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GENERAL MIXED PROBLEMS ON A HALF-SPACE
FOR CERTAIN HIGHER ORDER PARABOLIC

EQUATIONS IN ONE SPACE VARIABLE

by R. K. JUBERG (*)

In recent years much has been written on mixed problems for higher
order parabolic equations. For works in the classical mode see, for example,

v v v

li%idel’man [5], tidel’man and Lipko [6], Isakova [12], Mihailov [19 a, b], So-
v

bolev [23], Solonnikov [24], Zagorskii [25], Arima [21, Cattabriga [4a], Pini
[21a], Juberg [13] ; and for generalized solutions consult, for example, Agra-

v v v

novic and Visik [1], Mihailov [19c], Lions [17], Lions and Magenes [18],
Browder [3], Lax and Milgram [16], Friedman [9], Hersh [11], Cattabriga
[4b], Pini [21b]. The above list should in no sense be taken as being com-
plete : for additional publications see the lists of references in those cited.

The existence theories, for both classical and generalized solutions, have
been extended so as to encompass very general situations. This is true in

regard to the equations that are considered as well as to the boundary con-
ditions and the domains. However, on the question of uniqueness, very
few general theorems have been published.

In this paper we consider general mixed problems in a half-space for
certain simple equations in one space variable. The boundary operators are
unrcstricted as to order and individual structure. We prove general uniqueness
results and also an existence theorem. The existence theorem is of inte-

rest because of the generality of the boundary operators. More significant,
though, is the fact that in this result it is noted that the interrelationship
of the boundary operators, beyond their independence, has an effect.

The method seems to be such that, if pursued, it would give rise to
the best possible results ; see the remark that follows the statements of the
theorems in the next section. Moreover the method should provide a basis

(") Pervenuto alla Redazione il 27 Ottobre 1965.
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for extensions. For this reason we proceed in a direct manner and make
use of specialized devices only when it is no longer reasonable to avoid

them. Of central importance is a general representation theorem, Theorem 4.
The principal results are derived primarily from it.

In Section 1 we state our principal results. Section 2 contains some

auxiliary results preparatory to the proofs of the main theorems. The proofs
of the uniqueness theorems are given in Section 3 and the existence is pre-
sented in Section 4. In Section 5 we give alternate formulas to those in

Section 4 for the solution. The appendix contains the proofs of several

lemmas stated in Section 2.

The author is grateful to Professor Serrin for his reading of the

original draft of this paper and for offering a number of suggested im-
provements.

1. Main Theorems.

Denote by R the topological product of the positive real line with the
segment (0, T), 1R+ X (0, T). Let the letter D with a variable subscript ap-
pended indicate the operation of differentiation with respect to this varia-

ble, for example, -D~ Dt, 7 etc.

We consider the following problem : Find u = u (x, t), locally bounded
in 1R+ X [0, t), that solves the equation

for (x, t) E R and satisfies in addition the following conditions:

uniformly in finite time intervals, and

where the Bj (~) are polynomials in the indeterminate ~ with constant coef-
ficients.

The sense with which the boundary values are assumed is indicated in
the statements of the theorems.

Let = 17 ... m) be the 2ni-th roots of (- 1)m+l that have negative
real parts and form the m X m matrix
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The basic solvability criterion ([6], [24], [25]) is here expressed in terms
of M (z).

.Basic Assumption.

There are certain parameters that enter into the statements of the the.

orems, for which we make the following definition.

DEFINITION 1. Let r be the maximum of the orders of the operators
which appear in B (Dx), the boundary operator with components Bj (Dx)
( j = 1, ... , m), Denote by e the largest integer such that ze 3f-1 (z) is ana-

lytic at infinity: (z) is the matrix inverse to M (z).

DEFINITION 2. We shall say that x - u (x~ · ) is continuous at x = 0

in the Ly - sense locally, if for each t E (0, T)

THEOREM 1. Suppose u = u (x, t) satisfies (1.1) - (1.3). Further
assume that x -+ u (x, -) is continuous in the L1 - sense locally at x = 0. If for
0  t  T 

where p = max ((r - 1) / 2m, 0), then u = 0 in .R.

COROLLARY. With the same assumptions as above, if either

or, more particularly, the expressions B (Dx) u jzave trace zero on [0, T] J then

u = 0 in R.

