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A RAPIDLY CONVERGENT ITERATION METHOD
AND NON-LINEAR DIFFERENTIAL EQUATIONS = II

JÜRGEN MOSER (*)

CHAPTER. III - Conjugacy Problems. 

The method explained above is, of course, not only applicable to par-
tial differential equations but to many other functional equations

The essential requirements for this method are a) that an approximate
solution, say u = uo , I is known, so is sufficiently close to f and
b) that the linearized equation

admits a solution for v - for any given w in a neighborhood of This

second condition is rather stringent and often it is possible to ensure the
solvability of the equation

but not that of (1). In fact, in this chapter we shall discuss just such

problems for which (1) is not solvable but (2) is.

Such problems occur in celestial mechanics and are closely related to
the so-called small divisor difficulty. We shall discuss the simplest model
problem in which this difficulty occurs, the center problem. This problem
was treated successfully by C. L. Siegel in [5]. For a detailed discussion

Pervenuto alla Redazione il 23 Giugno 1965.
(~) The first part has appeared on the January/March 1966 issue of this same Journal.
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of this problem we refer to the book [22], Section 23 and Section 24 and

for some similar results for differential equations we mention [5’].
We shall describe this problem in the following section but approach

it with a different method which allows other applications. In fact, this is

exactly the method which was suggested by Kolmogorov [6] for a small

divisor problem and was used by Arnold [10] in the proof of Kolmogorov’s
theorem. The main point will be to construct a rapidly convergent sequence
of approximations by solving the linearized equations (2) (linearized at
w = only. For general functional equations this is not possible but for
the problems discussed here (conjugacy problem) we shall describe such a
method (see Section 2).

§ 1. Siegel’s theorem.

We consider a conformal mapping

near a fixed point, say z - 0. Hence f (0) = 0 and we can write

n

is a power series which vanishes quadratically We

assume Â =f= O.
The problem to be discussed is to find a coordinate transformation

-

- where u (E) again vanishes quadratically at 1 = 0 - such that in the

coordinates ~ the mapping (1.1) takes the simple linear form

The mapping (1.1) is called « conjugate » to a linear one if such a trans-

formation (1.2) can be found.
It is very easy to determine the coefficients of u by formal expansion

provided 1 is not a root of unity. Indeed the functional equation which
has to be solved is
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Assuming that in

the coefficients U2’ ..., have been found in such a way as to

satisfy (1.3) (mod ~k) we find for the coefficient of ~k from (1.3)

Here c~k is known, as it depends on 2~2 , 1ts , ... , and the coefficients of

j only. He-nee 2tk is determined by the equation

which is uniquely solvable if A is not a unit root.

The question we are concerned with is the convergence of this series

for 1t. I =f: 1 the convergence can be established straightforwardly by
Cauchy’s majorant method (see for example [22]). On the other hand, for

I )¡, ¡ = 1 the excluded unit roots are dense, and, moreover, one can find a
dense set of ~ on the unit circle which are not unit roots and for which

the above series diverges [23]. But all the exceptional values can be very
well approximated by roots of nnity. If we require, however, that I satis- ’

fies the infinitely many inequalities

then the series it converges in a neighborhood of ~ = 0. This is the content
of Siegel’s theorem.

Siegel’s original proof depends on delicate estimates which take into

account that the number - 1 B-1 is usually much smaller than co q2.
The proof which will be presented here is much cruder and therefore is

applicable to the more difhcult problems of celestial mechanics. We shall

explain the method in a more general setting to bring out the important
features. The detailed estimates for the proof of this theorem will be given
in Section 3.

Here we merely consider the linearized equation for (1.3). Let it =

+ 8V and differentiate (1.3) at s = 0 to get

If we could replace f (z) by its linear part Â. z and by ~ then we are
led to the equation
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for a given power series 9 (C) without linear and constant terms. This

equation can be solved by power series expansion : If

we find

If g converges in I C  e then

and by (1.5)

Hence ro (~) converges in I ~ ~ Q also. The equation (1.7) correspondes to
the linearized equation for tv = ~ and it seems hopeless to solve the cor.

responding equation in which the left hand side of (1.7) is replaced by the
expressicn (1.6). Therefore, in this case we have a situation in which the

solution of the linearized equation (1) (of the introduction to Chapter III)
is available only for w = identity.

