Annali della Scuola Normale Superiore di Pisa Classe di Scienze

Lamberto Cesari

Caratterizzazione analitica delle superficie continue di area finita secondo Lebesgue

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 2^e série, tome 10, n^o 3-4 (1941), p. 253-295

http://www.numdam.org/item?id=ASNSP_1941_2_10_3-4_253_0

© Scuola Normale Superiore, Pisa, 1941, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

CARATTERIZZAZIONE ANALITICA DELLE SUPERFICIE CONTINUE DI AREA FINITA SECONDO LEBESGUE (1)

di LAMBERTO CESARI (Pisa).

Negli anni 1939-40 mi sono occupato, dietro suggerimento del mio Maestro L. Tonelli, del problema di caratterizzare analiticamente le superficie continue in forma parametrica che hanno area finita secondo Lebesgue.

Colgo l'occasione per ringraziare il prof. L. TONELLI dei suoi consigli e del suo incitamento e inoltre della fiducia che egli sempre ha saputo trasmettermi, grazie alla quale ho potuto concludere la prima parte delle mie ricerche, che qui raccolgo.

Nel presente lavoro io stabilisco una condizione necessaria e sufficiente affinchè una superficie continua qualunque in forma parametrica

S:
$$x=x(u, v)$$
, $y=y(u, v)$, $z=z(u, v)$, $(u, v) \in \overline{A} \equiv (0, 1, 0, 1)$,

abbia area finita secondo LEBESGUE.

Le presenti ricerche si riattaccano perciò direttamente a quelle ormai classiche del Tonelli relative alle superficie continue in forma ordinaria

$$S': z=z(x, y), (x, y) \in \overline{A} \equiv (0, 1, 0, 1).$$

Il Tonelli (2), introdotto un concetto di funzione di due variabili a variazione limitata, concetto che poi si è dimostrato utilissimo in numerose altre questioni, ha dimostrato la seguente proposizione: Condizione necessaria e sufficiente perchè la superficie continua S' abbia area finita secondo Lebesgue è che la funzione z(x, y) sia a variazione limitata.

Delle numerose recenti ricerche sull'area delle superficie continue in forma parametrica occorre nettamente distinguere se esse sono basate sulla definizione di area di H. Lebesgue o su altre definizioni. Tra le ricerche di questa seconda categoria mi limiterò a ricordare soltanto quelle di S. Banach (3) le quali ten-

⁽¹⁾ Lavoro eseguito nel Seminario Matematico della R. Scuola Normale Superiore di Pisa.

⁽²⁾ L. TONELLI: Sulla quadratura delle superficie. Rend. della R. Accademia dei Lincei, S. 6, Vol. III (1926), pp. 357-362, 445-450, 633-638, 714-719.

⁽³⁾ S. Banach: Sur les lignes rectifiables et les surfaces dont l'aire est finie. Fund. Math. Tom. VII (1925), pp. 225-236.

devano a stabilire procedimenti ed enunciati simili a quelli ben noti per la lunghezza delle curve continue.

Tra le ricerche sulle superficie in forma parametrica basate sulla definizione di area di H. Lebesgue, e che qui sole ci interessano, debbo menzionare, anche perchè in parte si riattaccano ai lavori del Tonelli, quelle di E. J. McShane (4), C. B. Morrey (5) e T. Rado (6).

Nel presente lavoro mi occupo innanzitutto (§ 1) delle trasformazioni piane continue (coppie di funzioni) e stabilisco i concetti di *funzione caratteristica* e di *variazione totale* (finita o infinita) di una trasformazione piana continua qualsiasi.

Il concetto di trasformazione piana continua a variazione limitata che così ne risulta è il più largo tra quelli fino ad oggi introdotti. Vale inoltre la seguente proposizione: Condizione necessaria e sufficiente perchè le trasformazioni piane continue seguenti

$$x=u,$$
 $z=z(u, v),$ $y=v,$ $z=z(u, v),$ $(u, v) \in \overline{A} \equiv (0, 1, 0, 1),$

siano entrambe a variazione limitata secondo la nuova definizione è che la funzione z(u, v) sia a variazione limitata secondo TONELLI.

Nel § 3, dopo alcuni teoremi preliminari, dimostro alcune proprietà geometriche affatto nuove delle superficie continue. Nel § 4, dimostro il seguente

Teorema. - Condizione necessaria e sufficiente perchè la superficie continua

S:
$$x=x(u, v)$$
, $y=y(u, v)$, $z=z(u, v)$, $(u, v) \in \overline{A} \equiv (0, 1, 0, 1)$,

abbia area finita secondo Lebesgue è che le tre trasformazioni piane

$$\Phi_1: \quad x = x(u, v), \quad y = y(u, v),
\Phi_2: \quad x = x(u, v), \quad z = z(u, v), \quad (u, v) \in \overline{A},
\Phi_3: \quad y = y(u, v), \quad z = z(u, v),$$

siano a variazione limitata.

⁽⁴⁾ E. J. McShane: On the semicontinuity of double integrals in the calculus of variations. Annals of Mathematics, Ser. II, Vol. 33 (1932), pp. 460-484; Integrals over surfaces in parametric form. Id. id. Vol. 34 (1933), pp. 815-838; Parametrizations of saddle surfaces, with application to the problem of Plateau. Transactions of the Am. Math. Soc. Vol. 35 (1933), pp. 716-733.

⁽⁵⁾ C. B. Morrey: I. A class of representations of manifolds. Amer. Jour. of Mathematics, Vol. LV (1933), pp. 683-707; II. id. id. Vol. LVI (1934), pp. 275-293; III. The topology of (path) surfaces. Id. id. Vol. LVII (1935), pp. 17-50; IV. An analytic characterization of surfaces of finite Lebesgue area. Id. id. pp. 692-702; V. id. id. Vol. LVIII (1936), pp. 313-322.

⁽⁶⁾ T. Rado: Über das Flächenmass rektifizierbarer Flächen. Math. Ann. Bd. 100 (1928), pp. 445-479; A remark on the area of surfaces. Am. J. Math., Vol. LVIII (1936), pp. 598-606.

Questo teorema, per l'osservazione fatta sopra sul concetto di trasformazione a variazione limitata, si riduce al ben noto teorema del Tonelli nel caso di superficie in forma ordinaria.

§ 1. - Funzione caratteristica e variazione totale di una trasformazione piana continua.

1. - Sia \overline{A} una regione di JORDAN (chiusa) nel piano (u, v), siano x(u, v), y(u, v) funzioni continue in \overline{A} , sia Φ la trasformazione continua

(1)
$$\Phi: \quad x = x(u, v), \quad y = y(u, v), \quad (u, v) \in \overline{A}.$$

Ad ogni punto P di \overline{A} corrisponde nel piano (x, y) un punto $Q = \Phi(P)$ che diremo *immagine* del punto P. Diciamo $\overline{B} = \Phi(\overline{A})$ l'insieme dei punti del piano (x, y) che sono immagini di qualche punto di \overline{A} . L'insieme \overline{B} è limitato e chiuso. Sia K un quadrato del piano (x, y) a lati paralleli agli assi contenente nel suo interno tutti i punti di \overline{B} .

Se Q è un punto di \overline{B} esiste in \overline{A} un insieme non vuoto di punti P, che diremo i modelli del punto Q, la cui immagine coincide con Q.

Indicheremo tale insieme con $\Phi^{-1}(Q)$. L'insieme $\Phi^{-1}(Q)$ è chiuso.

Si stabilisce per le trasformazioni piane il concetto di distanza nel senso di Frechet come per le superficie. La distanza secondo Frechet di due trasformazioni continue Φ_1 , Φ_2 verrà indicata con $\parallel \Phi_1$, $\Phi_2 \parallel$.

Considerata inoltre la trasformazione piana Φ come una superficie piatta la sua area secondo LEBESGUE verrà indicata con $L(\Phi)$.

2. - Sia r una regione di Jordan (aperta) contenuta in A e sia r^* la curva continua semplice e chiusa costituente la frontiera di r (7). Orientiamo r^* stabilendo come positivo il verso antiorario delle rotazioni.

Sia C l'immagine di r^* . C è una curva continua e chiusa del piano (x, y) in generale non semplice. Sia O(x, y; C) l'indice topologico (di Kronecker) relativo alla curva C. La funzione O(x, y; C) è di Baire e quindi quasi continua. Ne segue che esiste (finito o infinito) l'integrale di Lebesgue

(2)
$$g(r) = \iint\limits_{K} |O(x, y; C)| dxdy.$$

⁽⁷⁾ Nel presente lavoro indicherò con \overline{I} e con I^* rispettivamente la chiusura e la frontiera di un insieme I. Indicherò inoltre con $\{I,I'\}$ la distanza di due insiemi I e I' e con $\{P,P'\}$, oppure $\overline{PP'}$, la distanza di due punti P e P'. Infine indicherò con $U(P,\delta)$ l'intorno circolare di raggio δ del punto P.

Ricordiamo che O(x, y; C) è nullo fuori di K.

Sia $\{r_i, i=1, 2,..., n\}$ una suddivisione di A in regioni di JORDAN. Sia c_i l'immagine della frontiera r_i^* di $r_i, i=1, 2,..., n$. Poniamo

(3)
$$G(\Phi) = \text{extr. sup. } \sum_{i=1}^{n} g(r_i)$$

per tutte le possibili suddivisioni $\{r_i\}$ di \overline{A} in regioni di JORDAN.

3. - In ogni punto $Q \equiv (x, y)$ di K definiamo inoltre la seguente funzione

(4)
$$\Psi(x, y) \equiv \Psi(x, y; \Phi) = \text{extr. sup. } \sum_{i=1}^{n} |O(x, y; c_i)|$$

per tutte le possibili suddivisioni $\{r_i\}$ di \overline{A} in regioni di JORDAN.

La funzione $\Psi(x, y)$ assume solo valori interi ≥ 0 non escluso $+\infty$.

Diciamo che $\Psi(x,y)$ è la funzione caratteristica della trasformazione Φ .

4. - TEOREMA 1. - La funzione $\Psi(x,y)$ è semicontinua inferiormente in K. Sia $Q \equiv (x,y)$ un punto di K e sia m un intero qualsiasi tale che $m \leq \Psi(x,y)$. Esiste allora una suddivisione $\{r_i, i=1, 2,..., n\}$ di \overline{A} in regioni di JORDAN tale che

$$m \leq \sum_{i=1}^{n} |O(x, y; c_i)|.$$

Se una curva c_i passa per Q allora, come sappiamo, $O(x, y; c_i) = 0$.

Siano perciò r_i , i=1, 2,..., n', $0 \le n' \le n$ quelle sole regioni per le quali la curva c_i non passa per Q. Sia $\delta > 0$ la minima distanza del punto $Q \equiv (x, y)$ dalle curve c_i , i=1, 2,..., n'. In tutti i punti $Q' \equiv (x', y')$ dell'intorno circolare $U(Q, \delta)$ di raggio δ del punto $Q \equiv (x, y)$ si ha

$$O(x', y'; c_i) = O(x, y; c_i), i = 1, 2, ..., n',$$

e quindi

$$m \leq \sum_{i=1}^{n} |O(x, y; c_i)| = \sum_{i=1}^{n'} |O(x, y; c_i)| = \sum_{i=1}^{n'} |O(x', y'; c_i)| \leq \sum_{i=1}^{n} |O(x', y'; c_i)| \leq \Psi(x', y').$$

Introdotte le funzioni

$$f(\Psi, \delta, Q) = \text{extr. inf. } \Psi(P), \qquad \varphi(Q) = \lim_{\delta \to 0} f(\Psi, \delta, Q),$$

si ha

$$m \leq \varphi(Q)$$
.

Ma m è un qualsiasi intero $\leq \Psi(Q)$ e quindi $\Psi(Q) \leq \varphi(Q)$. Ma deve essere $\varphi(Q) \leq \Psi(Q)$ e quindi $\varphi(Q) = \Psi(Q)$. È con ciò dimostrato che $\Psi(Q)$ è una funzione semicontinua inferiormente in K.

