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ON THE UNION OF TWO GENERALIZED MANTFOLDS

by PAuL A. WHITE (Los Angeles)

The author has made a study in his paper (3) of additive set proper-
ties. An i-dimensional property pi of a space was called additive if it sa
tisfied the following theorem.

Theorem A. If M, and M, each have p'* and are compact subsets of
the compact space M, U My, and if M, M, has pi—1, then M, U M, has p‘.
(The syml_)ois «U» and « N » denote the set theoretic « union » and « inter
section », respectively; thus « 4 » can be reserved for the group operation).

In. this paper it is shown that the properties «to be a generalized
n manifold with boundary » and «to be an orientable generalized n-manifold
with boundary » (see definitions 5 and 7) satisfy a modified form of the ad
ditive property.

We shall assume that all sets to be considered are subsets of a fixed
compact Hausdorff space 8. Since no metric is assumed,: we shall use Cech
cycles (chains) with coefficients in an arbitrary field @ instead-of Vietoris
cycles (with mod 2 coefficients) as in (3). A knowledge of the Cech theory
will be assumed since most of the general definitions and results needed
are discussed in chapter 8 of (2) and the specialized ideas in sections 4
and 6 of E. G. Begle’s paper (1). The boundary operator will be denoted
by « 9 ». ‘

Definition 1. The closed set A 8 is i-lc (locally connected) at the point
p€ A if for each open set P of s§ contuining p, there exists an open set
@ of 8 such that p€ Qc P and such that every i-dimensional cycle on
QNnAis ~0 on PN A. (A Cech cycle 2* is «on» a set if the nucleus of
each cell of each coordinate cycle of 2" intersects the set).

The following definition, which is sometimes more convenient to use, is
equivalent to definition 1.

Definition 1'. The closed set A C § is i-le at p € A if corresponding to
each open set P of § containing p and covering 9 of N by open sets,
there exists an open set @ such that p € QC P, and a covering % of § by
open sets such that 2 is a refinement of 2/ (written 9 > ) and such that
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if 2¢(2)) is any cycle on QN 4, then ngzg 2 (@)~0 on QN A (n‘gz,g = a sim-
plicial projection from % into 2/).

Definition 1”. The closed set Ac § is i-le if it is i-lc at each point
pEA. N
Definition 1", The closed set A c § is le” if it is i-l¢ for all ¢ (0<i< ).

Definition 2. The closed set Ac 8 is simply-i connecled if each icycle
on A is ~9 on A. '

Theorem 1. The property i-le is additive for each i.

Corallary 1. The property le* is additive.

Theorem 2. The simple-i-connectedness property is additive for ecach i.

These theorems were proved in (3) with Vietoris cycles; they are still
trye in our present more general situation, but the proofs are omitted since
they differ only in the mechanical details and not in the essential idea
from the first proofs. Similar mechanical details will occur in all the follo-
wing proofs, and depend on certain lemmas that appear in R. L. Wilder’s
« Colloquium » (4). I will state them here for reference.

Lemma 1. If L is a closed subset of S and 9% is a covering of 8 by
open sets, then therve exists a covering 2, a refinement of 2, such that if the
nucleus of;t cell of Y meets both L and S — L, thcn it meets F (L), the boun-
dary of L.

Lemma 2. If 2 is a cycle mod K on M, then the collection (g 2* ()} is
an (i — 1)-cycle on K, which we denote by 0 2z'. Evidently 02'~0 on M.

Lemma 3. If 2 is a cycle on K such that 22~ 0 on M, then there ewists
a ¢ycle z¢t1 mod K on M such that 6 22+t ~z' on K.

Lemma 4. If 2 is a cycle mod K on M such that 02°~0 on M, then
there exists a cycle y* on M such that zi ~y' mod K.

Lemma 8. If 2z is a cycle mod K such that zi~0 mod M, then there
exists a cycle y* mod K on M such that 2'~y' mod K. '

‘We shall need slightly stronger forms of lemma 1 which we now state
and prove.

Lemma Y. If L is a closed subset of a closed subset M of S and U is
a covering of N by open 3¢t8, then there exists a covering 2 of 8 by open sets,
a refinement of %, such that if the nucles of a cell'of Y meets both L and
M — L then it meets Fy (L) = boundary of L with respect to M.

Proof. Let 2/, be the subcollection of 2/ consisting of sets that meet
M, then % = {U, N M} for all U €%, is a covering of M by sets open
relative to M. By lemma 1 there exists a covering 27 of M with sets
open relative to M such that 2] is a refinement of 2/ and such that if a
cell of 9 meets both L and M — L, it will meet the boundary of L rela-
tive to M, i.e. Fy (L). Corresponding to each Vi € 2] there exists an open
set ¥V of S such that V' M= Vi, also a set U, €2, such that
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V1C U,NMcU,. If we let V,=1U, NV, then Vic V,c U,; thus
P, ={V,} is a covering of M by open sets of 8 that is a refinement of
%, . Let %, U be- the sets that meet 8 — M and let ¥, = [(S—— M)n Uy}
for all U, € %,. then @, is a covering of 8§ — M by open sets of § that
is a refinement of %, . Let ¥ =, U%,, then' 2 is a covering of § by
open sets that is a refinement of 2/ and clearly has the property that if a
cell meets both L and M — L, then it meets Fp (L)

Lemma 1”. If A is a closed, and B an arbitrary subset of 8, and % is a
covering of S, then there éxists a covering %, « vefinement of U, such that if
the nucleus of a cell of 2 meets both A and B, then it meets A (} B or, mo-
re specifically, if (= AU B ‘then it meets Fc(-l)C AN B.