The corollary reduces immediately to the theorem, since, in either case,

for some y &#x3E; 1. Which in turn implies (1.7).

4..AnnaZi delia Scuola Sup. ~ 
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The reader is referred to the fundamental paper on the theory of trace
by Gagliardo [10] : for a survey on the theory see the exposition in Serrin [22].

THEOREM 2. Suppose u = u (x,t) satzs fies (1.1) - (1.3). further
assume that x -+ u (x, . ) is continuous in the sense locally at x = 0,
for some E &#x3E; 0. If for every 0 E C- with support compact in [0, T)

where p = max ((r - 1) / 21n, 0) and the inner integral is to be replaced by
B (D,,) u (x, t) when p = 0, then u = 0 in R.

DEFINITION 3. For suitable functions g = g (t) define

where denotes the largest integer in a, a &#x3E; 0.

DEFINITION 4. Let k be a non-negative integer and set a = 1 / 2m. De-
note by ~, 0  ka - [ka] + b  c  1, the set of functions, g = g (t),
0  t  T, such that

(i) g is [ka] - times continuously differentiable and g(j) (0) = 0 for

j = 0, ... , [ka] - 1,
and

where a = min (t, T).
For simplicity of notation we shall suppress the dependence of Ska, b, c

on the parameters a, b, and c and denote the space simply by 

THEOREM 3. (Existence) Suppose f E where f is an m-vector. Then

problem (1.1) - (1.4) has a urcique solutions u = u (x, t) where u E cr (R - 0)1)

for each
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REMARK. It will become clear in the proof that a more precise theorem
could be formulated by imposing the hypothesis component by component.
From a more detailed study of the representations of the solution operators
one would be lead to the appropriate conditions.

2. Auxiliary Results.

We denote the usual fundamental solution of equation (1.1) by
K = K (x, t) where

and, further, we recall that

.,

(see, for example Ladyzenskaya [15], Rosenbloom [8] (chp. 4) ; or, also, the
appendix in [13b] for the type of equation being considered).

The following theorem provides a quite general representation formula
for solutions of equation (1.1) which satisfy (1.2) and (1.3). We shall see
that the main results of this paper are rather direct consequences of it.

THEOREM 4. Let u = u (x, t) be locally bounded in ’IR+ &#x3E;C [0, T), solve (1.1)
in R, and satisfy (1.2) and (1.3). If x - u (x, ~ ) is continuous in the Z1- sense

locally at x = 0, then for 0  t  T o , To = (02 / and x &#x3E; 0

where

In the proof of Theorem 4 we use the fact that here u is sufficiently
often continuously differentiable in 1R+ X [0, T ) ; in fact, u E C °° (’IR+ x [0, T)).
This follows from (1.1), (1.3), and the local boundedness up to t = 0 ; for

example, by an argument similar to that at the end of [16]. The proof of
the theorem is then a straightforward deduction using Lemma 1 and Lemma

2, which follow.
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LEMMA 1. Let E defaote the set of functions, v = v (x), in 1R+ which pos-
sess the following property : ~ xk Dj v (x) I -+ 0 as x - oo for 0  j, k  oo.

Then (- D)n and I n commute on .E, where

PROOF. On repeatedly applying Leibnitz’ rule for differentiating func-

tions defined by integrals combined with integrations by parts we find sim-

ply that, for j  n, 
--

where is the Kronecker delta function.

LEMMA 2. Let u = ’it (x, t) solve (1.1) in R, T = To, and satisfy (1.2) and
(1.3). If U E (R) (R = closure of R), then

The proof of Lemma 2 is presented in the appendix. Therefore we pass
immediately to the proof of Theorem 4.

PROOF OF THEOREM 4. We shall use freely the fact that u E C °° (’IR+ X
X [0, T)). Then, from Lemma 2 applied to (x, t) - u (x + y, t) (y &#x3E; 0), we have

for any y &#x3E; 0.
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Now it follows simply from (2.2) and (1) that u (., t) E E, t &#x3E; 0. Thus,
using Lemma 1, we find on applying (1) to the function I2m-2 u, followed

by the application of operator D;m-2, that

In addition, as one sees by an obvious change of integration variable,

The conclusion then follows from (2) upon letting y tend to zero.
We next make note of certain properties of the spaces which we

will use in the sequel. Observe, first, that on Sk the operational rules

are valid. The verification of these rules and also, in part, the proof of the
following lemma (which is an expression of some additional essentially ope-
rational facts) involve manipulations of a similar nature. We shall give an
indication of them by sketching the proof of the lemma.