5. - La funzione $\Psi(Q)$ è semicontinua inferiormente in K e quindi di classe 1 di BAIRE e perciò quasi continua in K. Ricordando che $\Psi(Q)$ è non negativa segue che esiste (finito o infinito) l'integrale di LEBESGUE

$$W = W(\Phi) = \iint_{K} \Psi(x, y; \Phi) dx dy.$$

Diremo che $W=W(\Phi)$ è la variazione totale della trasformazione Φ . Diremo che la trasformazione Φ è a variazione limitata se $W(\Phi)<+\infty$.

6. - LEMMA 1. - Sia $Q_0 \equiv (x_0, y_0)$ un punto del piano (x, y), C e C_1 due curve continue e chiuse del piano (x, y) delle quali C non passi per Q_0 e inoltre tali che

$$||C, C_1|| < \{Q_0, C\},$$

ove $||C, C_1||$ indica la distanza nel senso di Frechet tra le due curve C e C_1 e $\{Q_0, C\}$ indica la distanza del punto Q_0 dalla curva C. Allora

$$O(x_0, y_0; C_1) = O(x_0, y_0; C).$$

Poniamo $\|C, C_1\| = \sigma$, $\{Q_0, C\} = \sigma + 2\varepsilon$, $\varepsilon > 0$. Possiamo supporre che C e C_1 siano le immagini di due eirconferenze Γ e Γ_1 . Siano θ e s le anomalie dei punti di Γ e Γ_1 rispetto al proprio centro. Siano (ϱ, ω) coordinate polari di centro Q_0 del piano (x, y) e siano

(5)
$$\begin{cases} C: & \varrho = \varrho(\theta), \quad \omega = \omega(\theta) \\ C_1: & \varrho = \varrho_1(s), \quad \omega = \omega_1(s) \end{cases}$$

le corrispondenti rappresentazioni delle curve C e C_1 . Esiste una corrispondenza biunivoca e continua T tra Γ e Γ_1 , $s=s(\theta)$, tale che, posto $Q \equiv [\varrho(\theta), \omega(\theta)]$. $Q_1 \equiv [\varrho_1(s(\theta)), \omega_1(s(\theta))]$, si ha $\overline{QQ_1} \leq \sigma + \varepsilon$.

D'altra parte $\overline{Q_0Q} \gg \sigma + 2\varepsilon$ e quindi $\overline{Q_0Q_1} \gg \overline{Q_0Q} - \overline{QQ_1} \gg \sigma + 2\varepsilon - \sigma - \varepsilon = \varepsilon > 0$. Ne segue che anche la curva C_1 non passa per Q_0 e che l'angolo $Q\widehat{Q_0Q_1}$ è acuto. Infatti, in caso contrario, dal triangolo QQ_0Q_1 , rettangolo o ottusangolo in Q_0 , si avrebbe $\overline{QQ_1} > \overline{QQ_0}$ ciò che è assurdo. Quanto precede assicura che nelle (5) si può supporre $\varrho(\theta) > 0$, $\varrho_1(s) > 0$ e le funzioni $\omega(\theta)$ e $\omega_1(s)$ continue. In conseguenza

$$2\pi O(x_0, y_0; C) = \omega(2\pi) - \omega(0), \qquad 2\pi O(x_0, y_0; C_1) = \omega_1[s(2\pi)] - \omega_1[s(0)]$$

e inoltre

$$\omega_1[s(\theta)] = \omega(\theta) + 2\pi K + \alpha(\theta), \qquad -\frac{\pi}{2} < \alpha(\theta) < \frac{\pi}{2},$$

ove K è un intero ≤ 0 indipendente da θ . Ne segue

$$ig| ig[\omega_{\mathtt{i}}(s(2\pi)) - \omega_{\mathtt{i}}(s(0)) ig] - ig[\omega(2\pi) - \omega(0) ig] ig| < \pi, \ |O(x_0, y_0; C_{\mathtt{i}}) - O(x_0, y_0; C) ig| < 1/2.$$

Ma, nell'ultima relazione, i due numeri entro $|\ |$ sono necessariamente interi e quindi

$$O(x_0, y_0; C) = O(x_0, y_0; C_1).$$

7. - Lemma 2. - Sia C_n , n=1, 2,..., una successione di curve continue e chiuse del piano (x, y), convergenti nel senso di Frechet verso una curva continua e chiusa C. Allora, in ogni punto (x, y) fuori di C, si ha

$$O(x, y; C) = \lim_{n \to \infty} O(x, y; C_n).$$

Sia $Q \equiv (x, y)$ un punto fuori di C e sia $\delta > 0$ la sua distanza da C, $\delta = \{Q, C\}$. Esiste allora un $\overline{n} \ge 0$ tale che per ogni $n \ge \overline{n}$ si ha $||C, C_n|| < \delta = \{Q, C\}$ e quindi, in forza del Lemma 1, per ogni $n \ge \overline{n}$, $O(x, y; C_n) = O(x, y; C)$.

Il Lemma 2 è con ciò dimostrato.

8. - Lemma 3. - Se C_n , n=1, 2,..., è una successione di curve continue e chiuse del piano (x, y), convergenti nel senso di Frechet verso una curva continua e chiusa C e se C è completamente interna ad un quadrato K, allora

$$\iint\limits_K |O(x,\,y\,;\,\,C)| dxdy \leq \lim_{n \to \infty} \iint\limits_K |O(x,\,y\,;\,\,C_n)| dxdy.$$

Infatti in tutti i punti (x, y) di C si ha O(x, y; C) = 0 e, in tutti i punti (x, y) fuori di C, si ha, in forza del Lemma 2,

$$O(x, y; C) = \lim_{n \to \infty} O(x, y; C_n).$$

Ne segue che in tutti i punti di K

$$0 \leq |O(x, y; C)| \leq \lim_{n \to \infty} |O(x, y; C_n)|$$

e quindi, per noti teoremi di integrazione per serie,

$$\iint\limits_K |\operatorname{O}(x,\,y\,;\,\operatorname{C})|\,dxdy \leqslant \lim_{n \to \infty} \iint\limits_K |\operatorname{O}(x,\,y\,;\,\operatorname{C}_n)|\,dxdy.$$

9. - TEOREMA 2. - Se $\|\Phi, \Phi_1\|=0$, allora $G(\Phi)=G(\Phi_1)$, $W(\Phi)=W(\Phi_1)$ e, per ogni punto (x, y) di K, $\Psi(x, y; \Phi)=\Psi(x, y; \Phi_1)$.

Dimostriamo la prima parte. Siano Φ e Φ_1 , le trasformazioni piane continue

$$\Phi: \quad x=x(u, v), \quad y=y(u, v), \quad (u, v) \in \overline{A},$$

 $\Phi_1: \quad x=x_1(u, v), \quad y=y_1(u, v), \quad (u, v) \in \overline{A}.$

Sia $\varepsilon > 0$ un numero arbitrario e sia $\{r_i, i=1, 2,...., n\}$ una suddivisione di \overline{A} in regioni di Jordan tale che

(6)
$$\sum_{i=1}^{n} g(r_i) \geqslant \begin{cases} G(\Phi) - \varepsilon & \text{se } G(\Phi) < +\infty, \\ 1/\varepsilon & \text{se } G(\Phi) = +\infty. \end{cases}$$

Per ogni intero m>0 esiste una trasformazione biunivoca e continua T_m di \overline{A} in se che trasforma A^* in A^* e il verso positivo su A^* nel verso positivo su A^* e tale che, se P e P' sono punti di \overline{A} che si corrispondono in T_m e Q e Q' i punti corrispondenti rispetto alle trasformazioni Φ e Φ_1 , si ha $Q\overline{Q'} \leq 1/m$.

 T_m trasforma d'altra parte la suddivisione $\{r_i, i=1, 2,..., n\}$ di \overline{A} in regioni di JORDAN in una nuova suddivisione di \overline{A} in regioni di JORDAN $\{r_i^{(m)}, i=1, 2,..., n\}$.

Siano c_i le immagini di r_i^* rispetto alla trasformazione Φ e $c_i^{(m)}$ le immagini di $r_i^{(m)*}$ rispetto alla trasformazione Φ_1 , i=1, 2,...., n, m=1, 2,.....

Ma T_m stabilisce una corrispondenza biunivoca e continua tra i punti di r_i^* e $r_i^{(m)*}$ tale che, se P e P' si corrispondono in T_m e Q e Q' sono i punti corrispondenti su c_i e $c_i^{(m)}$, si ha $\overline{QQ'} \le 1/m$. Ne segue $\|c_i, c_i^{(m)}\| \le 1/m$, i=1, 2,..., n, e quindi, in forza del Lemma 3, osservando che $\lim_{n \to \infty} \|c_i, c_i^{(m)}\| = 0$,

(7)
$$g(r_i) = \iint_K |O(x, y; c_i)| dxdy \leq \lim_{m \to \infty} \iint_K |O(x, y; c_i^{(m)})| dxdy = \lim_{m \to \infty} g'(r_i^{(m)}),$$

$$i = 1, 2,, n.$$

Ricordiamo infine che dalla definizione di $G(\Phi_i)$ (n. 2) segue, per ogni m,

(8)
$$\sum_{i=1}^{n} g'(r_i^{(m)}) \leq G(\Phi_i).$$

Dalle (6), (7), (8) segue

$$\frac{G(\Phi)-\varepsilon}{1/\varepsilon}\bigg\} \leqslant \sum_{i=1}^n g(r_i) \leqslant \sum_{i=1}^n \varliminf_{m \to \infty} g'(r_i^{(m)}) \leqslant \varliminf_{m \to \infty} \sum_{i=1}^n g'(r_i^{(m)}) \leqslant \varliminf_{m \to \infty} G(\Phi_1) = G(\Phi_1),$$

secondochè $G(\Phi)<+\infty$ oppure $G(\Phi)=+\infty$. Per l'arbitrarietà di ε segue

$$G(\Phi) \leq G(\Phi_1)$$
.

Se ora ripetiamo il ragionamento precedente scambiando Φ con Φ_i si troverà $G(\Phi_i) \leq G(\Phi)$ e quindi, in definitiva, $G(\Phi) = G(\Phi_i)$. La prima parte del teorema 2 è con ciò dimostrata.

Sia ora $Q \equiv (x, y)$ un punto di K e sia m_0 un intero arbitrario tale che $0 \le m_0 \le \Psi(x, y; \Phi)$. Sia $\{r_i, i=1, 2,..., n\}$ una suddivisione di \overline{A} in regioni di JORDAN tale che

$$m_0 \leqslant \sum_{i=1}^n |O(x, y; c_i)|.$$

Se una curva c_i passa per Q allora $O(x,y;c_i)=0$. Siano perciò $r_i,i=1,2,...,n',0 \le n' \le n$, quelle sole regioni per le quali la curva c_i non passa per Q. Sia $\delta>0$ la minima distanza di Q dalle curve c_i , i=1,2,...,n'. Sia infine \overline{m} il più piccolo intero tale che $1/\overline{m} < \delta$.

Allora, per ogni $m \ge \overline{m}$, si ha $||c_i, c_i^{(m)}|| < \delta \le \{Q, c_i\}, i=1, 2,..., n'$, e quindi, per il Lemma 1,

$$O(x, y; c_i) = O(x, y; c_i^{(m)}), i=1, 2,..., n', m \ge \overline{m}.$$

Ne segue, per ogni $m \ge \overline{m}$,

$$egin{aligned} m_0 \leqslant & \sum_{i=1}^n |O(x, \ y \ ; \ c_i)| = \sum_{i=1}^{n'} |O(x, \ y \ ; \ c_i)| = \ & = \sum_{i=1}^{n'} |O(x, \ y \ ; \ c_i^{(m)})| \leqslant & \sum_{i=1}^n |O(x, \ y \ ; \ c_i^{(m)})| \leqslant & \Psi(x, \ y \ ; \ \Phi_1). \end{aligned}$$

Ma m_0 è un qualunque intero tale che $m_0 \leq \Psi(x, y; \Phi)$ e quindi

$$\Psi(x, y; \Phi) \leq \Psi(x, y; \Phi_4).$$

Scambiando nel ragionamento l'ufficio delle trasformazioni Φ e Φ_1 si ottiene $\Psi(x, y; \Phi_1) \leq \Psi(x, y; \Phi)$ e quindi, in definitiva, $\Psi(x, y; \Phi) = \Psi(x, y; \Phi_1)$.