Proof. let C=AUB=A4U{Bn4)U[BN (4 — BN A))). If a cell .
is on A and B 4, the conclusion is already satisfied. If a cell is on A
and B n4— Bn‘A)]—- ¢ — A4 then it is on F¢(A) by lemma 1 (lf the
same choice of 2 is made).

Definition 3. The closed set Ac S is i-cole (co-locally connected) at
p € A, if for every open set I’ of § containing p there exists an open set
Q of § such that p € Qc P and such that any i-cycle on A mod (S—P)n A
is ~0 mod (8 — Q)N A on A. This definition is eqmvulent to the follo-
wing one.

Definition 8'. The closed set A 8 is icolc at p € A if corresponding
to each open set P of § containing p and covering 2% of 8 by open sets,
there exists an open set ¢ such that p € QC P and a covering 2 of 8 by
open sets sach that @ > 2/ and such that if 28 (?) is any cycle on A mod
(S— P)n A then an 2 (P)~0 on /A mod (§— N 4. -

Definition 3", The olosed set A is i-cole if it is icole ab eacl P € A.

Definition 3”’. The closed set A is said to be le, if it is i cole for all

10 i<a) p

"‘Theorem 3. The property i-colc is additive for each i.

Proof. Let M, , My, and M = M, U M, be compact subsets of the compact
space 8, where M, and M, are i-colc, and M, = M, | M, is (¢ —1)-cole. Consi-
der pe M, UM,. If pe M, — M,,, we can suppose the open set P of defini-
tion 3’ is chosen such that P M, = 0. The i-cole property for M, at p now
implies that M is i-colc at p. Similarly if p € My — M,,, the i-colc for M, at p
implies that M is i-colc at p. Finally consider » point p € M,,, an open set P
such that p € P and a covering % of S by open sets. Let @ be chosen accor-
ding to definition 3 for the (i — 1)cole property of M,, such that any
(i — 1)-cycle on M, mod (8§ — P) N M, is ~ 0 mod (8§ — QN My on M,,.,
By the i-cole property for M, and M, according to definition 3’, we can
choose open sets R, and R, and coverings 2, and %, such that pER;C Q,
;> 9% and such that if 2 (2)) 18 an i-cycle on M mod (8 — @) n Mlz then

.
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n%j 2 (@)~0 mod (S— Rj)N M; on M; (j=1,2). Let R be an open set
such that p € RC R;jc @, and let 2 be a refinement of 2/; (j = 1,2). By
lemma 1” we can suppose that 2 is chosen with the property that if a
cell of @ is on both M, and M,, itis on M,,. By applying lemma 1" again
we can require that 2 has the additional property that if one of its cells
intersects both (8§ — P)n M, and (S — P)N M,, it intersects (§ — P) M,, .
Finally we can suppose 2 is a retinement .of 2/ with the property that the
projection into 2/ of amny cycle on M mod (8 — P)n M is the coordinate of
a Cech tycle-on M mod (8 — P)N M. (The existence of such a refinement
for any covering 2/ is established in Wilder’s « Colloquium »). Now consi-
der any i-cycle ;‘(52)) on M mod (§—I)n (M, UM,). By our choice of 2,

'ng)f 2 (%) is the coordinate in 2/ of a Cech cycle z' = {2 (20)} on M mod

(S8—PnNM; i e n?))f 2 (V)=2 (%). We can write for each 20, z¢(20) =
= 21 (W)+ 2} (20) where 2§ (20)is the part of 2 (20) on M, (i. e. formed
from cells on M; and included in z; (20) with the same coefticients that
they have in 2¢ (20)) and 2} (20)=2 (20) — #i (20) ; hence 2} (20) is on M — M, C
c M,. By hypothesis 9 2¢ (20) = 92i (20) +- 8 2} (20)=2*"1(20) is a cycle on
(8 — P) N M. Let 271 (20) = 2i~1 (20) 4 2i~1 (20) where 2i~! (20) is the part
of 2i-1(20) on (S — Py M, and 2—1(2) = 2~ (20) — 25~ (20) ; hence 2,'(20)
is on 8 —P) M — M)c(S— P)nM,. Finally let pi—! (2)=

— 04 (W) —#1 (W) = — 92, (W) 41 (W). Sinee  § zi (W) — 21 (20) is
on M, and — 92 (W)+ 2 (20)is on M — M,, it follows that y~' (20)
is on M,,. Furthermore 6 yi~' (W)= — §2i~1 (W) =02""(20); thus

