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ON THE DOMINANCE OF PARTIAL DIFFERENTIAL
OPERATORS II*(1)

MARTIN SCHECHTER

1. Introduction.

In [19] we began a study of certain types of inequalities for partial
differential operators. In the present paper we continue along these lines
but specialize to particular situations. This specialization allows us to re-

move some of the restrictions of [19] and is directed toward certain appli-
cations. Although our methods are related to those of [19], they are much
simpler. Moreover, the present paper is self contained and is completely
independent of [19].

The fact that solutions of elliptic boundary value problems are smooth
up to the boundary is well known (cf., e. g., [2, 3, 11, 14, 17, 18]). Re-
cently similar results were obtained for hypoelliptic operators (for defini-
tions cf. Section 2). Hormander [7] considered the case

where the operators P(D) and the have constant coefficients. (Here
x~, is the last coordinate in Euclidean n-space.) Assuming that P (D) is
hypoelliptic, he gave a necessary and sufficient condition that every solu-

tion be infinitely differentiable in x.. &#x3E; 0. His method was to study very
carefully the solutions of the ordinary differential equation obtained by

Pervenuto alla Redazione il 10 Dicembre 1963.

(1) The work presented in this paper is supported by the AEC Computing and Ap-
plied Mathematics Center, Courant Institute of Mathematical Sciences, New York Uni-
versity, under Contract AT (30-1)-1480 with the U. S. Atomic Energy Commission.

1. Annali della Scuola Norm. Sup.. Pua.



256

taking Fourier transforms with respect to the remaining coordinates

..., 

Peetre [13] considered the Dirichlet problem

with f infinitely differentiable on x" &#x3E; 0. He assumed that P (x, D) is for-

mally hypoelliptic, i. e., that it is a variable coefficienti operator which for
each x equals a constant coefficient hypoelliptic operator and is equally
strong at each point (for a precise definition cfr., e. g., [8]). He obtains a
sufficient condition that every solution v of (1.3), (1.4) should be infinitely
differentiable in Xn &#x3E; 0. This condition in also sufficient for the estimate

to hold for all solutions, where R (D) is any operator weaker than P (x, D)
and the norm its that of L" (xn ~ 0) (cf. Section 2). In fact his proof of
regularity was accomplished by means of an inequality similar to (1.5).

In this paper we are interested in extending the results of Peetre to

the problem

with f and the fj infinitely differentiable on x. &#x3E; 0 and xn = 0, respec-

tively. We do not assume that is hypoelliptic but allow it to belong
to a slightly larger class. We obtain sufficient conditions for the estimate

to hold for all solutions v of (1.6), (1.7), where ( - &#x3E; is an appropriate norm
on x. = 0. (Actually we prove a family of ineqnalities stronger than (1.8)
(cf. Theorem 2.1).) This inequality enables us to prove that every solution

of (1.6), (1.7) is infinitely differentiable in x,, ~~ 0 (Theorem 5.1).
We mention two observations concerning inequality (1.8).

1. When P (D) is elliptic, every operator of the same or lower order

is weaker than P (D). In this case (1.8) becomes a coerciveness inequality
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(cf. Section 4 or [1, 2, 3, 14, 161). In some instances the norm  . ) may
be slightly stronger than the norm usually employed. However, and this
is essential, inequality (1.8) may hold even though the Qj (D) do not cover
P (D) in the usual sense. The reason for this is that the lower order terms

in the Qj (D) may play a role in determining the validity of (1.8). Examples
where this is the case are given in Section 2. In brief, (1.8) is new even

for elliptic operators.

2. Inequality (1.8) allows one to handle regularity for variable coefficient
operators as well. If P (x, D) is equally strong at all points, any error
obtained by approximating it by a constant coefficient operator can be

estimated by (1.8). This is essentially the method employed in treating
formally hypoelliptic operators (cf. [8, 13]). We shall carry out the details
elsewhere.

We also give another proof of the usual coerciveness inequality for

(1.6), (1.7) when P(D) is elliptic and all the operators are homogeneous.
This proof is much simpler than any presently found in the literature.