Ma (x, y) è un punto qualunque di K e quindi anche $W(\Phi) = W(\Phi_1)$. Il teorema 2 è con ciò completamente dimostrato.

10. - Teorema 3. - Se Φ_n , n=1, 2,..., è una successione di trasformazioni piane continue convergenti, nel senso di Frechet, verso una trasformazione piana continua Φ , allora

$$G(\Phi) \leq \lim_{n \to \infty} G(\Phi_n),$$

$$W(\Phi) \leq \lim_{n \to \infty} W(\Phi_n)$$

e, per ogni punto (x, y) di K,

$$\Psi(x, y; \Phi) \leq \lim_{n \to \infty} \Psi(x, y; \Phi_n).$$

Sia Φ la trasformazione piana continua

$$\Phi: x=x(u,v), y=y(u,v), (u,v) \in \overline{A}.$$

Per ogni intero n esiste una rappresentazione della trasformazione Φ_n nella regione di JORDAN chiusa \overline{A} tale che, posto

$$\Phi_n: x=x_n(u, v), y=y_n(u, v), (u, v) \in \overline{A},$$

si abbia

$$\lim_{n\to\infty} x_n(u, v) = x(u, v), \qquad \lim_{n\to\infty} y_n(u, v) = y(u, v), \qquad (u, v) \in \overline{A},$$

e questi limiti valgano uniformemente in \overline{A} .

Sia $\varepsilon>0$ un numero arbitrario e sia $\{r_i,\ i=1,\ 2,....,\ n\}$ una suddivisione di \overline{A} in regioni di JORDAN tale che

(9)
$$\sum_{i=1}^{n} g(r_i) > \begin{cases} G(\Phi) - \varepsilon & \text{se } G(\Phi) < +\infty, \\ 1/\varepsilon & \text{se } G(\Phi) = +\infty. \end{cases}$$

Siano c_i le immagini di r_i^* rispetto a Φ e siano $c_i^{(m)}$ le immagini di r_i^* rispetto a Φ_m , i=1, 2,..., n, m=1, 2,....

Manifestamente $\lim_{i \to \infty} ||c_i, c_i^{(m)}|| = 0, i = 1, 2,..., n$, e quindi, in forza del Lemma 3,

$$g(r_i) \leq \lim_{\substack{m \to \infty}} g^{(m)}(r_i), \ g(r_i) = \iint_K |O(x, y; c_i)| \, dx dy, \qquad g^{(m)}(r_i) = \iint_K |O(x, y; c_i^{(m)})| \, dx dy, \ i = 1, 2,, n, \quad m = 1, 2,$$

Ne segue, ricordando la (9),

$$\left.\frac{G(\varPhi)-\varepsilon}{1/\varepsilon}\right|<\sum_{i=1}^ng(r_i)\leqslant\sum_{i=1}^n\varliminf_{m\to\infty}g^{(m)}(r_i)\leqslant\varliminf_{m\to\infty}\sum_{i=1}^ng^{(m)}(r_i)\leqslant\varliminf_{m\to\infty}G(\varPhi_m)$$

e, per l'arbitrarietà di ε ,

$$G(\Phi) \leq \lim_{\substack{m \to \infty}} G(\Phi_m).$$

Sia $Q \equiv (x, y)$ un punto qualsiasi di K. Sia $m \ge 0$ un intero arbitrario tale che $m \le \Psi(x, y)$.

Esiste allora una suddivisione di \overline{A} in regioni di JORDAN $\{r_i, i=1, 2,..., v\}$ tale che

$$m \leqslant \sum_{i=1}^{r} |O(x, y; c_i)|.$$

Se una curva c_i passa per Q allora, come sappiamo, $O(x, y; c_i) = 0$. Siano perciò r_i , i=1, 2,..., v', $0 \le v' \le v$, quelle sole regioni per le quali la curva c_i non passa per Q. Sia $\delta > 0$ la minima distanza del punto Q = (x, y) dalle curve c_i , i=1, 2,..., v'. Sia \bar{n} il più piccolo intero tale che, per ogni (u, v) di \bar{A} e per ogni $n \ge \bar{n}$, si abbia

$$|x(u, v)-x_n(u, v)| < \delta/3, |y(u, v)-y_n(u, v)| < \delta/3, (u, v) \varepsilon \overline{A}, n \ge \overline{n}.$$

Diciamo $c_i^{(n)}$ l'immagine delle curve r_i^* rispetto alla trasformazione Φ_n , $i=1,\,2,...,\,\nu,\,\,n=1,\,2,...$. Per ogni $n \geqslant \bar{n}$ si ha

$$\|c_i, \ c_i^{(n)}\| < rac{2\delta}{3} < \delta \leq \{Q, \ c_i\}, \qquad i = 1, 2, ..., \
u',$$

e quindi, in forza del Lemma 1,

$$O(x, y; c_i) = O(x, y; c_i^{(n)}), \quad i=1, 2,..., \nu', \quad n \ge \bar{n}.$$

Ne segue, per ogni $n \ge \overline{n}$,

$$\begin{split} m \leqslant & \sum_{i=1}^{\nu} |O(x, y; c_i)| = \sum_{i=1}^{\nu'} |O(x, y; c_i)| = \\ & = \sum_{i=1}^{\nu'} |O(x, y; c_i^{(n)})| \leqslant \sum_{i=1}^{\nu} |O(x, y; c_i^{(n)})| \leqslant \Psi(x, y; \Phi_n) \end{split}$$

e infine

$$m \leq \lim_{n \to \infty} \Psi(x, y; \Phi_n).$$

Ma m è un qualsiasi intero tale che $m \leq \Psi(x, y; \Phi)$ e perciò

$$0 \leq \Psi(x, y; \Phi) \leq \lim_{\substack{n \to \infty}} \Psi(x, y; \Phi_n).$$

Poichè questa disuguaglianza vale per ogni punto (x, y) di K, da noti teoremi di integrazione per serie segue

$$0 \leq \iint\limits_{K} \Psi(x, y; \Phi) dx dy \leq \lim_{n \to \infty} \iint\limits_{K} \Psi(x, y; \Phi_n) dx dy$$

da cui l'asserto.

11. - Teorema 4. - Per ogni trasformazione piana poliedrica Σ si ha $G(\Sigma) = W(\Sigma) = L(\Sigma)$ e, per ogni trasformazione piana continua Φ , si ha

$$G(\Phi) \leq W(\Phi) \leq L(\Phi).$$

La prima parte del teorema è evidente. Sia $\varepsilon > 0$ un numero arbitrario.

Esiste una suddivisione $\{r_i, i=1, 2,..., n\}$ di \overline{A} in regioni di Jordan tale che

$$\sum_{i=1}^{n} g(r_i) > \begin{cases} G(\Phi) - \varepsilon & \text{se} & G(\Phi) < +\infty, \\ 1/\varepsilon & \text{se} & G(\Phi) = +\infty. \end{cases}$$

Ne segue

$$\begin{aligned} &G(\varPhi) - \varepsilon \\ &1/\varepsilon \end{aligned} \bigg\} < \sum_{i=1}^{n} \iint_{K} |O(x, y; c_{i})| \, dx dy = \iint_{K} \sum_{i=1}^{n} |O(x, y; c_{i})| \, dx dy \leq \\ & \leq \iint_{K} \Psi(x, y; \varPhi) dx dy = W(\varPhi) \end{aligned}$$

da cui, per l'arbitrarietà di ε , segue $G(\Phi) \leq W(\Phi)$.

La prima disuguaglianza è così dimostrata.

Sia ora Σ_n , n=1, 2,..., una successione di trasformazioni piane poliedriche tali che

$$\lim_{n\to\infty} \|\Sigma_n, \Phi\| = 0, \qquad \lim_{n\to\infty} L(\Sigma_n) = L(\Phi).$$

Dal teorema 3 segue

$$W(\Phi) \leq \lim_{n \to \infty} W(\Sigma_n) = \lim_{n \to \infty} L(\Sigma_n) = L(\Phi).$$

Il teorema 4 è così dimostrato.

12. - Teorema 5. - Condizione necessaria perchè la superficie continua

S:
$$x = x(u, v), y = y(u, v), z = z(u, v), (u, v) \in A$$

abbia area finita secondo Lebesgue è che le tre trasformazioni piane continue

$$egin{array}{ll} \Phi_1: & x\!=\!x(u,\,v), & y\!=\!y(u,\,v), \ & \Phi_2: & x\!=\!x(u,\,v), & z\!=\!z(u,\,v), & (u,\,v)\,arepsilon\,A, \ & \Phi_3: & y\!=\!y(u,\,v), & z\!=\!z(u,\,v), \end{array}$$

siano a variazione limitata.

Intanto è evidente che

$$L(\Phi_t) \leq L(S) < +\infty, \qquad t=1, 2, 3,$$

e quindi, dal teorema 4, per ogni t,

$$G(\Phi_t) \leq W(\Phi_t) \leq L(\Phi_t) \leq L(S) < +\infty, \quad t=1, 2, 3.$$

Abbiamo così dimostrato che la variazione totale $W(\Phi_t)$ di ciascuna delle trasformazioni Φ_t , $t=1, 2, 3, \$ è limitata.

13. - Le trasformazioni regolari. Diremo che una trasformazione piana continua

$$\Phi$$
: $x=x(u, v)$, $y=y(u, v)$, $(u, v) \in \overline{A} \equiv (0, 1, 0, 1)$,

ove \overline{A} è il quadrato (0, 1, 0, 1) del piano (u, v), è regolare se esistono due insiemi numerabili $[\xi]$, $[\eta]$ di numeri reali $0 \le \xi \le 1$, $0 \le \eta \le 1$, ovunque densi in (0, 1), tali che le curve

$$C(\xi): \quad x = x(\xi, v), \quad y = y(\xi, v), \quad 0 \le v \le 1,$$

 $C'(\eta): \quad x = x(u, \eta), \quad y = y(u, \eta), \quad 0 \le u \le 1,$

occupano in K insiemi di punti di misura nulla.

TEOREMA 6. - Se Φ è una trasformazione piana, continua e regolare, allora $G(\Phi) = W(\Phi)$.

Le curve $C(\xi)$ e $C'(\eta)$ occupano in K insiemi di punti di misura nulla. Poichè gli insiemi $[\xi]$ e $[\eta]$ sono numerabili anche l'insieme di punti di K

$$E = \sum_{\{\xi\}} C(\xi) + \sum_{\{\eta\}} C'(\eta)$$

è di misura nulla.

Siano $0 \le \xi_0 < \xi_1 < < \xi_N \le 1$, $0 \le \eta_0 \le \eta_1 \le \le \eta_N \le 1$, numeri di $[\xi]$ e $[\eta]$ e siano $R_{ii}^{(n)}$, i, j = 1, 2,, N, gli N^2 rettangoli

$$R_{ij} = [\xi_{i-1} \le u \le \xi_i, \ \eta_{j-1} \le v \le \eta_j], \quad i, j = 1, 2, ..., N,$$

tutti contenuti in A. Diremo che i rettangoli R_{ij} costituiscono un reticolato $\{R_{ij},\ i,j=1,2,...,N\}$. Poniamo $\delta=\max\left[\xi_0,\,1-\xi_N,\,\eta_0,\,1-\eta_N,\,\xi_i-\xi_{i-1},\,\eta_j-\eta_{j-1}\right]$. Supponiamo ora che $\{R_{ij}^{(n)}\},\,n=1,\,2,...,$ sia una successione di reticolati tali che

- a) $\lim \delta_n = 0$;
- b) le rette $u=\xi_i$, $v=\eta_j$, $i,j=1,2,...,N_n$, che entrano nel reticolato $\{R_{ij}^{(n)}\}$ entrino anche nel reticolato $\{R_{ij}^{(n+1)}\}$.