6 yi—1(20) is on both (8§ — ) M, and (8§ — P)N (M — M,) and is, there-
fore, on (8 — P) M,,. We have, thus, shown that y*=' (20) is a cycle on
M,, mod (8§ — I) M, for each 20, but we have not yet shown that
yi = {y* ()} is a relative Cech cycle. To this end let 20, > 20, , then since
# is a Cech cycle on M mod (8 — P) ) M, there exists a chain Cit! (20,)
on M and a chain 2 (20,) on (8 — ) A M such that (1) 8 O+ (W,) =
= :z‘zz' (A0,) — ¢ (20,) + a*(20,) (n} = a simplicial projection from 20, into
0,). Let Ci+1(20,) = 0i+1 (20,) + Oi+! (20,), where Cit!(20,) is the part of
O+ (20,) on M, , and Ci+1(20,) = O+ (W,) — O+ (0,) is on M — M, cM,.
Similarly let a' (20,) = «* (20,) 4- i (20,) where i (20,) is the part of xt (20,)
on (§—P)n M, and x¥20,)=x*20,)—=i(20,)is on (§—P)N(M— M) C(8—P) C M,
By taking boundaries in (1) we obtain 0 = =z} § 2* (20,) — 9 #* (20,) + o a (20,)
= 7l 2871 (W) — 21 (20,) + 6 &' (20,). By expanding and atlgebraic. manipu-
lation, this becomes (2) — 7} 2i=1(20,) 4- 211 (20,) — 8 a} (W,) ==, 25 1(W,)—
— 2i-1(20,) + 8 «} (20,) which we will denote by y*~' (20,). Since the left
hand side is on (8 — P) M, and the vight hand side is on (8 — ') N My,
we conclude that each side, i.e. yi—! (20,),is on (8§ — P)N M,,. If we expand
and rearrange (1), we obtain & Cit'(90,) — ) 2} (20,) + 28 (20,) — @i (20,) =
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= — 8 Ci*" (W) + ! 2} (W) —2i (20,) + x (20,) where the left hand side is
on M, and the right hand side is on M,; hence both sides are on M,,.
That % is a Cech cycle mod (8§ — P)ny M,, on M,, now follows since
0 (01 (W) — 7l 28 (W,) 4 2F (W) — a? (W) = — 7l 0 2 (2Wy) + 8 28 (20,) —
— 8} (20,) which by (2) = — n!d 2! (W,)+ 928 (2,) 4 =) 27 (20,) —
— 21 (20) + i1 (A0) =y (W) — ] 1 @A0) +g120,); ie pIW,) ~
~ a} y=(2s) mod (8 — P)n M, on M,,. By the choice of @, we conclude
that y* ~ 0 mod (8 — Q)N M5 on My; i.e. for every covering 20, 6 €¢ (20) =
= =1 (20) — y* -1 (20) where »*~1(20) is a chain on (8 — @) M,, and € (20)
is a chain on M. Now let yi(20)=2zi (W)~ C'(20) and yi (W)=23(20) —
— O (20), then y' (20) is a cycle on, M; mod (8 — QNM; (j=1,2) for
873 (A0) = 02t () + (— 1§71 6 CF@A) = (— 1P~ i~ @) + 21 (0)+
+ (— 1)1 '—' (20) — (— 1)1 yi=1(20) = 24~ '(‘2&’2)—}-(—- 1)1 3 -Y(20) which is
on (8 — ¢) n My, (j=12). In pmtloular n; () is a ecycle on M; mod
(8 — Q)N M;; therefore n?)f 7; () ~ 0 mod (8§ — K)n M; by the choice of
R and 2. Since 2 (?) = zi (@) + 2} (?) = y} (@) + 7} (@), we conclude
that n‘é}f 2 ()~ 0 mod (§ — R) M on M. Finally since 2 is a Cech eycle
mod (§—R)N M on M, ngf 2 @) = 2 (%)~ “995 2 (@)mod (8§ — P) M on
M; hence ,,3)[ 2 (@)~0mod (S— KN M on M, which by definition 3’
shows that A is i-colc at p.

Corollary 3'. The property le, is additire.

The followiﬁg is a slightly generalized form of the definition of a local
Betti number (see [l] It is equivalent to the ordinary definition when
B =0. '

Definition 4. If B and A are closed subsets of 8, then we shall say
that the local Betti number of A at p mod B is the finite positive integer k
(denoted by R, (p , A, B)), if &k is the smallest positive integer with the
property that ‘corresponding to any open set !’ such that p € P there‘exists
an open set ¢ such that p € Qc P uand such that if z%,2%,. 2, are
cycles on A mod (8§ — I’) U B, then there exists integers m, ,mg, .oy Mp g
not all 0 such that m 2" + m, 2" ...+ m ,~0 mod (§S—@QUB
on A. .

This is equivalent to the following definition.

Definition 4'. If B and A are closed subsets of 8, then E,(p,A,B)=Fk,
if k is the smallest positive integer with the property that corresponding
to any open set I’ with p € I’ and covering % of § by open sets, there
exists an open set @ and covering 2 of 8 by open sets such that pe Qc P,
Y > % and such that if (D), 25 (D), .02 41 (?) are cyeles on A mod
(8§ — P)U B, then there ex1st integers m,,mz,...,mHl not all 0 such
that m, ng)f )+ mpyy n‘évfz:,’c‘+l (@) ~0 mod (§S— @)U B on A.

k+



236 Paur A. Wuirk : On the Union of two Generalized Manifolds

In some of the following theorems the following assumptions and no-
tations will be assumed.