In Section 2 we give pertinent definitions and state our main inequal-
ities. Proofs are given in Section 3. In Section 5 we prove our regularity
theorem by means of these results. Our short proof of the usual coerci-

veness inequality is given in Section 4.

2. The Main Results.

Let En denote n-dimensional Euclidean space with generic points
... , zn). We shall find it convenient to set x = ... , y = z,,

and denote points by (x, y). The half spaces y &#x3E; 0 and y &#x3E; 0 are
denoted by ~ and E+, respectively.

Let ~u = ... , ¡.,tn} be a multi-index of non-negative integers with

length _ ,ui + ... + Pn. Let Dj be the operator BliBz; , 1  j  n, and set

We consider a partial differential operator of the form

where the coefficients a, are complex constants. The polynomial correspon-
ding to P (Dae , Dy) is
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where E -== (Et , ... , We shall also employ the notation

We make the following assumptions on P (~, r~~.

Hypothesis 1. There are constants K, and K2 such that

whenever E and I are real and 1$1 ] where I

Hypothesis 2. Let m  q be the highest power of ’YJ in P (E, and let

a (~) denote its coefficient. Then there is a constant such that

f’or all real ~.
We relnark that Hypotheses 1 and 2 are surely satisfied if P is hypo-

elliptic. By definition P is hypoelliptic if

as (~, ’1) ~ oo through real values whenever [ p ) 0. This immediately
implies Hypothesis 1. Hypothesis 2 follows from the well-known observation
by Hormander [6, p. 2391 that in a hypoelliptic operator the coefficient of
the highest power of ’1 is independent of E.

That there are operators satisfying Hypotheses 1 and 2 which are

not hypoelliptic is seen from simple examples. For instance the operator
corresponding to the polynomial

is not hypoelliptic.
For each real vector ~ let ’(1 (~), ... , (E) denote the roots of
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We claim that there is a positive constant c~, depending only on m such that

for I ~ I ~ .g2 . In fact let t7 be any real number and consider the poly-
nomial 0 (t) = + in t. Then

by Hypothesis 1. Let t1, ... , denote the roots of 0 (t). Then there is a

positive constant cm depending only on ~n such that

(cf. Lemma 3.1 of [8]). But tk (ik (E) - n). Setting n = Re Tk (E) we
obtain (2.1).

Since the set ] &#x3E; ~2 is connected for n &#x3E; 2, it follows that the

number of roots Tk (~) with positive imaginary parts is constant in this set

for such n. An operator with this property is said to be of determined type
(cf. Hormander [7, p. 227]). A hypoelliptic operator of determined type is
called prope14ly hypoelliptic (cfr. Peetre [13, p. 337]). One sees from the

reasoning above that in dimensions higher than the second every operator
satisfying Hypothesis 1 is of determined type and hence every hypoelliptic
operator is properly hypoelliptic (cf. also Hormander [7, p. 2271). For

n = 2 we make the additional

Hypothesis 3. P (E, q) is determined type.
Let r be the number of roots with positive imaginary parts (for

I ~ ~ &#x3E; K2). By rearrangement if necessary we assume that

Set

Let there be given r polynomials Qi (E, ~~, ..., Qr (I, q) of degree  r~z

in fj. For each j we resolve Qj (~, r~) ~ P (~, q) into partial fractions :
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and set

We consider the r X r Hermitian matrices

and assume

Hypothesis 4. The set of operators (Qj covers P (D). This means
that ( ) K2, A is non singular a. e. and there is a constant g4
such that

REMARKS. This definition of covering is a generalization of that for
the elliptic case. That A is non-singular is equivalent to saying that the

Qj+ (~, .1) are linearly independent, i. e., that the Qj (~, ~) are linearly inde.
pendent moduto P+(~,i7). The estimate (2.4) says, in a sense, that this

independence is uniform in &#x3E; In the elliptic case (2.4) holds auto-
matically when exists. A condition equivalent to (2.4) is given by
Peetre [13]. He assumed that every linear combination Q of the Qj should
satisfy

Let denote the set of complex valued functions which are

infinitely differentiable in .E+ and vanish for sufficiently large.
For 8 real we employ the family of norms

where u (~, y) is the Fourier transform of v (x, y) with respect to the varia-
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bles xi , ... , 

(~x = ’1 31i + ... + For 8 a non-negative integer one sees easily
that v 1. is equivalent to the sum of tlte L2 (E+) norms of all derivatives

of v (x, y) with respect to xi 7 ... , X’l-l up to order 8. In particular v lo is

equivalent to the L2 (E+) norm of v.
V4’e shall also make use of the scalar products

where zcc is the Fourier transform of vi with respect to x, i ---1, 2, The
corresponding norms are given by

A polynomial R (~, is said to be weaker than P (~, if

for all real E, t7. The corresponding operator R (D) is said to be weaker

than P (1)).
We can now state our main results.

