [1] BODANKO, W., Sur le problème de Cauchy et les problèmes de Fourier pour les équations paraboliques dans un domaine non borné, Ann. Polon. Math. (in press.).
- [2] FRIEDMAN, A., Boundary estimates for second order parabolic equations and their applications. J. Math. Mech. 7, No. 5, 771-791 (1958).
- [3] Il' IN, A. M., The behavior of the solution of the Cauchy problem for a parabolic equation under unrestricted growth of time, Usp. Mathem. Nauk. S. S. S. R. 16, 115-121 (1961).
- [4] » A. M., A. S. KALASHNIKOV, and O. A. OLEINIK, Linear second order equations of parabolic type, Usp. Matem. Nauk. S. S. S. R. 17, 3-146 (1962). Translated in: Russian Math. Surveys 17, 1-143 (1962).
- [5] » A. M., and R. Z. KAS'MINSKII, Asymptotic behavior of solutions of parabolic equations and ergodic properties of inhomogeneous diffusion processes. (Russian) Mat. Sbornik. 60, 366-392 (1963).
- [6] MEYERS, N. and SERRIN, J. The exterior Dirichlet problem for second order elliptic partial differential equations. J. Math. Mech. 9, 513-538 (1960).
- [7] SZYBIAK, A. On the asymptotic behavior of the solutions of the equation $\Delta u = \partial u/\partial t + c(x)u = 0$. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 7, 183-186 (1959).