As-usual M, , M,, and M = M, U M, will be compact subsets of the
compact space S. Also let F,=F(M,), F,= F(M,), F = I (M), and
F,=F (Myyn F (M), and assume that Fy (M) = Fuyu (My) = M,, where
F(A) and Fy (A) are boundaries of A relative to § and M, resp. Note
that M, F, N F, and that F,, = M, F. The latter follows since

Fp=[Msn N~ N~ Myn[MAS— M|, but Mizc M implies 8§ — M c
8 — M,2, therefore F,, = M,,N S — M N M = M,, n F. For reference we
will call these assumptions A.

Theorem 4. Under the assumptions A i/ R, (p, M;, F) >0 jfor all
p € M; (j=1,2) and R, . (p, M,,F,) <1 for all p€ Mg, then R (p,M,L >0
Jor au p € M. .

. Proof. If p ¢ M,,, R,(p,M;, Ij) >0 implies R, (p,M, F) > 0.
If p€ M, then let P be an 'arbitrary open set of S Dp. Since
Ro_(p, My, Fy) <1, (1) there exists an open set @ such that p eEQc P
and such that for any two Cech cycles z;~", z7~! mod (8 —-P)n MU Fyy
there exist integers m, , m, not both zero such that ml z'l'—' + m, 2} ~ 0
mod [(8 — Q)N My U Fyy. Also since R, (p, M;, I'j) > 0 (2) there ‘exists
an open set P Dp such that for any open set R sueh that p€ RC D,
there exist cycles 2! on M; mod [(§ - PYA M;] U F;, but such that
MRy ~ 0 mod [(8 — R)N ;] (where m is an integer) implies m = 0 (j=1,2).
Let P be the open set of (2), let Q be the open set from (1) corresponding
to P, let R be any arbitrary (but fixed) open set such that p € Rc Qc P,
and let 2 be the corresponding cycles from (2). By lemma 1” we can con-
sider that our cycles only have coordinates on a confinal family of cove-
rings with the property that if a cell is on [(S — P)n M;} U F awd on M,,,
then. it is pn {[8 — P)n M;) U F} 0 My = [(8 — P) ) M3] U'Fy,y and if a
cell is on M, and M,, it is on M,, c F, N F,. By lemma 2, {9 2} (%)} =
=zl is a Cech cycle on [S - P)n MjJU Fj (j = 1,2). For each cove-
ring 2% of S let z"—' (%) = - 1 + A () Whele w;'— (2) is the pirt
of 27~1 (%) on [(S — PN MlU (F n ) .md y"—‘ () = 2}~ (W) — @y (2.
Since Fjc FU M, and y““ (%) is not on F, it must be on M,y. Fur-
thermore 0 = 0 z;'”‘ (U) =0 x”“ )+ o y"—' (%), where the first term
is on [(8 — P)nMj] UF aud the second is on M, ; therefore each is on
(8 — P)n M]UFy, . In particular yr— V() is a eycle on M,, mod
[(8—P)n M| U Fyy . To show yi~! =~{y" -1 (2)} is a Cech cycle, consider a
covering Q7> 2f. Since z;'—’ is a Cech cycle, there exists a chain ()" (%)
on [(8 — P)n i;] U.F; such that ¢ €7 (U) = n%)f 2! (@) — 7 ~1{9f). As in
the above argument, let O} (%) = Aj (%) + B} (¥) where A7 () is on
[(8 — P)n M;]U F and Bj (%) is on M,,. This gives 0A} () + 0B} (¥)=
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= 34)’ m;“l @) + n?pf yj’.‘*‘ @) - =7 (W) — y;.'—' (2%). It follows as before
that 8 B;.‘ (%) = ?5 y}ul @) — y;*l @) + a chain on [(8—P)N Myp]U Fyy;
hence n?z)f v @) ~ yp! (2) on M, mod [(S§ — P)) Myo] U Fyp. This shows
that y7~! is a Cech cycle on M, mod (8 — )N Ml U Fyyy (J = 1,2)
There exist integers m, and m, not both zero such that m yrt - my gy~ 0
mod [(8 — Q)N M,,] U F,, and let us suppose that m, 5= 0 for convenience.
This implies the existence for each 2/ of a chain C* () on M, and a
chain y"~1 (%) on [(§ — QN M;]U Fy, such that 6 0" (%) = m, y*~1 (¥)+
+ my yi = (W) - ). Let z* (%)= m, 2" (%) + m, 2} (W) — C" (%),
then 9z%)=m, a?—"(2)+m, a1 () —y W) which is on [(S—@Q)NM]U F.
By our choice of R and m, 3= 0, we know that m, 2%~1 + 0 mod (s -
— R)n M,JU F,, i. e. there exists a covering ¥ such that m, 21 () ~ 0
mod [(8§ — R)n M,]U F,. Now consider any covering 20 > @, then for any
integer m == 0 we have nJ,mz" (W) =m m, n% 2" (20)+m m, :rz%)‘,) 23(20) —
—m n% ¢ (20).' It follows that n%)g mz" (20) ~ 0 mod [(S — R)n M]U F, for
otherwise there exist chains C"+' (@) of M and y* (?) of (S — R) N MIUF
such that oC*+!' ()= mm, n% " (20) 4 m m, n% 2 (20) —m n% o0 -y™(D).
Let 0"+l (@)= "+ (?) + 0;‘4" (@) where O}*' (D) is on M, and Oyt (?) =
= "t (Q) — OrH1(2) is on M, and let y* () =y} @) + 7} (?) where
y @) is on [(8 — BN MJU(FN M) (8 — B)n MU Fy aid o3 (P) =
= 9" (@) — y* (). 1t follows that ¢ O}+!' (2) — m m, n% (W) — 9y (V)=
— a0t () -+ m m, n%’() 2y (W) —m n%)() o™ (20) 4 y% (?) where the left side
is on M, and the right side is on My; thus both sides are on M, C F,.
If we denote this chain by y", (?), then we have a0t () =m m, n% 2H(20)+
+ 7 (@) + 9}, (@); thus maw, nd, 2} (A0)~0 on M, mod [(§—W)n M,|UF,.
Since 2" is a relative Cech cycle, ngy &} (20) ~ 2* (@) on My mod [(S—P)n
N M,]U F, ; therefore mm 2} ()~ 0 mod [(8 — R)n M| UF, which implies
m m, = 0, a contradiction since both m and m, 5= 0. This concludes the
proof that n%mz” (Q0) ~ 0 on M mod [(8 — R)NM]U F for any integer
m = 0. We have, thus, found an open set @ Dp and a covering ¥ of 8§ such
that for any Rc @ and covering 20 > %, there exists a cyele 2" (20) on M
mod {(8—@)n M] U I such that n% m2*(W)~ 0 on M mod [(S—R)n M|UF
for all integers m == 0. This is the statement of the mnegative of
Ry (p, M, F)= 0 according to 4'; hence Ru(p,M,F)>0.