§ 2. A construction for conjugacy problems.

The problem discussed in Section 1 can formally be written as

or

where 0 (~) --- The circle o indicates composition of functions.
We introduce the functional

and observe that it satisfies the important relations
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The second argument it in 97(f, u) is to be considered as an element of a

transformation group in the neighborhood of the identity. In our case we
are dealing with the group of conformal with u (0) = 0;
u’ (0) = 1.

Our problem is to solve the equation

for it where f = Àz +... and 0 = 2C are given. We shall describe an ite-

ration process which converges rapidly. The detailed estimates will be

discussed later. We set ito = I and Un have already been
constructed. Then we set

A

where v = I -~- v is to be found in such a manner that the functional

equation

A

holds - at least up to terms linear in v and the error 9 ( f, 2cn) - 0. We
set

so is small already. By (2.1) the equation takes the form

Expanding the left-hand side formally at the pair (0, I~ we obtain

Here

by (2.1) 4Y. Therefore the above relation reduces to
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Here we replaced the notation Ju by J7’ :

A

Therefore, if (2.6) can be solved for v this equation together with (2.3)
defines the next approximation. At least formally this process converges

quadratically: If the error fn - ~ is of order En in some norm, then from
A A

(2.6) also v === ~ - I is of order En. But since «e determined v in such a

way that equation (2.5) is satisfied up to terms linear in In - 4Y and
A 

v, the error in that equation and hence ê I 1 will be of order E2.s
We illustrate this process with a simple example : Let A be real it

matrix. The problem is to find (.~ - A)-l by an iteration which does not

require the inversion of a matrix at any step.
Denote

and it an arbitrary by it matrix. If

is the matrix product, the equation to be solved is

This functional ~( f, zc) = f . 2~ clearly satisfies the relations (2,1) and our
construction yields

with

or

Setting

we have

and

Thus we find the explicit formula
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and for the solution

This is the well-known Euler product which obviously converges quadra-
tically if I A I  1 in some norm.

For the problem of Section 1 :

we find

This operator is invertible as We have shown at the end of the previous
section and we shall show now that the above construction converges to a

solution of the center problem.
We emphasize again that in the above construction just the operator

9/ (4S, I ) has to be inverted and not ( f, u). This is crucial for the

success in small divisor problems in which small changes of the linear

operator ~’ may destroy invertibility, since the spectrum of ~, I )
comes arbitrarily close to 0.

§ 3. Proof of Siegel’s theorem.

After these motivations we give the details of the proof for Siegel’s
theorem.

We assume that the given mapping

is defined in a circle z ~ and that

Since f does not contain constant or linear terms we can make s arbitra-

rily small by choosing r sufficiently small. Furthermore, let A satisfy the

inequalities (1.5) and 0  ] 1 1. The first step is to estimate the solution

of the equation (1.7).
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LEMMA 1: If g is analytic in I C I  r , and satisfies g ~  e there and
g (0) = g’ (0) = 0, then the function

is analytic in ] ( ~ r and satisfies

for 0  0  1.

PROOF : By Cauchy’s estimate we have  81.-k. Hence

According to the construction described in Section 2 we choose the

transformation
A

by solving (2)

Therefore applying Lemma 1 to we find that

A

This implies, with v (0) = 0 that

(1) We use that for 0  x  1

(2) This equation corresponds to (2.6) as one sees from (2.7).
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Secondly we investigate where v-1 o f o v is defined. For this purpose
we prove

LEMMA 2 : If

A

Then the mapping z .~. v (~) = t + v (~) maps

Secondly, y the image of the disc

PROOF: The first part follows immediately from (3.3) : If ~)r(l201340)
then

by assumption of the lemma.
To prove the second part we have show that for ~1- 20) the

equation

has a solution in h. By Rouche’s theorem it suffices to

verify the inequality

This is again a consequence of (3.3) and the assumption of the lemma.