LEMMA 3. (i) If g E y then Dja 9 E 
(ii) If g E then the functions

is in Sk .

(iii) The operation g -+ Dill g, as a mapping of S k into and the

operation taking g (t) into

as a mapping of ircto Sk, are inverses of each other.

PROOF. Statement (i) follows directly from (2.5) and the definition of
the space S k .
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Nov consider statement (ii). We observe from definitions 3 and 4 that,
for g E Sk , I

where 0  n  1-[- [ jaj _ [ka] -1. This is, in essence, the first part of (2.5).
Hence, without significantly compromising the statement, we suppose that
ka1.

Set

where Then the application of the corresponding Riemann.Liouville

operator of order 1- ka gives

Hence, on differentiating (2),

Further, since (z) is bounded on (0, T), it follows from (1) that

Then, using (3) and (4), the conclusion follows directly from the definitions.
After observing that, for g E Sk , Dja 9 is absolutely integrable on (0, T),

the proof of statement (iii) proceeds as for (3) above.
In the next lemma we give an alternate expression for the operator

Dka which will be found useful in obtaining certain limits in Lemma 5.

The proof of this lemma as well as that of Lemma 5 will be deferred to

the appendix.
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LEMMA 4. I f g E Sk , ka  1, then

LEMMA 5. S1tppOse g E S k . Then f or j  k

where C ( j, m) = 0 for j-even such that j =1= 0 (mod 2m).
By continuing in the manner of the argument in Theorem 4 we are

lead to the proof of the next theorem. This theorem provides the direct
means for the proofs of our main results.

THEOREM 5. Suppose u satisfies the hypothesis in Theorem 4. Then in

1R+x we for

where V is an nt x m matrix of linear combinations of Volterra type integral
operators and U is a column vector with components IT~ = 12(j-l) u (x, t),
~~j = 1, ... , m).

PROOF. If follows from Theorem 4 that for x, y &#x3E; 0 and 0  t  To

This identity relates functions that are C°° with respect to all indicated
variables in their ranges under consideration. Note also that the terms on

the right side are convolutions with respect to t of functions vanishing of
infinite order at t = 0.

From (1) we see that
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Then, by Lemma 5, it follows that (x, t) is a linear combination of

terms of the form (constant) Dta (x, t)y 2 (m - 1) + r (see, De-
finition 1). Hence the conclusion follows from Lemma 3.

3. Proofs of Theorems 1 and 2.

The operator V appearing in (2.8) can be represented in a form which

displays more clearly its structure and dependence on the boundary opera-
tor B. This could be done directly, but it would involve extensive and te-

dious calculations. Whereas, with considerable ease, it can be done through
the use of the operational calculus in the field J of convolution quotients,
as developed by Mikusinski [20]; see also Erdelyi [7]. There is a naturale
embedding of continuous functions f (t) into hence certainly for C°° func-

tions. Furthermore, the operation of differentiation in functions vanishing
at the origin has a natural unique correspondant in 9.

Let be an m-vector with components Uj E C °° (1R~) vanishing
of arbitrary order at t =00:: 0. Consider the expression

We shall embed this in the functions which are continuous from 1R+ into
J (see [20], Part 3, Chap. I). The operation of convolution of functions

corresponds to multiplication in Thus, setting

we have for the analogue of (3,1)

where Q (x) is the image of Q (x, t) under the embedding, and U is the
image of U (t).

We adopt now some notation common to the operational calculus. In
particular, the elements in 9 that correspond to the operation of differen-
tiation with respect to t and to the functions ty-1 will be denoted,
respectively, by s and ZY. Moreover, sl = sllw for 0  ~,  1 and s-Y = lY

for y ? 0. We note, also, that the operator Dy acting on appropriate func-
tions, say in S k~, b~ ~ (y  l~), corresponds to sY .
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Let wk (lc - 1’’’1’ m) be the 2m-th roots of (- l)-+’ which have ne-

gative real parts and set ac = 1/2fii (as in § 1). Using a contour integral
representation valid for certain exponential functions from into 9 as

given in [20], Appendix (Chp. VIII), one can show that

Then, from the continuity properties of the exponentials and their deriva-
tives, we find that