Theorem 5. Under assumptions A, if R,(p,M;, F) <1 for all p€M;
(j=1,2), R, (p, My, Fip) <1 and R, (p, Mj,Min¥)=0 forall pe M,
then R,(p, M, )< 1 for all pe M.

Proof. According to definition 4’ we must show that for any open set
P Dp and covering %, there exists an open set R such that p€¢ Rc P and

cqvering P> 9 such that if ';1‘(02)) and ;; () are cycles on ‘M mod

6. Annali della Scuola Norm. Sup. - Pisa.
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[(8— P)n M]U F, then there exists integers m, and m, not both 0 such that
m, naqg;’n @) + m, n%:” (@)~ 0 on Mmod (S—R)NMJUF. If p¢ M,,, then
R.(p,Mj, F;)<1 implies R,(p, M,F)<1.1f pe M;,, let P be arbitrary
and choose @ such that p € Qc P according to definition 4 of Ry (p, M.
F,,) <1 such that for any two (n— 1) — dimensional Cech cycles on
M, mod [(8 — P)n M,,]U F,,, there exists a mnon trivial linear combina
tion that is ~0 on M, mod [(8 - Q)N M,|N F,. By definition 4’ of
Ry (p,Mj, M F, =0, we can choose an open set R such that pe R c @
and a covering 2 that is a narmal refinement of 2 with respect to
cycles mod [(§ P)NM]JUF and such that if oy (‘2)) is a cycle mod
[(8 — @ n M;]U (F n M), then n‘)f 0“ @)~ 0 mod [(b — E)n M;JUFn M,)).
Furthermore we shall ussume by lemma 1” that all cycles are defined only
on g confinal family of coverings with the property that amny cell on M,
and M, ls also on My, and that any cell on [(8§ — P)n M,JU(Fn M,) und
n (8 — P)n My]U(F N My) is also on [(8 — P)n M5l U Iy .

First consider a cycle z* (?) on M mod [(§ — Py M]U F. Since ¥ is
a normal refinement of 2, n%f);" (?) is the coordinate in 2/ of a Cech ecycle

2" = (2" (20)} on M mod [(§ — )N M]U F, i. e. 27 (W) = 91 27(2). For each
20, let 2" (W) = 2! (9[”) 2y (') where 2% (20) is on M, and z"(w) () —
— 27 (20) is on .,. Since 92" (QU)— 0 2 (W) +- az" (20) is (a cycle) on
(8 —P)NM]UF, we can write 2" (00) =y (i’f)) = ypt (20) +y2—1(20)
where yy=' (20) is on (8 — P)n M,JU(FAM,)c [(S — PN M,JU F, and .
P (20)= y*~1(2W0) —yi—'(W)ison (8 - P)A M,]U(F N M) [(8— )0 112]‘U F,.
It follows by the usual argument that yp-'(20) = [ 2" (W) — P 0)] =
— [0 2} (20)—y2 ()] is on M, F N Fy; hence z" (20) is a cvele on M, mod
[(8 — l )N M;]U F;. Furthermore ¢y~ () = — Oyy (W, = + oy L (20);
therefore 9 yi\~' (20) is on [(8 — P)\ Myp] U Fyp and p777(20)is a eycle on M,
mod (8 — P)N M,,] U Fy . By an entirely analogous argument it follows that,
= {z" QU‘} and yr=! = (y2 1 ()] are Cech cycles mod [(8 - ) M ,JU F,
and [(S — P)n M,] U F,,, respectively.
Let us suppose for the moment that 7' ~ 0 mod [(8 — V) M,,}U F,,;

i.e. for each 20 there exist chains 2" (20) on M, and 271 (20) on [(8—V)Nn
N M| U Fyy such that 2% (20)= y”"(‘?l))—f— @)1 (20). Let Cy (A0)=2" (20)