LEMMA 3 : If

then the mapping
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is defined for

Moreover, if we write this mapping in the form

we have

where ei  3co .

PROOF: By the Lemma 2 the disc I is mapped by v
a

- into z, I  l’ (1 - 30). The function f = Az + j is defined there and maps

Finally, by Lemma 2, is defined there and hence also (P.

To estimate 0 we write the relation

in terms We find

A

Since we chose v as a solution of (3.2) we get

Estimating the right-hand side by the mean value theorem we find

where we used that by (3.4)
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Hence - by (3.3) -

in I t  (1 - 40) 1.. Shrinking the domain to Canchy’s
estimate yields

which proves the lemma.

We have succeeded to transform the original mapping f (z) which

satisfied (3.1) into a new one 4Y which is much closer to the linear mapping.
We shall repeat this construction and show that the obtained sequence

, 
A

of mappings In converges. In fact, if fn == -{- and

then Lemma 3 ensures that

satisfies

The radii rn of the discs have to decrease with 7z and we choose

Then we define 8 = On by

so that

The convergence will be ensured if "1"e can show that the sequence

En defined by (3.5) tends to zero. From (3.5), (3.7) we find
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Clearly, if eo is chosen small enough en tends to zero. Indeed,

satisfies

i, e. for

we have convergence. We have to verify the validity of (3.4) for 0 = 
8 = en which is straightforward for sufficiently small 80.

Thus we have found a sequence of transformations va , .,. , ...

where vn transforms the mapping fn Here fo = f is our given
mapping. Hence

transforms f into

This mapping un is defined for

as one verifies from Lemma 2. Namely vn-i maps I C  1’n-l into I ~ 
G rn-2 etc. Moreover, I by construction In is defined in the same disc. The

rn were chosen &#x3E; ~~~2 (see (3.6)) and it is easy to show that Un converges

uniformly in I ~ ~ r~2. For this purpose we consider the product

where the derivative v’ has to be evaluated at the point

The estimate before (3.3) ensures that

and thus the infinite product
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converges uniformly in I ~ ~  ~/2. This implies that

Thus I and fn (~) - I( and from (3.8)

which was to be shown. Since (0) = 0, v~ (0) = 1 we also have u (0) = 0,
u’ (0) = 1. Thus the above construction succeeds if go I is chosen

sufficiently small. This can be achieved by choosing i- sufficiently small
since f vanishes quadratically at z = 0. This completes the proof of Siegel’s
theorem.

§ 4. A theorem by N. Levinson.

We mention some examples of fuctionals F(f, u) which satisfy the

relations (2.1) and therefore qualify for the above approach. For example,
let u = u (x) be a difierentiable transformation of x E ~~ into En and

2c’ (x) its Jacobian matrix. Then

satisfies (2.1). Indeed the above expresses the transformation law for a

differential equation

under a transformation y ~x).
If f denotes a mapping from one space X = .En into another Y = .Em

then

expresses the transformation law under two automorphisms u1 of X and

u2 of Y. The equation = g expresses the equivalence of a mapping
f and g from X to Y under appropriate coordinate changes.

In case X = Y the functional .
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expresses the transformation law of a mapping of X into X. The functional
discussed in Section 2 was of this type. Finally,

also satisfies our relation (2.1).
As an example for the latter functional we mention a theorem by

N. Levinson [25] which belongs to the theory of several complex variables:

THEOREM: Let
A

be a power series, convergent in I z I  ti where _po is a polyno-
A

mial in w of degree - it with jpo (0, iv) ==-= iv" and f any power series. Then
there exists a coordinate change

such that

is a polynomial of degree in c~.

Introducing the functional

we try to solve the equation

where Pn represents the space of polynomials p of degree  n in co which
vanish for z ~ 0.

Using the method described in Section 2 we reduce the problem to
solving the linearized equation

One finds easily that

where Øw is a polynomial of degree
v = m2i the equation (4.4) reduces to



513

This is a standard division problem and we choose a polynomial p (z, o) E P,,
in such a way that

at the n +1 roots of y which can be found uniquely by Lagrange’s
interpolation method. Then

gives the solution to (4.4), if the integration is taken over a circle contai-

ning all roots of (1)2 4&#x3E; OJ .
The convergence proof can now be established with standard estimates.