Denote the row vector with components (k ---1, ... , m)
and let be the column vector with components I (k =1, ... , m).
Then (3.4) becomes Q(2(m+n)-3) (x) = Q(n) m-1 s2a(n-l) and (3.3) takes the form

where an matrix with k and n, re-

spectively, as row and column indices. Moreover,

Thus the image of (3.1) can be expressed as

Now it follows, as in the proof of Theorem 5, that (3.1) approaches
tends to zero. Since (3.7) is continuous from 1R+ to C;¡:,

as x approaches zero it approaches M (sa) Slm°1 diag (1, s2a, ... , 82(m-1) a) U,
(see (1.5)). To summarize, we have the correspondence

and, hence, the added correspondences

and
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This latter correspondence, (3.10), prevails also when V acts on functions
Il which are merely locally integrable, that is, satisfy

for each

PROOF OF THEOREM 1. We shall prove that u = 0 in 1R+ X (0, To),
Ta = The general conclusion is then found by extending this
result stepwise by increments of ITO, (0  Â.  1), in the usual way.

We deduce, from Theorem 5, that

and on integrating from 0 to t we find that

We deduce from (1) and the hypothesis (1.7) that lim h (x, t) = 0. Since
x -~ o

x -~ u ~x, · ) is assumed to be continuous in the L’-sense locally at ~===0y
the same is true for x --* h (x, .). Thus ~(0~)===0 for almost all t E (0, To) ;
or, ratb er,

almost everywhere in (0, TO).
Now (2) is the convolution product of a matrix lP+(2-r) a with the

vector U (0, t), where flfl is an m X m matrix, (see (3.10)). The convo-
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lution determinant (that is, using convolution product) of this matrix cor-
responds in 9 to the determinant of the matrix

which is simply lmp+(m+l)!2 det M (sa), Recall that p = max ((r - 1)/21)t, 0), r is

the maximum order of the components of Thus

det M (sa) is a polynomial in la. Therefore, clearly, the set of zeros
of the convolution determinant of the matrix C),9 is a discrete set, and
a fortiori zero is in its support. Consequently, in accordance with the Tit-
chmarsh theorem on the vanishing of convolution products, as expressed
by Kalisch [14], we conclude that Uo = 0 in [0, To) : that is, f 2(~-1) ~ (0, t) =0
for 0  t  To, ( j =1, m). That u = 0 in 1R+ X (0, TO) follows then

from Theorem 4.

PROOF OF THEOREM 2. As in the above proof we will establish here
only that u = 0 in X (0, TO).

As there we have for x E JR+,

(as above).

Thus, after an integration by parts and supposing the support of 0 to be
in [0, 

-

Then it follows from (1), (2) and the hypothesis (1.8) that
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Now, since j?2013&#x3E;-~(~ ’) is assumed to be continuous in the - sense

locally at .r====0y the same is true of .r2013~(~ · ). Therefore, from (3),

for every

with support in [0, This implies that h (0, t) = constant in (0, TO). Mo-
reover, since Uo = U (0, t) is locally integrable of order 2fii -~ 8, we infer
that t -+ h (0, t) is continuous in [0, TO) and h (0, 0) = 0. That is,

The proof is completed from (4) just as in the proof of Theorem 1.

4. Proof of Theorem 3.

We shall first of all derive formally a representation of the solution
operator; formulas (4.8) and (4.9).

To this end consider the equation (see (3.9))

Thus

where S~~ is the conjugate transpose of S~. In addition we have

where the Mk are constant m X m matrices. Then on combining (4.2) and
(4.3) and setting

we obtain the expression
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Suppose

Then, in (4.3), the index k ranges from 0 through N - q - ~o (see § 1, De-
finition 1).

Now for r constant we have the correspondence

(see [20], Part Ih Chp. IV).
Then from the opening discussion in § 3 combined with (4.4)-(4.7), we

obtain the formulas :

(n =1, ... , 1n), where symbol * indicates a convolution product, and

Clearly, the operator g -+ 0 * g, maps S k into itself. This

together with Lemma 3, ~ 2, implies that the mapping g - R ( . ; r) *g takes
S k into S k+1. Therefore the operator defined by (4.8) carries S r-e into
sr+2(n-l). That the function u = u (x, t) defined by (4.8) and (4.9) provides
the desired solution then can be verified directly from Definition 4, Lemma 5,
Theorem 5, and the discussion in § 3. The uniqueness is a consequence of

Theorem 1.