2’HEOREM 2.1. Under Hypotheses 1 4, for each operator weaker

than P ( D) and every positive nutnber b there is a constant C such that

for all v E Co (~E+) all real 8, where tlce aii (~) are the eloinent8 of 

COROLLARY 2.1. Under the gante hypotheses there is a constant d de-

pending only on P and the Qj such that (2.5) be replaced by
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The proofs of these results are given in the next section. An appli-
cation is given in Section 5. In Section 4 we discuss the elliptic case.

We now consider. some illustrations. Assume that P is of second de-

gree in I and that the coefficient of q2 is one. Then

and we take the case

for I E I &#x3E; K2. For the boundary condition we take

where p (e) is a polynomial in E1, ... , One easily checks that

and hence

Condition (2.4) now reduces to

1 sufficiently large. If p is real and the ri are pure imaginary, this
reduces further to

This in turn is valid if there is a constant g such that
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for I E 1 sufficiently large and

for such Otherwise there must be a constant E &#x3E; 1 such that_2

1 large, where the right hand inequality in (2.11) need only be sa-
tisfied when the last expression is positive.

Peetre [13] observed that inequality (2.9) is necessary for an inequality
slightly stronger than (1.5) to hold for Dirichlet boundary conditions. An
example which violates it is

where

This operator is hypoelliptic and hence satisfies Hypotheses 1 and 2.
If p (~) is real and of degree  3, then condition (2.11) is satisfied and hence
we have

where the left hand side represents operators weaker than P (D).
Another example shows how Theorem 2.1 gives new information for

elliptic operators. Take

Then

and (2.9) holds. If we take

one verifies easily that Q (D) does not cover J in the usual sense (cf. Section
4 or [1, 2, 3, 14, 16]). The reason is that the highest order term of Q (D)
is tangential and hence the characteristic polynomial of Q (D) vanishes for
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0 (in fact whenever $, = 0). But nevertheless, Theorem 2.1 applies.
Inequality (2.10) holds trivially and hence we have

One might explain this situation by saying that the boundary condition
(2.12) is not elliptic with respect to the Laplacian but is hypoelliptic with

respect to it (H6rmander [7, p. 245]).

3. Fourier Transform Methods.

We now give the proof of Theorem 2.1..Assume that P($, q) and the

(~1 (~, ’1), ... Q,. (~, ’1) satisfy Hypotheses 1-4 and let any polyno-
mial weaker than P ($, q). For $ ~ g~ it clearly satisfies

(3.1 ) 1 R (~, r~) ~  ($, r~) ~ I  const. 1) 1 .

We consider functions u ($, y) as functions of y with I as a (vector)
parameter. We let Hm denote the completion of (E1) witb respect
to the norm

For a particular u (~, y) E 0000 set

and let D’ be the column vector with components We are going to
show that

for all and real E such that I E I &#x3E; K2 .
a simpler inequality holds. In fact we have
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where C is an upper bound for the coefficients of P ($, Dy) on the set
1 $  K2 (recall that K3 is an upper bound for a ()’-i, where a ($)  is the

coefficient of ’1}m in P (I, ’1})). Thus

Employing the well known inequality (cfr. [4, 11])

and taking a  1 we have
2

Thus

co - 1
for all 00 (.E+) I  K2 where K" depends only on bounds
for I a () 1-1 and the coefficients of and I  K2.

Once (3.2) is proved we see, in view of (3.3), that
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This immediately implies Theorem 2.1. For let v (x, y) be any function
in Co and let u (~, y) he its Fourier transform with respect to xl , ...