Diciamo $\Gamma_{ij}^{(n)}$ il contorno di $R_{ij}^{(n)}$ e $C_{ij}^{(n)}$ l'immagine di $\Gamma_{ij}^{(n)}$, $i, j = 1, 2, ..., N_n$. Poniamo, per ogni punto $Q \equiv (x, y)$ di K,

$$\varphi_n(x, y) = \sum_{i, j=1}^n |O(x, y; C_{ij}^{(n)})|$$

e osserviamo che ciascuna delle curve $C_{ij}^{(n)}$ è tutta costituita di punti dell'insieme di misura nulla E.

Per ogni punto (x, y) fuori di E e per ogni i, j, si ha

$$|O(x, y; C_{ij}^{(n)})| = \sum |O(x, y; C_{ij}^{(n+1)})|,$$

la sommatoria a secondo membro essendo estesa ai soli rettangoli $R_{ij}^{(n+1)}$ che sono contenuti nel rettangolo $R_{ij}^{(n)}$. Ne segue

$$|O(x, y; C_{ij}^{(n)})| \le \sum |O(x, y; C_{ij}^{(n+1)})|$$

e quindi, in tutti i punti di K fuori di E,

$$\varphi_n(x, y) = \sum_{i,j=1}^{N_n} |O(x, y; C_{ij}^{(n)})| \leq \sum_{i,j=1}^{N_{n+1}} |O(x, y; C_{ij}^{(n+1)})| = \varphi_{n+1}(x, y).$$

Esiste dunque in tutti i punti di K-E il limite (finito o infinito)

$$\Phi(x, y) = \lim_{n \to \infty} \varphi_n(x, y).$$

Manifestamente, in tutti i punti di K-E, si ha

$$\Phi(x, y) \leq \Psi(x, y).$$

Sia ora $Q \equiv (x, y)$ un punto di K-E e sia m un intero qualunque tale che $m \leq \Psi(x, y)$. Esiste allora una suddivisione $\{r_i, i=1, 2,..., \nu\}$ di \overline{A} in regioni di Jordan tale che

$$m \leqslant \sum_{i=1}^{r} |O(x, y; c_i)|.$$

Consideriamo le sole regioni r_i , i=1, 2,..., r', $0 \le r' \le r$, per le quali c_i non passa per $Q \equiv (x, y)$ e approssimiamo ciascuna delle curve r_i^* mediante una spezzata $\gamma_i^{(n)}$ semplice, chiusa, tutta costituita di lati di quadrati $R_{ij}^{(n)}$, $i, j=1, 2,..., N_n$, e interna a r_i . Sia $c_i^{(n)}$ l'immagine di $\gamma_i^{(n)}$. Per un n abbastanza grande si avrà $\|c_i^{(n)}, c_i\| < \{Q, c_i\}, i=1, 2,..., r'$, e quindi, per il Lemma 1,

$$O(x, y; c_i^{(n)}) = O(x, y; c_i), i = 1, 2, ..., \nu'$$

Per un tale n si avrà allora, ricordando che $Q \equiv (x, y)$ è fuori di E,

$$O(x, y; c_i^{(n)}) = \sum_i O(x, y; c_{ii}^{(n)}), \quad i=1, 2,..., \nu',$$

ove la sommatoria è estesa ai soli rettangoli $R_{ij}^{(n)}$ che entrano nel poligono definito dalla spezzata $\gamma_i^{(n)}$.

Ne segue

$$\sum_{i=1}^{p'} |O(x, y; c_i^{(n)})| \leq \sum |O(x, y; C_{ij}^{(n)})|,$$

ove la sommatoria è estesa a tutti quei rettangoli $R_{ij}^{(n)}$ che entrano in qualcuno dei poligoni definiti delle curve $\gamma_i^{(n)}$, $i=1, 2,..., \nu'$.

Ne segue infine, maggiorando,

$$\begin{split} m \leqslant & \sum_{i=1}^{r} |O(x, y; c_{i})| = \sum_{i=1}^{r'} |O(x, y; c_{i})| = \sum_{i=1}^{r'} |O(x, y; c_{i}^{(n)})| \leqslant \\ \leqslant & \sum |O(x, y; C_{ij}^{(n)})| \leqslant \sum_{i,j=1}^{N_{n}} |O(x, y; C_{ij}^{(n)})| = \varphi_{n}(x, y) \leqslant \Phi(x, y). \end{split}$$

Ma m è un qualsiasi intero tale che $m \leq \Psi(x, y)$. Ne segue

$$\Psi(x, y) \leq \Phi(x, y)$$

e questa relazione vale in tutti i punti di K-E. Confrontando con la (10) segue che, in tutti i punti di K-E, si ha

$$\Psi(x, y) = \Phi(x, y)$$

e quindi, poichè |E|=0,

(11)
$$W(\Phi) = \iint_K \Psi(x, y) dx dy = \iint_K \Phi(x, y) dx dy.$$

Consideriamo ora per ogni n la suddivisione $\{R_i\}$ di \overline{A} in $(N_n+2)^2$ al più rettangoli che si ottiene aggiungendo agli N_n^2 rettangoli $R_{ij}^{(n)}$, $i,j=1,2,...,N_n$, i 4N+4 (al più) rettangoli, contenuti in \overline{A} ed esterni al rettangolo $(\xi_0,\xi_{N_n},\eta_0,\eta_{N_n})$, formati dalle rette $u=\xi_i$, $v=\eta_j$, $i,j=1,2,...,N_n$. Manifestamente

(12)
$$\iint_{\mathcal{K}} \varphi_n(x, y) \, dx dy = \sum_{i, j=1}^{N_n} g(R_{ij}^{(n)}) \leq \sum_{i, j=1}^{N_i$$

D'altra parte in tutti i punti di K-E si ha $0 \le \varphi_n(x, y) \le \varphi_{n+1}(x, y)$ e quindi, per noti teoremi di integrazione per serie,

$$\lim_{n\to\infty} \iint\limits_{K} \varphi_n(x, y) dx dy = \iint\limits_{K} \Phi(x, y) dx dy.$$

Dalla (12) segue allora

$$\iint\limits_K \Phi(x,\,y) \, dx \, dy \le G(\Phi)$$

e, dalla (11), $W(\Phi) \leq G(\Phi)$. Ma, dal teorema 4, sappiamo che $G(\Phi) \leq W(\Phi)$ e quindi, in definitiva,

$$G(\Phi) = W(\Phi).$$

Il teorema 6 è con ciò dimostrato.

OSSERVAZIONE. - Le trasformazioni piane e continue del tipo

(13)
$$\begin{cases} x=u, & z=f(u,v), \\ y=v, & z=f(u,v), \end{cases} (u,v) \varepsilon \overline{A},$$

sono manifestamente regolari perchè tutte le curve $C(\xi)$ e $C'(\eta)$, qualunque siano i numeri ξ e η , sono semirettificabili e perciò occupano nel piano (x, z) e (y, z) insiemi di punti di misura nulla. Ricordiamo qui che L. Tonelli (8) e S. Saks (9) hanno dimostrato che condizione necessaria e sufficiente perchè per entrambe le trasformazioni (13) si abbia $G < +\infty$ è che la funzione f(u, v) sia a variazione limitata secondo Tonelli.

§ 2. - Alcune osservazioni sulle funzioni semicontinue.

1. - Dimostriamo nel presente paragrafo alcune semplici proposizioni che ci occorreranno nel paragrafo 3.

TEOREMA 1. - Se f(x, y) è una funzione semicontinua superiormente nel quadrato chiuso $\overline{A} \equiv (0, 1, 0, 1)$, allora la funzione di \overline{x} e y, $f_1(\overline{x}, y) = \max_{0 \le x \le \overline{x}} f(x, y)$ è una funzione di Baire in \overline{A} .

Sia $\varphi(x, y)$ una funzione continua. Sappiamo già che la funzione $\varphi_1(\bar{x}, y) = \max_{0 \le x \le \bar{x}} \varphi(x, y)$ è una funzione continua.

Poichè f(x, y) è semicontinua superiormente esiste una successione di funzioni continue

$$\varphi_1(x, y) \geqslant \varphi_2(x, y) \geqslant \varphi_3(x, y) \geqslant \dots \geqslant \varphi_n(x, y) \geqslant \dots,$$

tale che, in tutti i punti (x, y) di \overline{A} ,

$$\lim_{n\to\infty}\varphi_n(x, y)=f(x, y) \quad (^{10}).$$

Poniamo $\varphi_{in}(\bar{x}, y) = \max_{0 \leqslant x \leqslant \bar{x}} \varphi_n(x, y)$. Manifestamente

$$\varphi_{in}(\bar{x}, y) = \max_{0 \leqslant x \leqslant \bar{x}} \varphi_n(x, y) \geqslant \max_{0 \leqslant x \leqslant \bar{x}} f(x, y) = f_i(\bar{x}, y), \qquad \varphi_{in}(x, y) \geqslant \varphi_{i, n+1}(x, y)$$

e quindi esiste il limite

$$\lim_{n\to\infty}\varphi_{1n}(x, y) = \bar{f}_1(x, y)$$

e tale limite è una funzione di BAIRE di classe ≤1.

Manifestamente $\bar{f}_1(x,y) \ge f_1(x,y)$. Supponiamo che in un punto (\bar{x},\bar{y}) si abbia

$$\bar{f}_1(\bar{x}, \bar{y}) = f_1(\bar{x}, \bar{y}) + \varepsilon, \qquad \varepsilon > 0.$$

⁽⁸⁾ L. Tonelli: Sulla definizione di funzione di due variabili a variazione limitata. Rend. R. Accad. Lincei, S. VI, Vol. VII (1928), pp. 357-363.

⁽⁹⁾ S. SAKS: Theory of the integral. Monografic matem., Varsavia, 1937, p. 174.

⁽¹⁰⁾ C. CARATHÉODORY: Reelle Funktionen. Bd. 1, Leipzig, Teubner (1939), p. 159.

Poniamo $\alpha = f_1(\bar{x}, \bar{y})$. Intanto, per ogni $0 \le x \le \bar{x}$, si ha

$$f(x, \overline{y}) \leq \max_{0 \leq x \leq \overline{x}} f(x, \overline{y}) = f_1(\overline{x}, \overline{y}) = \alpha.$$

D'altra parte, per ogni n, si ha

(1)
$$\varphi_{in}(\bar{x}, \bar{y}) \geqslant \bar{f_i}(\bar{x}, \bar{y}) = \alpha + \varepsilon.$$

Per ogni n sia I_n l'insieme chiuso dei punti x, $0 \le x \le \overline{x}$, tali che $\varphi_n(x, \overline{y}) \ge \alpha + \varepsilon/2$. I_n non è vuoto perchè altrimenti sarebbe, per ogni $0 \le x \le \overline{x}$, $\varphi_n(x, \overline{y}) < \alpha + \varepsilon/2$ e quindi $\varphi_{1n}(\overline{x}, \overline{y}) < \alpha + \varepsilon/2$, ciò che contraddice la (1).

Gli insiemi non vuoti I_n sono l'uno contenuto nel precedente perchè le funzioni $\varphi_n(x, y)$ vanno decrescendo. Infine gli insiemi I_n sono chiusi. Esiste perciò un numero x_0 , $0 \le x_0 \le \bar{x}$ contenuto in tutti gli insiemi I_n .

Dunque per ogni n si ha $\varphi_n(x_0, \overline{y}) \ge \alpha + \varepsilon/2$ mentre

$$\lim_{n\to\infty}\varphi_n(x_0,\,\overline{y})=f(x_0,\,\overline{y}),\qquad f(x_0,\,\overline{y})\leqslant a,$$

da cui

$$a \gg a + \varepsilon/2$$
,

ciò che è assurdo.

Abbiamo così dimostrato che in ogni punto (x, y) di \overline{A} si ha $f_1(x, y) = f_1(x, y)$ e quindi $f_1(x, y)$ è una funzione di BAIRE di classe ≤ 1 .

TEOREMA 2. - Se f(x, y) è una funzione semicontinua superiormente nel quadrato chiuso $\overline{A} \equiv (0, 1, 0, 1)$ allora, per ogni $y = \overline{y}$, $0 \le \overline{y} \le 1$, l'insieme dei valori x per i quali $f(x, \overline{y})$ assume il valore $f_1(1, y) = \max_{x \in A} f(x, y)$ è chiuso.