5. Formulas for Derivatives of Solutions.

We shall present here certain formulas for derivatives of solutions in

which no differentiations occur on the data. These formulas obviously pro-
vide alternate expressions for the solutions also.

We assume now that satisfies the hypotheses imposed on u in
Theorem 4. Let u (x) be the correspondent in 97 of u (x, t). Then from Theo-
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rem 4, (4.5), and (4.9) together with § 3, in particular (3.3), we obtain the
expression

where

and the are the components of the vector

Since by (1.1)
the form

can be written in

0~/~2m2013 1, 0 ~ y ~ ~ 2013 1.
Let Z denote the set of zeros of P (z). Let n (r) be the order of r as

a zero of P (z) and let ~c (r) be the product of all functions (r - ~)n(~), C
complex, ’=f= r. Then we can express 1~P (z) as

where Z « 1 if Z is empty.
Recall the correspondence (4.7) and set

in (5.4). In terms of the foregoing we have the
formulas for 0153  p - q,

not empty,
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and

Z empty.

APPENDIX

PROOF OF LEMMA 2. Let Hand H*, respectively y be the operators
defined + ~-~ 1~~’ Dz v and v - = v.

Let Ik denote the integral operator given by

Set

Then, clearly, y

Set v (y, T) = u (y + c, T), c &#x3E; 0. Since 0, we find simply that

With this we form the identity

Now rearrange (3) into the form
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and integrate with respect to y from o to Y. From (2) and the fact that
[Ix vly=o = 0 for k &#x3E; 0, we find that the left side takes the form

We deduce simply from (1), (2), and (2.2) that for t  To the first and
last terms in (5) --~ 0 as Y-~ 00. The right side of (4) when integrated
with respect to y from 0 to Y is just

Next we integrate the identity ((5) = (6)) with respect to T from 8 to

t - e (t  To) and find that

Letting in (7) gives us

Upon integrating by parts we find from (1), (2), and (2.2) that the right
side in (8) becomes simply
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Now let e - o. Then, on replacing the right side in (8) by (9) and recalling
that v (y, z) - u (y + c, r) (c &#x3E; o), it follows from the hypotheses and the
basic properties of the fundamental solution that

The result then follows from the hypotheses on letting c - o in (10).

PROOF oF LEMMA 4. Set h = Dka g. Then from Lemma 3

It was shown in [13b] for the case m = 2 (the general case being si-

milar) that g is uniformly ka -(- b Holder continuous on any closed subset

of (0, TJ I and also that tc-ka g (t) is bounded in (0, ~’ ]. Thus we see that the
right side in (2.6) is well-defined.

Now consider the function F = F (z) defined by

For fixed t ~ 0 the function F is analytic in Re z ~ - kcc - b. By
restricting z to Re z &#x3E; 0 we can write the second term in (2) as a sum of
two integrals ; one of which can be evaluated. Hence we find that in Re z &#x3E; 0

It follows from (1) and (3) that

The function on the right side of (4) is clearly analytic at least in
Re z &#x3E; - ka. Therefore relation (4) holds also in Re z &#x3E; - ka. Since h is

continuous in (0, T), the conclusion follows upon letting z approach - ka.

5. Annali della Seuola Norm. Sup. - · Pisa.



262

PROOF OF LEMMA 5. Denote by t) the function on which the limit
acts in (2.7). Since

we find upon substituting this into the expression for J (x, t) and integra-
ting by parts that

Let

as

and Then rewrite (1)

After some simple calculations on (2.1) one finds that for

y-odd

y-even.

Let us consider first the case j ~ 0 (mod 2m) : then n = 0. The second
term in (2), by Definition 4, is clearly continuous to x = 0 ; and from (3),
it vanishes there. As to the first term, it is simple to show that it approa-
ches (- 1)m/2 as x 2013~ 0.

For the remaining cases, when j ~ 0 (mod 2m) and, hence, n # 0, we
can carry out the integration in the first term in (2). Then it follows rea-

dily from Definition 4 that the right side in (2) is continuous to x = 0 ;
and, hence, the assertion for these cases is obtained from (3) and Lemma 4.

Note. This work was supported in part by the Office of Naval Research under

Contract No. Nonr - 710 (54).
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