—2,(20) and  Cp (W)=2" Ql?) +27, (20), then 8 oy (90)—7“—' (20) - x""‘(?ﬁ)
where y, is on [(S — P)n M, U(Fn M ) and z,, IS on [(§ — Q)N M,,] U r,,
and 0 CF (W)=yy ' (W)+x/,"1 (W) where y, is on [(S—— PYNnM,JU(FNn M,).
This shows that C%(20)is a cycle on M; mod [(8 — Q)N M;]U(Fn M,). In
particular this is trne for % (?); hence n‘lf o ()~ 0 mod [(8 —Ryn M,JU

U(FNLj) and 2 (07 (2) + ('"(“”) 0 mod [(S R)N M]U F. Since 07 (2) +
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4- 2 @P)=2} () + 2 (Q?) =" (¥), we conclude that n%l) (D)~ 0 mod
[(S— R) nM]U F. Fln.mlly gince 2" is a Cech cy(,le on M mod [(S—P)NM]UF,

n%)f 2" () ~ 2" (U) = ”295 2" (@) mod [(§ — P)n M]U F and n%)[ 7" (@) ~ 0 mod
[(S—P)nMUF.

Now let z" (?) and z" (2) be any two cycles mod (8§ —P)n M]JUPF. As
in the nrgnment of the preceding two paragraphs we can write 2% = 2{,
+ 2", 2% =2} }-27, and obtain cycles y" ! and y*-1 mod [(S — P)an)U F’12
By our (,houe of R, there exist mtegers m, and my, Not both zero, such
that m, y} ' + my y;'l ' ~0 on M, mod [(§ — N M) U F,y. The argument
of the preceding paragraph with y~! = m, 7'"”1 + mg %, I8 now applicable.

This leads to the conclusion that yﬂf (m, @J) + m, z" @) =m, n‘lf z“ @) +

-+ mzrﬂ[ z" (@)~ 0 mod [(§ — R)AM]U F, wich is the conclusion of the
1heqrem

‘Theorem 6. Under assumptions A, if Ru(p,M;, Fj)=1 for all p€ M;,
Ba1(p,My,Fp) <1 and Ra(p,M;, Mjn F) =0 Jor all pe M,,, then
Ru(p, M, F)=1 for all pe M.

Proof, This follows directly from theorem 4 and 5.

Definition 5. A closed set M c 8 (compact) is called a generahzed
n-manifold with boundary relative to S if

a) dim M ==

b) M is Len_, /

¢) M is let!

d) Bu(p,M,F)=1 for all pe M

¢) Ru(p,M)=R,(p,M,0)=0 for all p€ F = the boundary of M
relative to S.

Definition 6. A compact space M is called a generalized closed n-manifold
if it satisfies @, b, and ¢ of definition 5, together with d') Bu(p, M)=1
for all pe M.

Note that this is equivalent to definition 5 where M = S, for then
F = 0 causing condition d to reduce to d’ and eondition e to be meaningless.
This is the definition given by E. G. Begle in [1] without the orientability.

Teorem 7. The property of having dim n 18 additive.

Proof. This follows directly from the « Snm theorem for Dim n » [see
2, p. 30] which tells ut that the union of two closed sets each with dim »
also has dim n (regardless of their intersection).

Theorem 8. Under assumptions A, if M; is a generalized n- mamfold with
boundary relative to S (_7 =1,2), M,, i8 a generalized (n — 1)- -manifold with boun-
dary relative to S — S—MUM,,, Ru(p,M;, Mjx F) =0 for.all p€ M,(i=1,2),
then M is a gencralized n-manifold with boundary relative to 8.

~
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Proof. Property a) follows since dim M = n is additive. Properties b)
and c) follow from theorems 1’ and 3'. Property d) for M; gives R, (p,M;, F;)=1
for all p € M;. Property d) for M,, gives Rn_y (P, M5, Fyy) =1 for all peM,,
since F,, = boundary of M,, relative to S— M U M,,. To see that the lat-
ter statement holds consider F, = F( M,, and any neighborhood U Dp.
Since p€ F, there exists g€ UN (8 — M), hence g€ [ MUM]— M,,, and
p € boundary of M,, relative to 8 M U M,,. Conversely if p € boundary of
M,, relative to 8§ — M U M,,, then p € My, since My, is closed and any neigh-
borhood U Dp also Dq €[8 —MUM,| — MycS— M. Let Ve U be a
neighborhood of ¢, then there exists an r€ VNS — M ; thus p€ 8§ — M which
together with p € M,,c M implies pe FN M, = F,,. Since R, (p,M;,
M;n F) = 0 is assumed, condition d), B, (p, M, F)=1 for all pe M follows
from theorem 6. Condition e) for M; and M,, gives R.(p, M;) =0 for all
p€Fjand Ru_; (P, M3) = 0 for all pe Fy,. We must show that Bu(p, M)=0
for all pe Fc F,UF,. If pe(F,UF,) — F,p, this follows directly from
Ru(p,Mj)=0 for all p€F;. If p€F,,, the result follows exactly as in
theorem 3 since the condition n-colec at p and R, (p, M)= 0 are 8o nearly
the . same. We have now shown that M satisfies all the properties of an
n-manifold with boundary relative to F.