We refer to Levinson’s paper for the details. It is noteworthy that the

solution (z, co) can also be found by comparison of coefficients, however, ’
the majorant method by Cauchy does not seem to yield the convergence
proof, while the iteration method described here succeeds.

5. Vector field on a torus and Kolmogorov’s theorem.

As another application we discuss the following problem concerning
vector fields on a torus : Let x = (Xi’ ..., xn) and consider the vector field

where f (x) is an n.vector whose components have the period 2a with re-

spect to x1, ... , Xn. Therefore we can write (5.1) as a vector field on the

torus which is obtained by identifying all points x whose coordinates differ
by an integer multiple of 2n.

The simplest model of such a differential equation is obtained if f (x)
is independent of x :

It is well known that this flow is ergodic (with respect to the measure

dx = clxl .,. , if and only if the components col 2... , mn of co are ratio-

nally independent.
We pose the question whether the Row (5.2) is structurally stable, i. e.

whether small perturbations of (5.2) lead to a differential equation which
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can be transformed into a (5.2) by a coordinate transformation

where it (~) -- ~ have periord 2~ in ~1’’’. , 8n , the components of $.
This is clearly not possible, since even a small change of the constants

co leads to a flow

which cannot be transformed into (5.2) unless co = fl. Namely otherwise
the transformation would transform the solution ~ = flt into a solution of

(5.2), i. e.

Since u is bonnded, being periodic in t it follows that fl.
Therefore we shall admit changes of the vector f by a constant vector

2 and shall try to determine it in such a manner that

can be transformed into a system of the form (5.2). More precisely, y let

be a system where f (x, E) is real analytic in x~ , ... , x. , 8 and of period 2a
in xv. Moreover, we shall require that the ... , Wn are not only rationally
independent but even satisfy the infinitely many inequalities

for all integers ... , 7 not all zero. If one chooses co large enough and
z &#x3E; n - 1 then this condition is fulfilled for the majority of OJ, i. e. for almost

all m such Co exists.

THEOREM 1 : Under the above conditions there exists a real analytic
transformation

and a constant vector A _ ~ (e) with A (0) = 0 such that (5.5) transforms the
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system

into

This theorem is due to V. I. Arnold (see [8]) who proved this result

by the same method as described in Section 2. In the above form the

statement does not appear to be useful as it refers to a modified system
and not the given differential equation. However, this is to be considered

as a partial step towards a more general theorem on differential equations
in which sufficiently many parameters are available to achieve 2 = 0. We
now formulate such a theorem - which is due to Kolmogorov [6] and

Arnold [10].
Consider a Hamiltonian system

with a real analytic Hamiltonian g (x, y, e) of period 2~ in x1, ... , Xn. Mo-
reover, assume that

is independent of x. Hence, for - = 0 the system (5.6) takes the simple
form

and the solutions are simply

0 0

where x, y are the initial values. The x components of the equations cor-
respond to the system (5.3) discussed before. In order to have the parame-
0 0 0

ters y available to adjust the vectors Hy (y) (so as to achieve 1 = 0 in

Theorem 1) we require that the Hessian is not zero:
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THEOREM 2 : Under the above hypothesis and for sufficiently small

I 8 I there exists a real analytic canonical transformation

such have period 2~c in ~1, ... , ~~, , that it = ~, v = r~ for
e ~ 0 and such that (5.6) is transformed into a system which reduces to

for q = 0. Hence

represent a family of quasi-periodic solutions of the given unmodified system.
This result is of fundamental importance in the study of Hamiltonian

systems and its applications to celestial mechanics (see Arnold [9]). We are
not going into the proof of this result which can be found in [10] but ra-
ther discuss further the proof of Theorem 1 and its extension to differen-

tiable vector fields.