Di più la funzione x=x(y) definita per tutti gli $0 \le y \le 1$ dalle seguenti proprietà:

a)
$$f[x(y), y] = f_1(1, y) = \max_{0 \le x \le 1} f(x, y);$$

b) non esiste nessun $0 \le x' < x(y)$ per il quale valga la a); è una funzione di Baire.

Dimostriamo la prima parte. Intanto sia I l'insieme dei valori x nei quali $f(x, \overline{y})$ assume il suo valore massimo. Sia x_0 un punto di accumulazione di I e supponiamo che $f(x_0, \overline{y}) = m < M = f_1(1, \overline{y})$. Ma f(x, y) è semicontinua superiormente e quindi ad ogni $\varepsilon > 0$ corrisponde un intorno del punto (x_0, \overline{y}) in tutti i punti (x, y) del quale

$$f(x, y) < f(x_0, \overline{y}) + \varepsilon = m + \varepsilon$$

e, se (x, y) appartiene ad I,

$$M < m + \varepsilon$$

ciò che è assurdo se ε è sufficientemente piccolo.

Dimostriamo la seconda parte.

Intanto la funzione $f_1(1, y)$ è una funzione di BAIRE della sola y e quindi anche una funzione di BAIRE di (x, y) in A. Dunque la funzione sempre non negativa

$$\varphi_0(x, y) = f_1(1, y) - f_1(x, y)$$

è di BAIRE ed è positiva se $0 \le x < x(y)$, è nulla se $x(y) \le x \le 1$. Poniamo

$$\varphi(x, y) = \lim_{n \to \infty} \left\{ \left| \left[1 + \varphi_0(x, y) \right]^n \right|_0^2 - 1 \right\} \quad (11).$$

Manifestamente

$$\varphi(x, y) = \begin{cases} 1 & \text{se } 0 \leq x < x(y), \\ 0 & \text{se } x(y) \leq x \leq 1 \end{cases}$$

e la funzione $\varphi(x, y)$ è di BAIRE. Finalmente la funzione

$$x(y) = \int_{0}^{1} \varphi(x, y) dx$$

è pure di Baire.

TEOREMA 3. - Sia f(x, y; Q) una funzione semicontinua superiormente delle variabili x, y, Q, definita per ogni punto (x, y) del quadrato chiuso $p \equiv (0, 1, 0, 1)$ e per ogni punto Q di un quadrato chiuso q. La funzione

$$f_i(\bar{x}, \bar{y}; Q) = \max_{\substack{0 \leqslant x \leqslant \bar{x} \\ 0 \leqslant y \leqslant \bar{y}}} f(x, y; Q)$$

è una funzione di Baire di classe ≤ 1 delle variabili \bar{x} , \bar{y} , Q. La dimostrazione è identica a quella del teorema 1.

TEOREMA 4 (12). - Sia f(x, y; Q) una funzione semicontinua superiormente delle variabili x, y, Q, definita per ogni punto (x, y) del quadrato chiuso $p \equiv (0, 1, 0, 1)$ e per ogni punto Q di un quadrato chiuso q. Allora, per ogni punto Q del quadrato q, l'insieme I(Q) dei punti (x, y) tali che

$$f(x, y; Q) = \max_{(\overline{x}, \overline{y}) \in P} f(\overline{x}, \overline{y}; Q), \quad (x, y) \in I(Q),$$

(11) Con
$$\left| f(x,y) \right|_p^q (p < q)$$
 indice la funzione $\left| f(x,y) \right|_p^q = f(x,y)$ se $p < f < q$, $= q$ se $f > q$, $= p$ se $f < p$.

⁽¹²⁾ Questo e il precedente teorema si estendono in modo evidente al caso di un numero maggiore di dimensioni.

è chiuso. Di più esistono certe funzioni di Baire, definite per ogni punto Q di q,

tali che

- a) $f[x(Q), y(Q); Q] = \max_{(x, y) \in P} f(x, y; Q)$ per ogni $Q \in q$;
- b) nel rettangolo $0 \le x \le x(Q)$, $0 \le y \le y(Q)$ il solo punto [x(Q), y(Q)] verifica la a).

La dimostrazione della prima parte è identica a quella del teorema 2. Dimostriamo la seconda parte. Consideriamo la funzione di BAIRE

$$\varphi_0(x, y; Q) = f_1(1, 1; Q) - f_1(x, y; Q)$$

sempre non negativa.

Consideriamo ora l'insieme, che diciamo J(Q), dei punti (x, y) di p che godono della seguente proprietà: esiste qualche punto (x_0, y_0) di I(Q) tale che

$$x_0 \leqslant x$$
, $y_0 \leqslant y$.

Dimostriamo che l'insieme J(Q) è chiuso. Sia infatti (x_0, y_0) un punto di accumulazione di J(Q). Per ogni intero n, esiste un insieme non vuoto di punti (\bar{x}, \bar{y}) di J(Q) tali che

$$x_0 - \frac{1}{n} \le \bar{x} \le x_0 + \frac{1}{n}, \qquad y_0 - \frac{1}{n} \le \bar{y} \le y_0 + \frac{1}{n}.$$

D'altra parte per ogni punto (\bar{x}, \bar{y}) di J(Q) esiste un insieme non vuoto di punti (\bar{x}, \bar{y}) di I(Q) tali che

$$\bar{\bar{x}} \leqslant \bar{x}, \quad \bar{\bar{y}} \leqslant \bar{y},$$

e quindi anche

(2)
$$\overline{\overline{x}} \leq x_0 + \frac{1}{n}, \quad \overline{\overline{y}} \leq y_0 + \frac{1}{n}.$$

L'insieme dei punti $(\overline{x}, \overline{\overline{y}})$ di I(Q) che verifica le (2) è dunque non vuoto e, d'altra parte, necessariamente chiuso, come intersezione dell'insieme chiuso I(Q) con il rettangolo

$$0 \le x \le x_0 + \frac{1}{n}, \qquad 0 \le y \le y_0 + \frac{1}{n}.$$

Fatto n=1, 2,..., abbiamo una infinità numerabile di insiemi chiusi l'uno contenuto nel precedente e tutti contenuti in p. Esiste perciò un punto (x_{∞}, y_{∞}) appartenente a tutti questi insiemi e quindi anche a I(Q) e per esso deve aversi

$$x_{\infty} \leqslant x_{0}, \quad y_{\infty} \leqslant y_{0}.$$

Ciò significa che il punto (x_0, y_0) appartiene a J(Q).

Siano ora \overline{y} e Q qualsiasi. La retta $y=\overline{y}$ sega l'insieme J(Q) in un insieme (lineare) chiuso che è certo non vuoto se $\overline{y}=1$. Sia \overline{x} il punto che ha minima ascissa. Il punto $(\overline{x}, \overline{y})$ appartiene a J(Q). La retta $x=\overline{x}$ sega l'insieme J(Q) in un insieme (lineare) chiuso che contiene il punto $(\overline{x}, \overline{y})$. Sia \overline{y} il punto di esso che ha minima ordinata.

Il punto $(\overline{x}, \overline{\overline{y}})$ appartiene a J(Q) e nessun altro punto di tutto il rettangolo $0 \le x \le \overline{x}$, $0 \le y \le \overline{y}$ appartiene a J(Q). Infatti se un punto $0 \le x_0 < \overline{x}$, $0 \le y_0 < \overline{y}$ appartenesse a J(Q), allora tutto il rettangolo $x_0 \le x \le 1$, $y_0 \le y \le 1$, apparterrebbe a J(Q) e perciò si sarebbe trovato $\overline{x} = x_0$, $\overline{y} = y_0$. Se un punto (x_0, y_0) , $0 \le x_0 < \overline{x}$, $y_0 = \overline{y}$ appartenesse a J(Q), allora anche tutto il rettangolo $x_0 \le x \le 1$, $\overline{y} \le y \le 1$ apparterrebbe a J(Q) e perciò si sarebbe trovato $\overline{x} = x_0$. Infine se un punto $x_0 = \overline{x}$, $0 \le y_0 < \overline{y}$ appartenesse a J(Q), allora tutto il segmento $x = \overline{x}$, $y_0 \le y \le \overline{y}$ apparterrebbe a J(Q) e quindi si sarebbe trovato $\overline{y} = y_0$. Osserviamo ora che

$$\varphi_0(x, y; Q) \left\{ egin{array}{ll} = 0 & \mbox{se} & (x, y) \ arepsilon \ J(Q), \\ > 0 & \mbox{se} & (x, y) \ arepsilon \ p - J(Q). \end{array}
ight.$$

Poniamo

$$\varphi(x, y; Q) = \lim_{n \to \infty} \left\{ \left| \left[1 + \varphi_0(x, y; Q) \right]^n \right|_0^2 - 1 \right\}.$$

La funzione $\varphi(x, y; Q)$ è di BAIRE e

$$\varphi(x, y; Q) = \begin{cases} 1 & \text{se } (x, y) \in p - J(Q), \\ 0 & \text{se } (x, y) \in J(Q). \end{cases}$$

Le seguenti funzioni, certamente di BAIRE, godono le proprietà a) e b):

$$x(Q) = \int_{0}^{1} \varphi(x, 1; Q) dx,$$

$$y(Q) = \int_{0}^{1} \varphi(x(Q), y; Q) dy.$$

Di più osserviamo che le funzioni $x(Q),\ y(Q)$ godono della ulteriore seguente proprietà :

c) nel rettangolo $0 \le x < x(Q)$, $0 \le y \le 1$ nessun punto (x, y) verifica la a).

§ 3. - Sulle trasformazioni continue.

1. - Richiamo di alcune nozioni elementari della teoria degli insiemi. Richiamo qui alcune nozioni della teoria degli insiemi piani perchè di uso continuo nel seguito. Per brevità mi limito a qualche definizione e ai soli enunciati di alcune proposizioni la cui dimostrazione è facilissima (13).

Un insieme di punti A si dice chiuso relativamente ad un insieme B se A è contenuto in B e se ogni punto di accumulazione di A, che appartiene a B, appartiene ad A.

Due o più insiemi si dicono mutualmente esclusivi se essi sono a due a due senza punti in comune.

Un insieme A si dice connesso se esso non si può scomporre in due insiemi mutualmente esclusivi A_1 e A_2 chiusi relativamente ad A.

Un insieme chiuso A sarà perciò connesso se esso non si può scomporre in due insiemi chiusi mutualmente esclusivi. Un insieme chiuso e connesso si dice un continuo. Anche un semplice punto verrà considerato un continuo.

LEMMA 1. - Se A è un insieme aperto e connesso e P e Q sono due punti di A, esiste una poligonale semplice tutta costituita di punti di A congiungente P e Q.

Un insieme M si dice massimale rispetto ad una data proprietà P se M possiede la proprietà P e non è sottoinsieme proprio di altro insieme avente la stessa proprietà. Si dice che C è un componente di un insieme A se C è un sottoinsieme connesso di A e C non è sottoinsieme proprio di altro sottoinsieme connesso di A, ossia se C è sottoinsieme connesso massimale di A.

I componenti di un insieme chiuso sono continui mutualmente esclusivi. I componenti di un insieme aperto sono insiemi aperti e connessi e ogni insieme aperto è costituito di un numero finito o di una infinità numerabile di componenti. Se A, B, T sono sottoinsiemi propri di un insieme connesso M, si dice che T separa A e B in M se M-T è la somma di due insiemi mutualmente esclusivi contenenti A e B rispettivamente e chiusi relativamente a M-T.

LEMMA 2. - Sia A un insieme limitato e chiuso e siano P e Q due punti di A appartenenti a componenti C_1 e C_2 distinti di A. Allora esiste una poligonale semplice e chiusa γ che non incontra A e tale che i punti P e Q sono l'uno interno e l'altro esterno a γ , cioè γ separa P e Q (nel piano π a cui appartengono A e γ). Inoltre si può supporre che ogni punto di γ abbia una distanza da C_1 (oppure da C_2) minore di una quantità prefissata arbitrariamente.

LEMMA 3. - Se k è un continuo contenuto in un quadrato q, esiste una poligonale semplice e chiusa γ che contiene k nel suo interno e tutti i punti

⁽¹³⁾ Cfr. B. v Kerékjártó: Vorlesungen über Topologie I, Berlin, Springer, 1923.

di γ hanno una distanza positiva da k minore di una quantità prefissata arbitrariamente.