If we requi.re that J be imbedded in a compact subset of Euclidean
n-space, then the assumptions 4 follow from the dimensionalities of M; and
M,,, i.e. Fy(M,) = Fy(Mg)= Mp. Since Fy(Mj)c M,s in any case, consi-
der p€ M,, such that p¢ Fy (M) or Fp(ly); therefore there exist neigh-
borhood U, and U, of p such that M A U;C M;. Choese U Dp such that
MAUcMAWU,NU,)c My, but it is impossible in Euclidean n-space for
the (n — 1)-dimensional set M, to contain a set ke M U wich is open in
M, (see theorem IV 3 of [2]).

Theorem 9. I[f M, and M, ave generalized n-manifolds with boundaries
relative to then n-dimensional space M such that M N My is the commeon boun-
dary of M, and M, and i8 @ generalized closed (n — 1)-manifold, then M is a
generalized closed n-manifold.

Proof. By hypothesis F, = F, = Fy (M,) = Fu (M) = My, Fy=F=0.
Conditions a, b, and ¢ for M follow as in theorem 7. Condition d for M;
and @ for M,, give Ry (p, M;, Fj) =1 for all p e M;, and Rn—,(p, M) =1
for all p€ M,,. Also since F=0 the condition Ry (p,Mj, Mjn F)=0 for
all p€M,, is equividlent to Ry (p, M;)=0 which is given by condition e)
for M;. Now all the bypethesis of theorem 6 are satisfied and we conclude
that R, (p, M, F)= Rua(p,M)=1 for all p € M. which is condition d’) for M.

Definition 7. A generalized n-manifold M with boundary relative to S is
called orientable if the n dimensional Betti number of M mod F=—p*(M,F)=1

' jrreducibly (i.e. p"(M,F)=1, but if Lc B, Lc M, EC F, are clo
N
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sed sets such that at least one of the last two inclusions is proper, then
P (L, B)=0).

Definition 8. A generalized closed n-manifold M is called orientable if
p* (M) =1 irreducibly (see [1]).

"Teorem 10. Under assumptions A, if M; is an orientable generalized
n-manifold with boundary relative to 8(j =1,2), M,, is an orientable genera-
lized (n — 1)-manifold with boundary relative to 8 — M U My, and Ru(p,M;,
MinF)=0 for all pe My (j=1,2), then M is an orientable generalized
n-manifold with boundary relative to 8.

Proof. Bverything but the orientability follows from theorem 7. To show
M is orientable we see that p" (M;, F))=1 (j=1,2) since M; is orientable
and p"~1(M,,, F;;)=1 since M,, is orientable and the observation as in
theorem 7 that F,, = boundary of M,, relative to § — MU M,,. Note that
M;n FC Fj, but M;n F = Fj(j=1,2). To verify this suppose, for exam-
ple, M, N F = F,, then M,c F, which implies M,,C M,nFc F. It fol-
lows thut Fy, == M, F = M,,; hence p"~' (M, , F,,) = 0 which is con-
trary to hypothesis. This shows that M; 0 F' is a proper subset of F;; hence
p*(Mj, Mjn F) =0 (j =1, 2). Now p" (M, F) = 1 follows from the ana-
logue of theorem 6 in the large. Actually the same proof could be used
where all open sets chosen in the various definitions are taken as the inte-
riof of M (which is non-vacuous since p" (M;, F;) =1).

To show the rest of the orientability condition, consider Lc M, EC F,
Ec L, where one of the first two inelusions is proper, and let Lij= LN M;,
Lp= Iy Le= LM AMy=LN My, Bj=EAM)IU Ly, < (LA M;)U Lyp=
= Lj, e (FNM)UM, =F;, B,=EnMc FAM,=Fs. Note also
that B, N B, L, N Ly = Ly, and Ly, BN By; therefore E, N By = L,,.
This also shows E,c ENM,=EnM,NM,Cc E,N By = L,cM,nM, = -
= M,,. We shall first consider the case where L is a proper subset of M
and (M — L)N M,, & 0, then L, is a proper subset of M; {(j=1,2), for
otherwise L D I; = M; D M,, for at least one j. Also L,, is a proper subset
of M, since Ly, = LM, =& M, by (M — L) My F 0. Using the orien-
tability hypotheses on AM; and M,,, we have p"(L;, B;)=0, p*V (Lyg, Big)=0
since /; and L, are proper subsets of M; and M,,, respectively such that
Ejc Lj and E,C L,,. That p" (L, E)=0 now follows from a proof that
is almost identical with that of theorem 3 (Where the sets chosen are all
equal to the interior of L)