§ 6. Proof of Theorem 1 (Analytic Case).

cc) We turn to the proof of Theorem 1 as stated in the previous
section. As mentioned before this result is not new but contained in Ar-

nold’s paper [8]: We discuss the proof in such a form that it also can be
used for differential equations for which is merely differentiable and
not analytic. However, We defer that case to the next section and assume
now that in the given differential equation

f (x) is a real analytic vector function which has period 2~c in ..., X21 "

We did not indicate the parameter dependence on 8, and replace it by a
smallness condition.

The theorem in question asserts the existence of a real analytic func-
tion u (E) and a constant Â such that the differential equation
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is transformed by

(6.2)

into the equation

-

Moreover, ’It (E) 2013 E = u has period 2n in E1, .., , EN.
More precisely we shall show :

ADDITION To THEOREM 1: There exists a positive constant c* depen-
dent on n, r, co , such that for

and for

one can find a constant vector ~ in

I I ,

and the desired transformation it (E) satisfyilly

where c is independent of E, h.

This statement assures then the existence of a solution of the partial
differential equation

on the torus. IFTere tt$ denotes the Jacobian matrix (20132013) and ill the vector

with the components w1, ... , Wn on which we impose the irrationality (see
(6.5) below). Clearly the constant A has to be chosen in such a manner

that the mean value of the right hand side of (6.4) vanishes.
To point out the subtlety of the problem we mention that one cannot

expect a solution of an equation of the type (6.4) is replaced
’o

by a function f(E,u) of period 2a in e. In fact, even for a function linear

in ’It, say f (~, u) (~) -~- one finds counter examples, no matter how
small fo , c are chosen. The reason for this phenomenon is the fact that
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the spectrum of the operator

acting on the space of functions on the torus contains infinitely many ei-

genvalues in any neighborhood of zero. Therefore (6.4) cannot be treated
-

like any partial differential equation but the dependence of f on alone

must be taken into account. This, however, is equivalent to the fact that

(6.4) represents a transformation law as discussed in Section 2. , ’*
We shall assume that c~1, ... , Wn are numbers which are rationally

independent and, moreover, satisfy the inequalities

for all integers with I = &#x3E; 0. Here z is some number &#x3E; n - 1
and co a positive constant. It is easily shown that every sphere of a radius
r large compared to contains at least one such co 

In fact the set of co which violates the above condition for any choice of

co forms a set of measure zero if 7: ~ 7z -1. This is easily verified by esti-
mating the measure of this set.

b) We begin with two lemmata. The first one refers to the solvability
of the linear partial differential equation

or in components

We require g, v to have period 2~ in x, , ... , xn . Clearly, a necessary
condition for the solvability of (6.6) is that the mean value [g] of g vanishes.

LEMMA 1 : If g (x) is a real analytic vector function of mean value

zero which is bounded in I 1m Xy then there exists a real analytic
solution v of period 2a, provided (6.5) holds. Moreover,

for and 

Here c denotes a positive constant dependent on T, it, c 0 only

(3) In the following c will stand for different constants and will not be distinguished
in each case.
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PROOF : Using the Fourier expansion of g one finds the solution imme-
diately as 

.

where Î’k are the Fourier coefficients of g. Since g is analytic the coefficient

yk decay exponentially with k 1. . Assuming sup I g i --- 1 for Im x I --- h we
find

by shifting the surface of integration to Im xv _ -f- h. Therefore the above
series converges and for Im xv - 3 can be estimated by

Replacing the small divisors (k, w) according to the estimate (6.5) we find

which proves the lemma with o = r + n.
The estimate stated in the lemma with o = ~ -~-1 is more delicate and

is based on the observation that only a few of the denominators (k, w)
are small. This fact was used in Siegel’s original proof (see [22], p. 168)
of this theorem (Section 1) and also in Arnold’s work ([9], Lemma 2, p. 30).
We present the proof - for the sake of completeness - for our situation:

For the following we shall use the norm I k 1= max I kv I which is equi-
v

valent to the previous norm, but is more appropriate for the following
considerations. denote the set of vectors k# 0 with integer
coefficients satisfying

and let N = N (v, r) denote the number of points in K (v, 1"). We shall show
that