... , x"_i . Substituting into (3.4) we obtain the desired result.
The proof of Theorem 2.1 can therefore be made to depend on (3.2).

We now prove (3.2) by a method due to Peetre [ 13 J.
Let u(~,y) be any function in The trick is to find an exten-

sion u1 (~, y) of u to such that

] ~~ ~ where C is independent of u and ~. For then by (3.1) and
Parseval’s identity

where

denotes the Fourier transform with respect to y. This gives (3.2) when com-
bined with (3.5).

Let u((E, y) be an extension of u (~, y) to Hm (E1), i. e. a function in
which equals u on Define
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and set

We have

and hence by Parseval’s relation

The problem is now reduced to proving

where the constant C is not permitted to depend upon u, U1 or e.
In proving (3.6) we shall employ the two identities

holding for any polynomial Q (E, ’1) of degree in q, where

We note that the second relation (3.8) follows from the first and the

inversion formula for Fourier transforms:
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In fact

since Q = Q+ -~- Q-.
In order to prove (3.7) we define u ~~, y) to be zero for y  0 and ob-

serve that

which is easily obtained by integration by parts. Secondly, we note that
when h (~, y) is discontinuous, the left hand side of (3.9) should be replaced

~y "~ ~ (~ ~ +) + ~ (~ ~ 2013)]’ By and y = 0 we have2 m

where the integral is taken in the Cauchy principal value sense.
Set

Then by (3.10)

Expanding into partial fractions we have (2)

(2) For simplicity we assume that the roots ’rk (~) are simple. The reader will have
no difficult,y filling in the details for the general case.
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and note that

Hence

Substituting the above expressions in the left hand side of (3.7) we
obtain

where we have employed (3.11). This gives (3.7).
-

Once (3.7) and (3.8) are known, we proceed as follows. Write g in the
form

where the coefficients Aj depend on ~ while 1p satisfies

We are going to show that we may always choose ul so that = 0. As-
suming this for the moment, we proceed. By (3.8)
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But by (3.12)

and hence

where is the inverse of A. This gives

where U+ is the column vector with components Uj+. (We have employed
the fact that A is Hermitian). This is almost what we want. In fact it gives
(3.2) with U replaced by U +. Of course the Qj+ automatically satisfy Hy-
pothesis 4 if exists.

A simple argument now gives us the form we desire. Set U- = U- U +.
Then

The idea is to estimate the unwanted expression U-* A-’ IT- in terms of
N ~

f. This may be done as follows. Write f in the form

where

and set f, = f - 0. Then
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where y is the column vector with components y; . Now in view of Hypothesis 4

We now merely observe that By = 1I- since

by (3.7). Hence

This, combined with (3.14) gives the final result.
It therefore remains only to show that we may choose u1 in such a

way that = 0. We begin by taking ei in Co (E1). In this case g is in-

finitely difierentiable in y  0 and vanishes for - y large. One then veri-
fies easily that 9 is bounded in 1m r¡ &#x3E; 0 and

The same is therefore true for the corresponding ~. A simple contour inte-
gration shows that

But every polynomial Q of degree in q can be expressed in the form

where the Cj depend only on ~. In particular this is true for Q = 
1  lc  r. Hence by (3.13)

2. Anriadi della Scuola Norm. Pisa.
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Thus y (E, «k) = 0 for each of the roots with positive imaginary parts. This
shows that

is bounded in Im q &#x3E; 0. Moreover, w is in since

and (1 + ~2)m ~ P y2 is bounded (cf. [20 J). Hence by the Paley-Wiener theo-
rem (cf. [12, p. vanishes for y &#x3E; 0. Since

P (~, Dy) w equals Setting 2ci = ul - w, we see that u’ is an extension

of it to Hm (E1). In addition g’ = P (~, Dy) u’ - f = g - 11’ and we see

that ul has the desired properties. This completes the proof of Theorem 2.1.

PROOF OF COROLLARY 2.1. We merely let d be any exponent such that

where I is the identity matrix. This immediately gives (2.6).