LEMMA 4. - Se k è un continuo contenuto in un quadrato q e P e Q due punti di esso, esiste una poligonale semplice γ congiungente P con Q tutti i punti della quale hanno una distanza da k minore di una quantità prefissata arbitrariamente.

Un insieme aperto A si dice *semplicemente connesso* se A contiene tutti i punti di una delle regioni aperte individuate da una qualunque curva semplice e chiusa tutta costituita di punti di A. Ricordiamo che:

Condizione necessaria e sufficiente perchè un insieme aperto e limitato A sia semplicemente connesso è che la frontiera di A sia un continuo.

LEMMA 5. - Se k è un continuo tutto contenuto in un quadrato q del piano π , i componenti dell'insieme aperto $\pi - k$ sono semplicemente connessi ed uno ed uno solo di essi contiene la frontiera di q. Due qualunque componenti dell'insieme aperto $\pi - k$ sono separati da k in π e se due insiemi A e B sono separati da k in π , allora A e B appartengono a componenti distinti di $\pi - k$.

LEMMA 6. - Se k_0 , k_1 , k_2 sono continui limitati e mutualmente esclusivi del piano π , esiste una poligonale semplice congiungente k_0 e k_2 , senza punti in comune con k_1 , allora e soltanto allora che k_1 non separa k_0 e k_2 nel piano π .

LEMMA 7. - Se k_0 , k_1 , k_2 sono continui mutualmente esclusivi tutti contenuti in uno stesso quadrato q del piano π e k_1 e k_2 separano k_0 dalla frontiera di q, allora o k_2 separa k_1 dalla frontiera di q, oppure k_1 separa k_2 dalla frontiera di q (delle due alternative una ed una sola dovendosi verificare).

2. - Collezioni semicontinue di insiemi continui.

DEFINIZIONE 1. - Se $[I_n, n=1, 2,...]$ è una successione di insiemi, l'insieme costituito di tutti i punti P in ogni intorno dei quali esistono punti appartenenti ad infiniti insiemi I_n , si dice l'insieme di accumulazione della successione $[I_n]$.

TEOREMA 1 (di ZORETTI). - Se $[k_n, n=1, 2,....]$ è una successione di continui tutti contenuti in un quadrato q ed esiste un punto P_0 in ogni intorno del quale cadono punti di tutti gli insiemi k_n da uno di essi in poi, allora l'insieme di accumulazione della successione $[k_n]$ è un continuo.

La definizione 1 e il teorema di ZORETTI possono essere estesi come segue. DEFINIZIONE 2. - Se [I] è una collezione ordinata di insiemi e se, comunque scelto un insieme I di [I], esistono in [I] infiniti insiemi che seguono I, allora si dice insieme di accumulazione della collezione ordinata [I] l'insieme di tutti i punti P che hanno la seguente proprietà: Comunque si assegni un intorno U(P) di P e un insieme I di [I] esistono in U(P) punti di infiniti insiemi di [I] seguenti I.

TEOREMA 2. - Se [k] è una collezione ordinata di continui tutti contenuti in un quadrato q, se, comunque scelto un insieme k di [k], esistono in [k] infi-

niti insiemi che seguono k, se esiste un punto P_0 in ogni intorno del quale cadono punti di tutti gli insiemi k di [k] da uno di essi in poi, allora l'insieme di accumulazione della collezione ordinata [k] è un continuo.

DEFINIZIONE 3. · Si dice che una collezione $\{k\}$ di continui k tutti contenuti in un quadrato q è semicontinua superiormente (14) se $\{k\}$ ha la seguente proprietà: se [k] è una sottocollezione ordinata di continui di $\{k\}$ soddisfacente alle ipotesi del teorema 2, allora esiste in $\{k\}$ un continuo k_0 contenente interamente l'insieme di accumulazione della sottocollezione [k].

Dimostriamo subito il seguente ben noto

TEOREMA 3. - Se $\{k\}$ è una collezione semicontinua superiormente di continui mutualmente esclusivi, se [k] è una sua sottocollezione e F l' insieme dei punti occupati dai continui di [k], allora condizione necessaria e sufficiente perchè [k] sia semicontinua superiormente è che F sia chiuso (15).

Sia [k] semicontinua superiormente e sia P_0 un punto di accumulazione di F. Dobbiamo dimostrare che P_0 appartiene ad un continuo k di [k] e che perciò appartiene ad F. Ragioniamo per assurdo e quindi supponiamo che tutti i continui k di [k] abbiano distanza positiva da P_0 . Esistono però in [k] continui vicini a P_0 quanto si vuole. Esiste dunque un insieme $\{\varrho\}$ di numeri reali positivi aventi $\varrho = 0$ come punto di accumulazione e tali che, per ogni numero ϱ di $\{\varrho\}$, non è vuota la classe $[k]_o$ dei continui di [k] che contengono punti che hanno da P_0 distanza $= \varrho$. Sia C_{ϱ} la circonferenza di centro $P_{\mathbf{0}}$ e raggio ϱ e sia I_{ϱ} l'insieme dei punti segati dai continui di $[k]_{\rho}$ su C_{ρ} . Sia \overline{P} un punto di accumulazione di I_{ϱ} . Supponiamo che P non appartenga ad I_{ϱ} . Siano c_{1} e c_{2} le due semicirconferenze di C_o che hanno un estremo in comune in \overline{P} e diciamo c_i quella per la quale \overline{P} è punto di accumulazione dell'insieme c_1I_{ϱ} (se ciò accade per entrambe sia c_i una di esse). Diciamo $[k]_{\rho}$ l'insieme dei continui di $[k]_{\rho}$ che toccano in qualche punto c_i . Per ogni continuo k di $[k]_{o}$, l'insieme chiuso kc_i ha una distanza $\delta > 0$ da \overline{P} ed esiste un punto di kc_i che effettivamente dista δ da P. Ma un punto di c_1 non può appartenere a più di un continuo k (perchè i continui di $\{k\}$ sono mutualmente esclusivi) e quindi due continui k e k'di $[k]_{\varrho}$ non possono essere tali che kc_1 e $k'c_1$ abbiano la stessa distanza da P. L'insieme $[k]_{\varrho}$ può dunque essere ordinato secondo i valori decrescenti di δ e, così ordinato, verifica tutte le condizioni del teorema 2.

In forza della semicontinuità superiore della collezione [k] l'insieme $[k]_{e'}$, ordinato come si è detto, ha un insieme di accumulazione completamente con-

⁽¹⁴⁾ Cfr. per questo concetto, R. L. Moore: Foundations of point set theory, Amer. Math. Soc., 1932, Colloquium publications, Vol. XIII. Le poche proprietà delle collezioni semicontinue superiormente che occorreranno in questo lavoro verranno tutte dimostrate.

⁽¹⁵⁾ Potendosi sempre individuare un punto di un insieme chiuso, risulta che è sempre possibile individuare un elemento della collezione [k] ogniqualvolta questa sia semicontinua superiormente.

tenuto in un continuo \bar{k} di [k] che contiene \bar{P} e quindi appartiene a $[k]_\varrho$. Dunque il punto \bar{P} appartiene a I_ϱ mentre avevamo supposto che \bar{P} non vi appartenesse. È così dimostrato che \bar{P} appartiene ad I_ϱ e che I_ϱ è un insieme chiuso. Sia P_ϱ un punto di I_ϱ e sia k_ϱ un continuo di $[k]_\varrho$ che contenga P_ϱ . Tale continuo è unico. Inoltre $\lim_{\varrho \to 0} P_\varrho = P_0$. La collezione $[k_\varrho]$, ordinata secondo i valori decrescenti di ϱ , verifica tutte le condizioni del teorema 2 e, in forza della semicontinuità superiore dell'insieme [k], l'insieme di accumulazione della collezione $[k_\varrho]$ è completamente contenuto in un continuo k_0 di [k] che contiene P_0 . Dunque P_0 appartiene ad P mentre avevamo supposto che P_0 non vi appartenesse. È con ciò dimostrato che P_0 appartiene ad P e che P è un insieme chiuso.

Supponiamo viceversa che F sia chiuso. Allora, se [k] è una sottocollezione ordinata di continui di $\{k\}$ verificante le condizioni del teorema 2 e se P_0 è il relativo punto, P_0 appartiene all'insieme di accumulazione continuo g di [k]. Ma $\{k\}$ è per ipotesi semicontinua superiormente epperciò g appartiene ad un continuo k_0 di $\{k\}$. D'altra parte F è chiuso e P_0 appartiene ad F perchè punto di accumulazione di punti di F. Ne segue che P_0 è contenuto in un continuo \bar{k} di [k] e \bar{k} appartiene a $\{k\}$. Ma i continui di $\{k\}$ sono mutualmente esclusivi e poichè i continui k_0 e \bar{k} hanno il punto P_0 in comune essi debbono coincidere e quindi il continuo g appartiene interamente al continuo \bar{k} di [k]. Dunque [k] è semicontinua superiormente.

3. - Le trasformazioni continue e la relativa collezione G.

Sia \overline{A} il quadrato chiuso (0, 0, 1, 1) del piano (u, v) e siano x(u, v), y(u, v), z(u, v) funzioni continue in \overline{A} . Diremo che le equazioni

(1)
$$T: \quad x = x(u, v), \quad y = y(u, v), \quad z = z(u, v), \quad (u, v) \, \varepsilon \overline{A},$$

definiscono una trasformazione continua T. Con la nozione di trasformazione continua comprendiamo cioè le superficie continue in forma parametrica come le trasformazioni piane e continue, già definite nel \S 1, alle quali le (1) si riducono quando, per ogni (u, v) di \overline{A} , il punto (x, y, z) corrispondente appartiene ad uno stesso piano indipendente dal punto (u, v) di \overline{A} , o, più particolarmente, quando una delle tre funzioni x(u, v), y(u, v), z(u, v) è costante oppure identicamente nulla.

Diremo che il punto $Q \equiv (x, y, z) = T(P)$, corrispondente per le (1) al punto $P \equiv (u, v)$ di \overline{A} , è l'immagine del punto $P \equiv (u, v)$. L'insieme $T(\overline{A})$ costituito di tutti i punti $Q \equiv (x, y, z)$ che sono immagini di qualche punto di \overline{A} è limitato e chiuso. Sia K un cubo a spigoli paralleli agli assi x, y, z contenente interamente nel suo interno l'insieme $T(\overline{A})$. Siano K_1, K_2, K_3 i quadrati dei piani coordinati (x, y), (x, z), (y, z) nei quali il cubo K si proietta ortogonalmente. Se Q è un punto di $T(\overline{A})$ indicheremo con $T^{-1}(Q)$ l'insieme di tutti i punti

P di \overline{A} la cui immagine cade in Q. Per ogni Q di $T(\overline{A})$ l'insieme $T^{-1}(Q)$ è chiuso. Vale infine il seguente

TEOREMA 4. - La trasformazione $T^{-1}(Q)$ è continua, cioè ad ogni numero $\varepsilon > 0$ arbitrario si può far corrispondere un $\delta > 0$ tale che se Q e Q' sono due punti di $T(\overline{A})$ tali che $\overline{QQ'} < \delta$, allora la distanza $\{T^{-1}(Q), T^{-1}(Q')\}$ tra gli insiemi chiusi $T^{-1}(Q)$ e $T^{-1}(Q')$ di punti di \overline{A} è minore di ε .

Questa proposizione è nota e la sua dimostrazione non offre difficoltà.

Per ogni $0 < \delta \le \sqrt{2}$ diciamo $\omega(\delta)$ il massimo della quantità

(2)
$$\{[x(u, v) - x(u', v')]^2 + [y(u, v) - y(u', v')]^2 + [z(u, v) - z(u', v')]^2\}^{1/2}$$

per tutti i punti (u, v), (u', v') di \overline{A} tali che $[(u-u')^2+(v-v')^2]^{1/2} \leq \delta$. Si ha $\lim_{\delta \to 0} \omega(\delta) = 0$ e la funzione $\omega(\delta)$ è continua e non decrescente. La funzione $\omega(\delta)$ dicesi il modulo di continuità della trasformazione T.