"

Again el is a positive constant depending only. Note that this
estimate is particularly sharp for large v.
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To prove this statement we note : If k, lt’ are different vectors of

~ (v, r) then

Hence the distance

is very large for large v. We define 0, by the above relation and note

that from I k - k’ ~ C 2~~ we have

If we surround each k E .~ (v, t.) by a cube

then these cubes are disjoint. Intersecting the cubes ek with I
get disjoint n - 1 dimensional sets of (n -1~ dimensional volume &#x3E; Lon-1 .
Since the n - 1 dimensional volume of I x = r is 2n (2r)n-l we have

which proves the stated inequality.
To finish the proof of the lemma we form

Note that the last exponential is positive for y ~ 0. Therefore adding
over all v for which K (v, r~ is not empty we get

is the greatest occurring v for which J6T(~~)=}= 0. The relation
(6.8) provides us with an estimate for v* and yields
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Finally, (6.7) is estimated by

which was to be proven.

c) To prove Theorem 1 and its addition we consider a family of
differential equations

which depends on a parameter (analytically) which varies in a complex
neighborhood of w. We shall find not only a transformation of the varia-

bles x

but also a transformation

of the parameters in such a manner that in an appropriate domain the
transformed equation

possesses a function 0 which is much smaller than f. Repeating this pro-
cess we shall construct the solution asserted in Theorem 1.

To make the estimates precise we require the following inequalities

with appropriate positive numbers e, s  1. All estimates are considered
in the complex domain.

LEMMA 2. Assume that f is real analytic in

and satisfies (6.13). Let s+ be a positive number s+  s and let
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be sufficiently small and set

with an appropriate positive constant c.

Then there exists a transformation

which maps

into CD and is real analytic there. Moreover

and the transformed equation (6.12) satisfies

PROOF : I We define by the equation

By Lemma 1 this equation has a real analytic solution which can be esti-

mated by

and by Cauchy’s estimate

Secondly we define a = tv (a) in (6.11) implicitly by

That this equation can be solved for a follows immedia-
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tely from an index argument using

Therefore the degree of our mapping in - w ~ ~ 2e with respect to a is

1. Hence = zo (a) exists. Moreover, one verifies that the Jacobian of the

mapping does not vanish so that w (a) is analytic in a - w | 2E+ . The
stated inequality for zo - a I follows from (6.15).

The above estimates ensure that the transformation CJ1 defined by (6.14),
(6.15) maps into ~D, since

Here we used the smallness assumption of Lemma 2.

Having defined u (~, a) ; w (a) we estimate 0. The transformation for-

mula gives

Subtracting (6.14) and (6.15) from this relation we find

Since we can estimate 0 in

Using Ca-Lichy’s estimate we find

which finishes the proof.

(4) VTe used that for sufficiently small
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cI) CONVERGENCE PROOF. To prove Theorem 1 (of Section 5) and its
addition (see beginning of this section) we apply Lemma 2 repeatedly. We
start with the prescribed family of differential equations given by

and transform it by

into the new family

Here 7(f, represents the transformation law corresponding to differential
equations, i. e.

f , in turn, is transformed by a transformation Cflf into

etc. We shall show that the composition of the transformations cyo CJ1i , .·· ,
are defined in appropriate domains and converge. In particular we shall
show that

Writing the coordinate transformation in the form

we see that the first line represents the desired coordinate transformation
while the second specifies the value of a, i. e. ), = ac - m = w. (0) - w.

We proceed to define CJlo, C’JL1 , ... , y inductively. Assume that c2t,,
CJ11 , ... , CJ1k-l have been defined already and
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then we use the construction of Lemma 2 to define CJ1k and

Inductively we shall verify the following estimates.
We define the domains

where we set

with an appropriate large constant el depending on co, 2 T) 0, it only.
Then

a) f k is defined and analytic in 9Dk and satisfies

~8) Wk is defined and analytic in mapping into CJ)k.
Moreover,

We verify the statement for k = 0: In this case a) follows from the
hypothesis of the addition to Theorem 1 since

Lemma 2 ensures the existence of defined in y if we choose s = so , 1

8+ = Sf .
Assume that the above statement has been verified for k = 0,1, .,. , 1. Then

we can apply Lemma 2 to f = f, in CD = 9Di , and find CJ1 = CJ1l in by
the same lemma. The statements a), fl) follow directly from those of

Lemma 2.