Finally consider the case where (M — L) M, =0, i.e. Mig=LNM,,
or M,,c L; hence M, = Ly,. Since one of the inclusions Lc M, Ec F
must be proper, it follows that one of the four inclusions L;c M;,
EnM;c FNM;(j=1,2) must be proper. Suppose that either L, M, or
EqM,c FN M, is proper, which implies, 'since L;s = M.y, that either
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LicM, or E,=FENM)UL,c(FNnM)UM,=F, is proper. Suppose
that the cycles used only have coordinates on the confinal family guaran-
teed by lemma 1" with the property that a cell on L, and on L, is also
on I ,NLy=L,,, andacellon I ,and on (EN M) is on L,N(EN M) =
=L.,NEcM,n E=E,. Since p"' (M, F;;) =1, it follows that F,,
is a proper subset of M, (= L,, in this case) This in turn implies that
KN M,is a proper subset of E,=(EnN M,)U L,,, for otherwise l,,c FN M,,=
= H,,C F,,, wich is a contradiction since F,, is a proper subset of M, = L,,.
It follows from the orientability of M, relative to F, that p" (L, , B n M,)= 0.
Now let us choose any covering 2/, then there exists 2 >> 9/ (both from
the above defined confinal family) such that if Oy (?) is any cycle on L,
mod F'n M,, then n%zg CH(@)~0 on L, mod KN My. Furthermore suppose
that 9 is a normal refinement of 2% with respect to cycles on L mod E.

Now let;"(Q)) be, any cycle on L mod FE, then ngj;” (V)= 2" (¥) is the
coordinate on 2/ of a Cech cycle 2" = {2"(20)} on L mod E. For each 20
let 2" (20) = 2! () +- 2 (20) where 2z} () is the part of 2" (20) on L, and
2% (W)=2" (W) — 2 (W) is on L,. By hypothesis 92" (20) is on E and we
can write 9 2" (20) = 9 2 (W) + 3 22 (W) ==}~ (W) -2~ (20) where 2% “(20)
is the part of §2*(20) on EN M, C E, and 27" (20)=0z"(20) — 2" (20)

is on ENM,. It follows that g2 (W)—2"~1 (W) = — 82} (W)+ 23! (20)=
.=z'1'2"1(9(9) where 'the left hand side is on L, and the right hand side is
on L,; hence by the choice of our confinal family, both sides = 2~7(20)

are on L, for each 20. This shows that 27 () is a cycle on L, mod E,
for g 2} (20)= 271 (20)+ 2;~" (20) where the first term is on B, N M and the
second is on L,,; hence both are on (FN M, U L,, = E,. By an entirely
analogous argument, it follows that 2" = {2"(20)} is a Cech eycle on I, mod
E,. Since M, is a generalized manifold with boundary and b, hypothesis
either L, is a proper subset of M, or E, is a proper subset of F,, we have
p*(Ly, E)) =0. In particular 2~ 0 on L, mod E,, and there exist chains
C"+1(20) on L, and C” (20) on B, for each 20 such that o C"+! (W)= 2z} (2)—
—O"(20). By taking boundaries on both sides, we see that gz} (20)= 0 ("*(20).
Also let 07(20) = O} (20)+ C(20) where 75(20)is on L,, and C;' (20)=0"20)—
— C2(W)is on B, — L,c ENM,, then g Oy (20) -} 907, (20) = 0" (20)=
921 (W) =21 (20 —|—z" '(Q0). It follows that 8 U (20)— 215 ' (20) = — 8 C1(20)+
+ 2y~1(20) where the left hand side is on L,, and the right hand side is on
(E N M,); thus by the choice of our confinal family both sides = y¥'~1(20),

a chain on B i2- In particular & O}y (20)= 1215 '(20) + y1s (20). Now let 0"(90)———

0712(20) + 2 (20), then 9 0;' A0V = § 0%, (20)+ 92520) =213 '(20)+ ris ' (W)+
+ z:‘ 1(20) — 2171(20) =y, (W) +-2% (20) wieh is on H;, U(M,N B) =M,NE;
thus Oy (20) is a cycle on L, mod (BN M,) = a proper closed subset of L, .
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Since this is true for all 20, we can let 2= 2. By the choice of 2,
7% O3 @)~0 ou L, mod EN My; i e. there exists a chain CiT' (%) on L,
such thut 8 O () = 2% 02 (V) -+ (a chain on E M) Now 8 (g o"+ @)+
+ it ) = 2% 7 (V) — 2 " (@) + 2% 0 (@) + (a chain on EN My =
=@ @) —ad L)+ aF O+ 2% 2" @) + (a chain on
En My = n‘lq)f 2" (@) + (a chain on B)ji. e. n%)[ 2" ()~ 0 on L mod E. Since 2"

is a relative Cech cycle, .n% 2 (V) ~ 2" (W) = “2,5;" (@) on L mod E; hence
a2 (V) ~ 0 on L mod E, which shows that p* (L, E)= 0. This shows
that M is orientable’in any case, and completes the proof of the theorem.

Theorem 1. If M, «nd M, are orientable generalized n manifolds with
boundaries relative to the n-dimensional space M, such that M, N M, is the
common boundary of M, and My and is ax orienlable generalized closed (n — 1)-
manifold, the M is an orientable generalized closed n-manifold.

Proof. All but the orientability follows from theorem 8, and the orfen
tability follows from the proof in theorem 9.
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