Annali della Scuola Normale Superiore di Pisa Classe di Scienze

IACOPO BARSOTTI

Errata

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze $3^e\,$ série, tome 20, nº 1 (1966), p. 137

http://www.numdam.org/item?id=ASNSP_1966_3_20_1_137_0

© Scuola Normale Superiore, Pisa, 1966, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ERRATA

(altra errata è alla fine del Cap. 5)

- Cap. 1, p. 6, formula 1.6 : leggasi $f_{0}\left(\mathit{Y}_{0}\right)$ in luogo dl $f_{0}\left(\mathit{Y}\right)$
- Cap. 1, p. 11, riga 12: leggasi $\varphi'_{n-i}\left(x_{-i-1}\right.,...$ in luogo di $\varphi'_{n-i}\left(x_{-i-i}\right.,..$
- Cap. 2, p. 22, riga 5 della dim. del 2.8: leggasi $(i!)^{-1} x^i \in U_0$ in luogo di $(i!)^{-1} \in U_0$
- Cap. 2, p. 23, punto 3 della dim. del 2.10: la frase che inizia con « Pongasi » va sostituita con la seguente: Ogni componente di $1-\{x\}$ è divisibile per 1-x; quindi ogni componente di $z_{(i)}=i^{-1}\left(1-\{x\}\right)^i$ ha la stessa proprietà; pertanto, e dato che lim $(1-x)^i=0$, i bivettori $z_{(i)}$ soddisfano uniformemente alla condizione dell'1.5, $i\to\infty$ e ciò prova, per 2.1, che $y\in$ biv R.
- Cap. 3, p. 290, ultima riga del 3.18: prima di «esiste» si aggiunga la frase: e se la $x \to dx$ è continua per ogni $d \in D$,
- Cap. 3, p. 290, riga 3 del 3.20: leggasi d per ogni $y \in R$ in luogo di y per ogni $d \in D$
- Cap. 3, p. 293, dim. del 3.25: leggasi y_i ovunque è scritto x_i ; e leggasi μ^{p-1} , e risp. \mathbf{P}^{p-1} ovunque è scritto μ^p , e risp. \mathbf{P}^p
- Cap. 3, p. 295, ultime due righe, e p. 296, riga 6: leggasi μ^{p-1} in luogo di μ^p , e ${\bf P}^{p-1}$ in luogo di ${\bf P}^p$
- MC, p. 309: si sostituisca la frase nelle ultime tre righe della dim. dell'1.2 con la seguente: Se $a_1 \neq 0$ e $v(a_1) \geq n$, si ripeta il processo su a_1 , ottenendo a_2 , a_3 ,...; se questa successione è infinita, essa tende a 0, e il risultato è provato; se è finita, e per es. $a_l = 0$, il risultato è provato; se invece $a_l \neq 0$ ma $v(a_l) < n$, si ripeta su a_l tutto il processo applicato ad a, ecc., C.V.D..
- MC, p. 311, riga 14 : leggasi $s \le h$ in luogo di $\le h$
- MC, p. 327, riga 7: leggasi dim P dim σM in luogo di dim P dim M
- MC, p. 329, riga 4 della dim. del 3.1: leggasi $Kt^r x$ in luogo di $Tt^r x$
- MC, p. 334, riga 6 del 3.5: leggasi % in luogo di K
- MC, p. 344, riga 2: leggasi = σ in luogo di = 0
- MC, p. 346, riga 6: leggasi $\Sigma_i \zeta_i(y_i \eta)$ in luogo di $\Sigma_i \zeta_i(y \eta)$
- MC, p. 346, penultima riga: leggasi $(y_i \circ \eta)$ in luogo di $y_i \, \eta$
- MC, p. 353, riga 7: leggasi $\sum\limits_{1}^{r}\alpha_{i}\,\mu y_{i}$ in luogo di $\sum\limits_{1}^{r}\alpha\mu y_{i}$
- MC, p. 364, riga 4: leggasi w_i in luogo di $w^{(j)}$
- MC, p. 368, riga 3: aggiungasi la parola «chiuso» dopo la parola «sottoanello»
- MC, p. 371, riga 3 del capoverso « Si noti ... » : leggasi ζ_0 in luogo di ξ_0