Having established the statements a), fl) for ,
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we discuss now the limit process k -~ cxJ. Note that the transformation

is defined, for a shrinking domain We restrict this transformation to

I 
1. which is given by

flsk maps 9D into CPO by construction.
To show finally, that flflk converges in CD we write flsk in components

By construction we have

and since

converges by (6.16) (for sufficiently small s/ha+l) it is clear that lim Vk
k

exists and is analytic in  h/2. We find for a = 0

for sufficiently small or in components

satisfies

and

Similarly one verifies

This completes the proof of Theorem 1 (and the addition to it) if one sets

1 = 1V* + a) and it = v* (~), except for the analytic dependence on the para-
meter - which was also called 8 in Theorem 1. This can easily be taken
care of by allowing all functions above to be analytic functions of this
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additional parameter E in a fixed domain |e  p. All approximations it7,.,
1ck will depend analytically on this parameter in one and the same domain

181 (  p and since the convergence is uniform the limit function will also

depend analytically on the parameter. 

§ 7. Vector field on a torus (dilferentiable case).

a) We use this opportunity to formulate and prove Theorem 1 on

torus flows also in the differentiable case. Originally, in the proof of a si-

milar result on invariant curves of area preserving annulus mappings the
author treated the differentiable case by use of a particular smoothing
operator which approximates functions in by 11°° functions where the
error becomes extremely small if r is large. In the theory of approximations
such results are well known, such as the theorem of Jackson which ensures
that a function in er can be approximated by trigonometrical polynomials
of degree  N with an error  c (see N. I. Achieser, Chapter V [26]).
We shall show that such approximation techniques can be used successfully
to reduce the differentiable case to the analytic one. This approach follows
the ideas of Bernstein who characterized the differentiable functions by
their approximation properties by analytic functions. In a similar manner

we approximate here the functional equation in the differentiable case by
an analytic one. Aside from the interest per se this approalch yields a result
which requires a reasonable number of derivatives while our previous me-
thod ~4"~ was extremely wasteful in this respect.

Let el denote the class of vector functions which have period
2 n y and continuous derivatives up to order l. For noninteger
I &#x3E; 0 we require that the derivatives of order [1] (5) be Holder continuous
with exponent We denote by the maximum of all derivatives

of order if 1 is an integer. For noninteger 1 we add the Holder constant
to this expression.

We are going to prove the following

THEOREM 3: (6) Let l ) a -~- 1 = ~ -~- 2 ~ n ~-- 1 and let the vector

co (a), , ... , wn) satisfy (5.4). Then there exists a positive constant 60 depen-

(5) [1] denotes the largest integer  l.

(6) Added in proof: In the meantime A. M. Samolenko studied the same problem in

Ukrainskii Math. Journal, vol. 16, N. 6, 1964, pp. 769-782. He makes use of a smoothing
operator as described above while we approximate the problem by an analytic one. This

leads also to considerably milder differentiability reqnirements : Instead of l = 1 + 32 (n + 2)
we need only + 1.
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ding on co , only such that for

there exists a constant A and a coordinate transformation

which maps

n

Here u belongs to e1 (more precisely to

and satisfies

with some constant c depending on c~ ~ 1:, l, n only.
Notice that 2c possesses a derivatives less than f; this is precisely the

same loss of derivatives as one has for the linear partial differential equa-
tion (6.6). Therefore the drop of differentiability for the linearized equations
is the same as for the corresponding nonlinear ones! t

b) Before we prove Thoorem 3 we shall show how one can approximate
a by analytic functions. This is a standard result of

approximation theory but we indicate the proof.