Se I è un insieme di punti di \overline{A} diciamo oscillazione della trasformazione T su I l'estremo superiore $\eta(I)$ della (2) per tutti i punti (u, v), (u', v') di I. Se indichiamo con I^* e \overline{I} rispettivamente la frontiera e la chiusura dell'insieme I si ha $\eta(I) = \eta(I)$ e, se $\delta(I)$ è il diametro di I, $\eta(I) \leq \omega[\delta(I)]$.

Per ogni punto Q_0 di $T(\overline{A})$ consideriamo l'insieme $\{g\}_0$ di tutti i componenti (continui) g dell'insieme chiuso $T^{-1}(Q_0)$ di punti di \overline{A} . Sia poi G la collezione $\{g\}$ di tutti i continui g che sono componenti di qualche insieme $T^{-1}(Q)$. La collezione G è la collezione dei continui massimali di \overline{A} sui quali le tre funzioni x(u, v), y(u, v), z(u, v) sono costanti. Vale inoltre il seguente

TEOREMA 5. - I continui g di G sono mutualmente esclusivi e ogni punto P di \overline{A} appartiene ad uno (e ad uno solo) dei continui g di G. La collezione G è semicontinua superiormente.

La prima parte del teorema è evidente. Dimostriamo la seconda parte. Sia [g] una sottocollezione ordinata di continui g di G verificante le condizioni del teorema 2 e sia P_0 un punto in ogni intorno del quale cadono punti di tutti gli insiemi g di [g] da uno di essi in poi. Poniamo $P_0 \equiv (u_0, v_0)$, $x_0 = x(u_0, v_0)$, $y_0 = y(u_0, v_0)$, $z_0 = z(u_0, v_0)$. Preso un $\varepsilon > 0$ arbitrario esiste un intorno circolare $U(P_0, \eta)$ del punto P_0 di raggio $\eta > 0$ in tutti i punti del quale le funzioni x(u, v), y(u, v), z(u, v) differiscono da x_0 , y_0 , z_0 rispettivamente per meno di ε . In $U(P_0, \eta)$ esistono punti di tutti gli insiemi g da uno di essi in poi epperciò le funzioni x(u, v), y(u, v), z(u, v) hanno su tali insiemi g valori che differiscono da x_0 , y_0 , z_0 per meno di ε . Ne segue che anche sull' insieme di accumulazione k_0 dei continui g di [g] le funzioni x(u, v), y(u, v), z(u, v) hanno valori che differiscono da x_0 , y_0 , z_0 per meno di ε . Ma ε è arbitrario e k_0 non dipende da ε . Ne segue che su k_0 le funzioni x(u, v), y(u, v), z(u, v) sono costantemente uguali a x_0 , y_0 , z_0 rispettivamente. Ma, per il teorema z_0 , z_0 0 è un continuo ed esso sarà contenuto in un continuo massimale z_0 0 (che potrà anche coincidere

con k_0) sul quale le funzioni x(u, v), y(u, v), z(u, v) sono costanti. È così dimostrato che k_0 è contenuto in un continuo g di G. La collezione G è dunque semicontinua superiormente.

4. - La collezione G_1 relativa ad una trasformazione continua.

Sia, come precedentemente, la (1) una trasformazione continua e sia G la relativa collezione dei continui massimali di \overline{A} sui quali le funzioni x(u, v), y(u, v), z(u, v) sono costanti.

Diremo che un continuo g di G separa il piano $\pi \equiv (u, v)$ se l'insieme aperto $\pi - g$ non è connesso. In tal caso si osservi (Lemma 5, n. 1) che uno ed uno solo dei componenti di $\pi - g$ contiene punti esterni al quadrato \overline{A} . Diremo che g separa un punto P da ∞ se g separa P dai punti esterni ad \overline{A} nel piano π .

Se in G esistono dei continui g che separano il piano π , diciamo G_1 la sottocollezione di tutti i continui g di G che hanno questa proprietà.

Sia g_0 uno qualunque di essi e sia $[g]_0$ la collezione dei continui g di G_1 costituita dal continuo g_0 e da tutti quei continui g di G (se ve ne sono) che separano g_0 da ∞ .

Ricordiamo ora che se g_1 e g_2 sono due continui di $[g]_0$ distinti tra loro e da g_0 , allora (Lemma 7, n. 1) o g_2 separa g_1 da ∞ , oppure g_1 separa g_2 da ∞ . Ne segue che l'insieme $[g]_0$ può essere ordinato stabilendo che g_1 preceda g_2 se g_2 separa g_4 da ∞ .

Dimostriamo il seguente

LEMMA 8. - La collezione ordinata $[g]_0$ ha un primo ed un ultimo elemento e l'insieme dei punti di \overline{A} occupati dai continui g di $[g]_0$ è chiuso.

Intanto è evidente da quanto precede che g_0 è il primo elemento di [g] e che g_0 è separato da ∞ da tutti i rimanenti insiemi (se ve ne sono) della collezione $[g]_0$.

Se $[g]_0$ contiene un numero finito di elementi il Lemma è evidente. Abbia dunque $[g]_0$ infiniti elementi e supponiamo, se possibile, che $[g]_0$ sia privo di un ultimo elemento.

Congiungiamo il continuo g_0 con il punto ∞ (cioè con un punto arbitrario esterno al quadrato \overline{A}) mediante una poligonale semplice l. Possiamo sempre supporre che l abbia il solo punto iniziale P_0 appartenente a g_0 . Ogni continuo g di $[g]_0$ distinto da g_0 sega la poligonale l in qualche punto perchè, in caso contrario, g_0 non sarebbe separato da ∞ dal continuo g (Lemma 6, n. 1). Di più l'insieme intersezione lg è chiuso, non vuoto e non contiene P_0 perchè i continui g e g_0 non hanno punti in comune. Diciamo P(g) l'ultimo dei punti di lg su l a partire da P_0 . I punti P(g) sono tutti distinti perchè i continui g sono mutualmente esclusivi.

Osserviamo ora che se g_1 e g_2 sono due continui e $P(g_1)$ precede $P(g_2)$ su l, allora g_1 precede g_2 in $[g]_0$. Infatti il punto $P(g_2)$ e quindi g_2 è congiunto

al punto ∞ dalla poligonale l a partire da $P(g_2)$ e questa poligonale non incontra l'insieme g_1 . Ne segue che g_1 non può separare g_2 da ∞ (Lemma 6, n. 1) e quindi (Lemma 7, n. 1) deve g_2 separare g_1 da ∞ , ossia g_2 segue g_1 in $[g]_0$. Analogo risultato scambiando g_1 con g_2 . Dunque i punti P(g) sono ordinati su l nello stesso ordine dei continui g di $[g]_0$. I punti P(g) hanno poi un punto limite P_∞ su l. La collezione $[g]_0$ verifica tutte le ipotesi del teorema 2 e quindi il suo insieme di accumulazione è un continuo k che, per la continuità superiore della collezione G, deve essere contenuto in un continuo g_1 di G.

Dimostriamo che g_1 separa tutti i continui g di $[g]_0$, distinti da g_1 , da ∞ . Supponiamo infatti il contrario. Allora esisterebbe qualche continuo \overline{g} di $[g]_0$ che non è separato da ∞ da g_1 . Ogni continuo \overline{g} che gode di tale proprietà potrebbe quindi essere congiunto a ∞ da una poligonale semplice l avente il solo punto iniziale P_0 appartenente a \overline{g} e senza punti in comune con g_1 . Ragionando come sopra, per ogni continuo \overline{g} , si vede però che tutti i continui g di $[g]_0$ che seguono un dato \overline{g} in $[g]_0$ individuano un punto P(g) di l e questi punti P(g) si seguono su l nello stesso ordine dei continui g di $[g]_0$. Il punto limite P_∞ dei punti P(g) appartiene dunque ad l e anche al continuo k di accumulazione dei continui $[g]_0$. Ne segue che P_∞ appartiene ad l e a g_1 , ossia l e g_1 si intersecano contro il supposto. È così dimostrato che g_1 separa tutti i continui g di $[g]_0$ da ∞ e, in particolare, il continuo g_0 . La collezione $[g]_0$ ha dunque un ultimo elemento.

Diciamo E l'insieme dei punti occupati in \overline{A} dai continui g di $[g]_0$. Sia P un punto di accumulazione di E. Supponiamo che P non appartenga a nessun continuo g di $[g]_0$.

Dividiamo gli insiemi g di $[g]_0$ in due classi mettendo nella prima tutti quei continui g che non separano P da ∞ , mettendo nella seconda tutti quelli che separano P da ∞ .

Ragionando come sopra si vede che gli elementi della prima classe hanno un ultimo elemento g_1 . Infatti, in caso contrario, essi avrebbero un insieme di accumulazione continuo k che sarebbe contenuto in un insieme g_1 di G e, ragionando come sopra, si dimostrerebbe che g_1 appartiene a G_1 e che g_1 separa tutti i continui della prima classe da ∞ epperciò è un elemento di $[g]_0$. Infine g_1 non separa P da ∞ e quindi g_1 appartiene alla prima classe. In modo analogo si dimostra che la seconda classe ha un primo elemento g_2 . Ma P non appartiene ne a g_1 ne a g_2 . Sia $\delta > 0$ la sua minima distanza da g_1 e g_2 . È evidente che la distanza di P da E è non minore di δ e quindi P non è punto di accumulazione di E, ciò che è assurdo. Dunque i punti di accumulazione di E appartengono ad E ed E è perciò chiuso.

Il Lemma 8 è così completamente dimostrato.

Togliamo ora dalla collezione ordinata $[g]_0$ l'ultimo elemento g_1 e supponiamo che la nuova collezione sia tale che, comunque assegnato un elemento \overline{g} di essa

esistano infiniti continui g seguenti \overline{g} . Sia k l'insieme di accumulazione della nuova collezione. k è un continuo contenuto in g_1 . Dimostriamo che ogni punto P di k gode la seguente proprietà: In ogni intorno $U(P, \varepsilon)$ di P esistono punti di tutti i continui g di $[g]_0$ da uno di essi in poi.

Supponiamo infatti il contrario che cioè, per un punto P di k e per un $\varepsilon>0$ sufficientemente piccolo, l'intorno $U(P,\varepsilon)$ manchi di punti appartenenti a infiniti insiemi g di $[g]_0$ che seguono un qualunque insieme g di $[g]_0$ assegnato. Sia \overline{P} un punto di $U(P,\varepsilon)$ appartenente ad $E-g_1$ e sia \overline{g} l'insieme g di $[g]_0$ a cui \overline{P} appartiene. Indichi g' uno qualunque degli insiemi g che seguono \overline{g} in $[g]_0$ e che non hanno punti in $U(P,\varepsilon)$. Si osservi che il segmento $\overline{P}P$, congiungente il punto \overline{P} con P, non ha punti in comune con g'. Si osservi pure che il punto P, appartenente a g_1 , può essere congiunto a ∞ da una poligonale semplice che non ha punti in comune con g'. Ne segue che \overline{P} può congiungersi a ∞ con una poligonale semplice senza punti in comune con g', ciò che è impossibile perchè g' separa \overline{g} da ∞ .

- 5. Lemma 9. Se [g] è una collezione di continui g di G_1 tale che se g_1 e g_2 sono due continui di [g] o g_1 separa g_2 da ∞ oppure g_2 separa g_4 da ∞ , allora
- a) se ordiniamo [g] in modo che g_1 preceda g_2 se g_2 separa g_1 da ∞ e [g] non ha ultimo elemento, allora l'insieme di accumulazione k_1 di [g] è contenuto in un continuo g_1 di G_1 che separa da ∞ tutti i continui di [g];
- b) se [g], ordinata come in a), non ha primo elemento, allora, invertito l'ordine dei suoi elementi, il suo insieme di accumulazione è un continuo k_2 contenuto in un continuo \overline{g} di G che è separato da ∞ da tutti i continui g di [g];
- c) se esiste un punto P separato da ∞ da tutti gli elementi di [g] e non appartenente a \overline{g} , allora \overline{g} è un continuo di G_1 e P è separato da ∞ da \overline{g} .