4. The Elli ptic Case.

Coerciveness inequalities for elliptic operators have proved to be very
useful tools in the study of boundary value problems and other investiga-
tions (cf., e. g., [2, 3, 9, 14, 17, 18]).’ Such inequalities for various situations
have been proved by several authors (cf., e. g., [1, 2, 3, 14, 16]). In the
case of L2 estimates for one operator, the usual method is to reduce the

problem to showing that

holds for all v E Co (E+) under the following assumptions :
a) P (~, q) and the Qj (~, q) are homogeneous polynomials of degree

m and mj  1n, respectively.
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b) P (~, is elliptic, i. e., there are no real satisfying ] $ ]2 + q2 ~ 0
and P (~, q) = 0.

c) P (E, q) is properly elliptic, i. e., is of determined type. Thus m is
even and r ~ w/2.

d) The Qj (D) cover P (D), i. e., they are linearly independent mo-
dulo P+ .

e) R (~, q) is any homogeneous polynomial of degree m.
Actually, assumption c) is needed only for n - 2. A simple argument

shows that every elliptic operator is properly elliptic in dimensions higher
than the second (cf. [10, 2]).

The reduction of the problem to (4.1) is standard and easily carried
out; the major difficulty is in proving (4.1).

Of course the inequality (4.1) is merely a special case of (2.6) and fol-
lows immediately from Theorem 2.1. However, when one is concerned only
with proving (4.1), the argument can be made even simpler than that of

, the last section. The proof given below is much simpler than any presently
found in the literature. The only result of Section 3 which we shall employ
is formula (3.7) (actually even this is not needed).