LEMMA 1. Any function f (x) Eel can be represented as

for real x,

where f k (x) is real analytic satisfying

and fo --- 0 with A C Here c depends only. Conversely, if a

real function f admits such an approximation by analytic ones then IE el
provided 1 is not an integer and with another constant c’.

PROOF : By Jackson’s Theorem there exists a trigonometrical polynomial
pN (x) of degree  N such that
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Such a trigonometric polynomial can be provided by convolution operators
(see Achieser) for arbitrary dimensions n. VTe set N = 4~~ and fk = (x)
for k =1, .., , and fo = 0. Then jk is an entire function and for real x

Using a well known theorem by S. Bernstein we find that all derivatives

of the trigonometric polynomial fk can be estimated by

To estimate fk. - fk+l in the complex domain, say f’or ~ Im x I  hk, we use
Taylor’s expansion to get

This proves the first part.
The second part follows from Cauchy’s estimate but will not be proven

here.

c) We shall make a slight extension of Theorem 1, § 5 (or its addition,
§ 6): That statement referred to the differential equation (6.1) where I was
a constant. We shall now require that this modifying term be of the form
p ~x~ J~ where the matrix p (x) is real analytic in I Im x ~ h and satisfies

Then one can show with the smallnes assumptions of p. 19 that the system

can be transformed into (6.3) for some appropriate constant A in

(7) For the proof we remark that a transformation

where u solves

reduces (7.3) to
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d) To prove Theorem 3 apply Lemma 1 to the given f (x) - OJ E ez
and construct fk (x) which are analytic in  4 hk = 41-k and satisfy
(7.1) and f, = co. The plan is to use Theorem 1 (in its extended form) to

prove the existence of constants Pk and a coordinate transformation ~k
which transforms fk into ¿ = co. In fact we claim:

For lc = 0,1, ... , I there exists a real analytic transformation

and a constant Pk such that

Moreover, C)1k maps the strip ( into and satisfies

for real $ and

We prove this statement by induction. For k ~ 0 we can clearly take
0, ~Q (~) == ~ since fo == D. We assume that the statement has been

proven in the form as it stands and shall establish it for lc replaced by

We consider + 2 Â. for a variable ~ and subject it to the

transformation ~k obtaining

by which 4l is defined. Comparing this equation with (7.3) we find

Therefore,  2.s we can estimate 0 (12) by s if e is sufficiently small. In this man-
ner the above statement is reduced to Theorem 1, § 5.
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from Lemma 1. If 8 is chosen sufficiently small we infer from (7.4)

Now we apply Theorem 1 to

and use that

for sufficiently small. The estimate (7.6) assures that with

the quantity

is sufficiently small if 6 is taken small enough. Hence there exists a I in

and a coordinate transformation taking into

or equivalently with (7.5) (using (2.t))

Setting

we have

as was to bey shown.
It remains to verify the various estimates. Since takes

into (7)k+l and CJ1k takes (Z)k+l into (7)k it is clear that
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maps (7.8) into This is not sufficient for the induction and will be

improved upon below.
From the addition to Theorem 1 (§ 6) p. 19 we have the estimate

Therefore, representing %k+i in the form

we find from the chain rule

if 3 is chosen small enough. This ensures (7.4) in the domain (7.8).
We shall show now that maps into For this purpose

we observe that ~7(~)== UA.,+, ($) is real analytic, hence with Re $ =e we
have

By (7.10) we can assume that I U’ ~ c 2 and therefore

Hence cM maps CDk+2 into (Dk+l as we wanted to show.
Finally the relation (7.7) implies the estimate (7.4’) for I

which completes the induction.
From (7.9) one also deduces the convergence of the Uk for k 2013~ oo if

~ is real. Namely, for $ E lJ)k+2 we have from (7.9)

Hence c2tk certainly converges for real ~. Moreover, by the second part or
Lemma 1 it follows that the limit function

belongs to if a is not an integer and
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Setting

-

we see that Theorem 3 is proven with u - U* -  and À = p*.
We mention that the same method allows the extension of the theorem

by Kolmogorov and Arnold on Hamiltonian systems to the differentiable
case. The perturbation has to be small in the el topology where
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