We first note that the function R (~, .1) / P ($, il) is continuous on the

surface j (2 + q2 = 1 in B". Hence there is a constant .R5 such that

for all such ~, -1. By homogeneity this extends to such that

~~~~+~l2$0.
Secondly we observe that by multiplying each Qj ($, ~) by an appro-

priate power , we may assume that each Qj (~, q) is homogeneous (1)
of degree 1n - 1. Resolving into partial fractions we have (4)

where

(3) The Qj may no longer be polynomials in the ~y, but this does not affeet the ar-
gnment.

(4) Cf. footnote 2.
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One easily verifies from the homogeneity of P (~, q) that each root

(~) is homogeneous in $ of degree one. It follows, therefore, that the same
is true of each ek ($). Likewise each (E) is homogeneous in 8 of degree
zero. In particular, it follows that there are constants K. and 87 such that

Let u (~, y) be the Fourier transform of v (x, y) with respect to the va-
riables ..., and define it to be zero for y  0. As before we con-

sider u (, y) as a function of y with E a parameter. We define f as in
Section 3. A simple integration by parts gives

where

(Recall that f is the Fourier transform of f with respect to y and Pk =
= P/ (q - Tk)). Since

we have by (4.5)

and hence

Thus by Parseval’s formula and (4.4)
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Since Im Tk  0 for r  k  m we have by (3.7)

Hence by (4.4) and Schwarz’s inequality

Therefore (4.6) becomes

Next we observe that there is no complex vector w = (Wi’ ... , ror) =t= 0
such that

For otherwise there would be a complex vector A = (Ål , .. , ~ 0 such that

and hence

showing is a multiple of P+, contradicting assumption d). Thus
the expression

r

is positive on the compact set I I =1. · Hence by the ho-
1

mogeneity properties of the qjk we have
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ior and E. Since

ive have by (4.7) and (4.9)

Nov by another application of (3.7)

and hence

One easily checks that the expression

is homogeneous in ~ of degree zero and hence is bounded by a constant
for all real E. Thus

Combining (4.10) and (4.11) and employing the triangle inequality we finally
obtain

If we now integrate with respect to E we obtain (4.1). This completes the
proof.
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5. Regularity.

The power of Theorem 2.1 is in its ability to prove regularity up to

the boundary of solutions of equations with variable coefficients. We shall
save a detailed discussion of this for a future publication. At the moment
vie shall content ourselves with proving regularity of solutions of constant

coefficient equations. This will illustrate the ideas without getting involved
in technical difficulties.

Let P (D) and Qj (D), 1  j  r, be given constant coefficient operators
satisfying Hypotheses 1.4 of Section 2. For the sake of simplicity we shall
even assume that Hypothesis 2 is replaced by

Hypothesis 2’. The coefficient of the highest pover of ’YJ in P (~, ’1) is a

constant.

We shall consider solutions v (x, y) of

in

on

where is considered as the hyperplane y = 0 in EU. For each integer
k &#x3E; 0 let C~’ (.E+) denote the set of functions having derivatives up to order
lc continuous in For each real s we let denote the completion
C§° (E+) with respect to the norm [ . Is. Clearly each T~ (E+) is a Hilbert

space.

Let q be the highest order of the operators P (D) and the We

have

THEOREM 5.1. A88u.me that f E C~ ( li’+~ and that If
V E Cq (EI{.) f1 T ° (E+) is a solution of (5.1), (5.2), then v is infinitely 

E+ ..
In proving Theorem 5.1 we shall find it convenient to employ Frie-

drichs’ mollifters [5] with respect to the variables X1, ... , 31n-l. Let j (x) be

any non-negative function in which vanishes for I x I ~ 1 and
such that

Set
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and

for any function w E L2 (E’~-~). Since

we see that J, w approaches w as e -~ 0 uniformly on any compact set where
w is continuous.

We next note that for v E T8 (E+)

This follows from the fact that the Fourier transform of J, v is

times the Fourier transform of v and

The eame reasoning shows that for v E T ° (Efl) and each fixed e &#x3E; 0 the
function J, v is in T’ for every B. 

+

Our main step in proving Theorem 5.1 is to establish

5.1. Tlnder the hypotheses of Theorem 5.1 for each s is a

constant K such that

for all - &#x3E; 0, where m is the order of P (D) with ’respect to y.
We assume Lemma 5.1 for the moment and show how it implies The-

orem 5.1. Note that the constant .~ depends on v and 8 but not on e.
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We first make use of the Sobolev type inequality

holding for all v E 01 fl Tt (Ell) whenever t &#x3E; (n - 1)/2. This follows

from the fact that

where u (~, y) is the Fourier transform of v (x, y) with respect to x. Thus

and

Since

and

(5.5) follows immediately.
Applying (5.5) to (5.4) for large s we have

I + (n - 1)/2  s, where .v: denotes differentiation with respect to
the variables x only. We shall refer to it as an x-derivative. We see that

the family of functions ( Ja v ) has bounded x-derivatives of orders  8 -

- (n -1)/2 in E+n. Hence for each fixed y and each compact subset 0 of
En-1 , the x-derivatives of orders  8 - (n -1)/2 -1 are equicontinuous.
Thus there is a subfamily such that all x-derivatives converge uniformly on
0. Since T, v converges uniformly to v on 0, it follows that v has x-deri-

vatives of orders  8 - (n -1)/2 -1 on 45. Since s and ø were arbitrary,
we see that v is infinitely differentiable with respect to x in 2~ .
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It remains to consider derivatives with respect to y. By applying the
same reasoning to derivatives D~ v with k  m, we see that they too are

infinitely differentiable vith respect to x. Moreover, (5.1) can be written in
the form

where c is the constant coefficient mentioned in Hypothesis 2’. From (5.6)
we see that is infinitely differentiable with respect to the x variables.
Differentiating (5.6) with respect to y, we see that the same is true of

.D~’~ v. Continuing in this way we see that each derivative exists and

is infinitely differentiable with respect to x. This completes the proof of

Theorem 5.1.

It now remains only to prove Lemma 5.1. By (2.6) and (5.3) we have

(1-lere we have taken 1 = q and made use of the f’act that J, comnintes

with diSerentiation). We note that is veaker than q)
and hence we may take R (E, q) = 1 in (5.7). This gives

Since v E TO (B 11), we have

If we now reapply (5.8) for the values s = 2q, 3q,..., we obtain

for each real 8. We note next that P (~, is weaker than P (~, ~)
and is of the form
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where Pt (~) is a polyuomial in ~ only. By (5.7) and (5.9) we see that

for each real s. But

and hence another application of (5.9) gives

for each real s. Repeating the process m times we eventually come to (5.4).
This completes the proof.

Added in proof. The methods of this paper can be applied to systems
of equations as well. Moreover, Hypothesis 1 can be relaxed considerably.
Details will be given in a future publication.
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