Se infine [g] contiene insieme a due suoi qualsiasi elementi g_1 e g_2 tutti i continui g di G_1 che separano g_1 da ∞ e sono separati da g_2 da ∞ (si supponga che g_1 preceda g_2 in [g]) allora, detto E l'insieme occupato dai continui di [g], l'insieme $E+k_2+k_1$ è chiuso (16).

La dimostrazione di questo Lemma è analoga alla dimostrazione del Lemma precedente.

⁽¹⁶⁾ Se A+B e B sono insiemi chiusi, se AB=0 e A non è vuoto, è noto che è possibile individuare un punto P di A. Ne segue che, nelle condizioni dell' ultimo alinea del Lemma 9, è possibile individuare un elemento g della collezione [g] anche se questa non possiede ne primo ne ultimo elemento.

- 6. TEOREMA 6. È possibile scomporre la collezione G_1 in un numero finito o in una infinità numerabile di classi $\mathcal{L}_1, \mathcal{L}_2, ..., \mathcal{L}_i,$ in modo tale che
- a) se g_1 e g_2 sono due continui della stessa classe \mathfrak{L}_i , allora o g_1 separa g_2 da ∞ , oppure g_2 separa g_1 da ∞ ;
- b) se g_1 e g_2 sono due continui della stessa classe \mathfrak{L}_i e g_2 separa g_1 da ∞ , allora \mathfrak{L}_i contiene tutti i continui g di G_1 che separano g_1 e sono separati da g_2 da ∞ ;
 - c) ogni continuo g di G_1 appartiene ad una e ad una sola delle classi \mathfrak{L}_i ;
- d) l'insieme E_i dei punti di \overline{A} occupati dai continui di \mathfrak{L}_i è un insieme di Borel;
- e) per ogni i si può definire una funzione di Baire $\tau(P) = \tau(u, v)$ in E_i tale che $\tau(u, v)$ riesca costante su ogni continuo g di \mathfrak{L}_i e se P e P' sono punti di E_i appartenenti a continui g e g' distinti, allora, secondochè g separa g' da ∞ , oppure g' separa g da ∞ , si ha $\tau(P) > \tau(P')$, oppure $\tau(P) < \tau(P')$.

Sia g un continuo di G_1 e siano a_0 , a_1 ,.... i componenti dell'insieme aperto $\pi-g$. Sia a_0 quello di tali componenti che contiene il punto ∞ , siano a_1 , a_2 ,.... tutti gli altri. Poniamo

$$\overline{g} = g + \sum_{i=1}^{(\infty)} a_i,$$

ove abbiamo scritto (∞) per indicare che la sommatoria è una somma oppure una serie secondochè i componenti a_i sono in numero finito o infinito. L'insieme \overline{g} è un continuo che non separa il piano π . Manifestamente $\eta(\overline{g}) > 0$ poichè altrimenti le funzioni x(u, v), y(u, v), z(u, v) sarebbero costanti su \overline{g} e \overline{g} , e non g, sarebbe un continuo di G.

Sia ora n un intero arbitrario e sia $\{g\}_n$ la collezione dei continui g di G_i per i quali $\eta(\overline{g}) \ge 1/n$.

Per ogni g di $\{g\}_n$ consideriamo la famiglia [g] dei continui g di G_i costituita da g e da tutti i continui g di G_i che separano g da ∞ . Tale famiglia ha un primo elemento g ed un ultimo elemento g_i e tutti i suoi elementi appartengono a $\{g\}_n$.

Per ogni continuo g di $\{g\}_n$ noi troviamo così un continuo g_1 . Dimostriamo che l'insieme dei continui g_1 così trovati ed effettivamente distinti è finito. Infatti se g_1 e g_1' sono due continui g_1 distinti, allora ne g_1 può separare g_1' da ∞ , ne g_1' può separare g_1 da ∞ . Ne segue che i corrispondenti insiemi \overline{g}_1 e \overline{g}_1' non hanno punti in comune (17). Ma in \overline{g}_1 la trasformazione T ha una oscillazione 10 e quindi, se diciamo 11 più grande numero reale tale 12 corrispondenti insiemi 13 cove

⁽¹⁷⁾ Intanto $g_1 g_1' = 0$. Siano a_0 , a_1 , a_2 ,...., β_0 , β_1 , β_2 ,.... rispettivamente i componenti di $\pi - g_1$ e $\pi - g_1'$. Se g_1 avesse un punto in β_i , i = 1, 2,...., allora (Lemma 5, n. 1) g_1 apparterrebbe interamente a β_i e sarebbe separato da g_1' da ∞ . Dunque $g_1 \beta_i = 0$, i = 1, 2,.....

 $\omega(\delta)$ è il modulo di continuità della trasformazione T, allora deve esistere almeno un punto P di \overline{g}_1 tale che tutto l'intorno $U(P, \delta)$ appartenga a \overline{g}_1 . Infatti, se per ogni punto P di \overline{g}_1 , esistessero in $U(P, \delta)$ punti non appartenenti a \overline{g}_1 , allora esisterebbero in $U(P, \delta)$ anche punti della frontiera di \overline{g}_1 ossia di g_1 . Sia P' uno di questi punti. Sia ora P_1 un altro punto di \overline{g}_1 e sia P_1' un punto di g_1 appartenente all'intorno $U(P_1, \delta)$ di P_1 . Si ha

$$\{T(P), T(P_i)\} \le \{T(P), T(P')\} + \{T(P'), T(P_i')\} + \{T(P_i'), T(P_i)\} \le$$

 $\le 0 + 1/3n + 1/3n = 2/3n$

e infine, per l'arbitrarietà dei punti P e P_1 di \overline{g}_1 , $\eta(\overline{g}_1) \leq 2/3n < 1/n$, mentre deve essere $\eta(\overline{g}_1) \geq 1/n$. Ciò dimostra che ogni insieme \overline{g}_1 contiene almeno un cerchio di raggio $\delta > 0$. Da qui consegue che l'insieme dei continui g_1 effettivamente distinti è finito.

Poniamo in una unica classe C tutte le famiglie [g] che sono l'una contenuta nell'altra e mettiamo in classi diverse due famiglie [g] ciascuna delle quali contenga continui che non sono contenuti nell'altra. Osserviamo che l'effettivo raggruppamento delle famiglie [g] in classi è possibile perchè, se $[g_4]$ è contenuta in una famiglia $[g_2]$ e $[g_2]$ è contenuta in $[g_3]$, allora $[g_4]$ è contenuta in $[g_3]$, allora se inoltre se $[g_4]$ e $[g_2]$ sono entrambe contenute in una famiglia $[g_3]$, allora, o $[g_4]$ contiene $[g_2]$, oppure $[g_2]$ contiene $[g_4]$. Quest'ultimo fatto segue immediatamente dal lemma 7 del n. 1.

Riuniamo tutti i continui g appartenenti alle famiglie [g] di una stessa classe C in un'unica famiglia. La nuova famiglia, che diciamo C, è ordinata e gode delle seguenti proprietà:

- a) C ha un primo ed un ultimo elemento;
- b) se g è un continuo di C, allora tutti i continui g di G_1 che separano g da ∞ appartengono a C;
- c) se C_1 e C_2 sono due classi C distinte e C_1 e C_2 hanno un continuo g in comune, allora l'intersezione $\mathcal{L}=C_1\,C_2$ è la famiglia $[g_0]$ costituita di un continuo g_0 di G_1 e di tutti i continui g di G_1 che separano g_0 da ∞ . Analogamente per m classi C_1 , C_2 ,..., C_m .
- La b) è evidente e così pure è evidente che C ha un ultimo elemento. Dimostriamo che C ha un primo elemento. Ragioniamo per assurdo e supponiamo che C non abbia un primo elemento. La classe C verifica tutte le ipotesi del Lemma 9 e quindi, invertito l'ordine dei suoi elementi, sia k_2 l'insieme di accumulazione di C e g_2 l'insieme di G al quale g_2 appartiene. Ma ogni con-

Analogamente $g_1{'}a_i=0,\ i=1,\ 2,....$. D'altra parte se esistesse un punto P comune ad a_i e $\beta_j,\ i,j=1,\ 2,....$, allora (Lemma 5, n. 1) P sarebbe separato da ∞ da g_1 e g_2 e quindi (Lemma 7, n. 1) o g_1 separerebbe $g_1{'}$ da ∞ , oppure $g_1{'}$ separerebbe g_1 da ∞ . Dunque a_i $\beta_j=0,\ i,j=1,\ 2,....$ In definitiva si ha \overline{g}_1 $\overline{g}_1{'}=0$.

tinuo g di C separa il piano e inoltre $\eta(\overline{g}) \leq 1/n$. Si dimostra facilmente che anche g_2 separa il piano e che $\eta(g_2)\geqslant 1/n$. Ne segue che g_2 appartiene a $\{g_i\}_n$ e che la famiglia $[g_2]$ contiene tutti gli elementi di C, ciò che è possibile solo se C coincide con $[g_2]$. Dunque C ha un primo elemento, contrariamente al supposto. La α) è così completamente dimostrata. Dimostriamo la c). $\mathcal L$ verifica le ipotesi del Lemma 9. Se ${\mathfrak L}$ ha un primo elemento $g_{\scriptscriptstyle 0}$ allora, per la b), ${\mathfrak L}$ è costituito di tutti e soli i continui g di $G_{\scriptscriptstyle 1}$ che separano $g_{\scriptscriptstyle 0}$ da ∞ . Basta dunque dimostrare che $\mathfrak L$ ha un primo elemento. Ragioniamo per assurdo e supponiamo che \mathcal{L} non abbia primo elemento. Sia allora \overline{g} il continuo definito nel Lemma 9, b). Siano g_1 , g_2 , g_3 tre continui, necessariamente distinti, appartenenti rispettivamente a $C_1 - \mathfrak{L}$, $C_2 - \mathfrak{L}$, \mathfrak{L} . Come sappiamo g_1 non separa g_2 da ∞ , ne g_2 separa g_1 da ∞ . D'altra parte g_1 e g_2 sono separati da ∞ da tutti i continui g di $\mathcal S$. Osserviamo che se g_1 e $\overline g$ avessero un punto in comune, allora $g_1 \equiv \overline g$ e $g_2\overline{g}=0$. Per il Lemma 9, c), \overline{g} ossia g_1 , separerebbe g_2 da ∞ , ciò che è impossibile. Dunque $g_1\bar{g}=0$ e analogamente $g_2\bar{g}=0$. In forza del Lemma 9, c) segue che \overline{g} separa g_1 e g_2 da ∞ e quindi \overline{g} , appartenendo a C_1 e C_2 , appartiene ad \mathcal{L} e costituisce il primo elemento di \mathcal{L} , contro il supposto. La c) è così dimostrata.

Evidentemente il numero delle classi C, così costruite per un dato intero n, è finito perchè, se C_1 e C_2 sono due classi distinte e g_4 è il primo elemento di C_1 e g_2 il primo elemento di C_2 , allora ne g_1 separa g_2 da ∞ , ne g_2 separa g_4 da ∞ e quindi gli insiemi \overline{g}_1 e \overline{g}_2 non hanno punti in comune. Ragionando come sopra, segue che il numero delle classi C è finito.

Fatto n=1, siano C_1 , C_2 ,..., C_m , le classi così trovate e raggruppiamole in gruppi in modo che le classi di uno stesso gruppo abbiano una parte comune e due classi di gruppi diversi non abbiano parti in comune. Siano \mathcal{L}_{11} , \mathcal{L}_{12} ,..., \mathfrak{L}_{1u} , tali parti comuni e consideriamo le classi che si ottengono togliendo dalle precedenti rispettivamente \mathcal{L}_{11} , \mathcal{L}_{12} ,..., $\mathcal{L}_{1\mu_1^*}$. Raggruppiamo ora le nuove classi in gruppi in modo che le classi di ogni gruppo abbiano una parte comune. Siano $\mathfrak{L}_{1, \mu_1+1}, \ldots, \mathfrak{L}_{1, \mu_2}$ tali parti comuni e consideriamo le nuove classi che si ottengono togliendo dalle precedenti rispettivamente $\mathcal{L}_{1, \mu_1+1},...., \mathcal{L}_{1, \mu_2}$ e così di seguito. Il numero delle nuove classi così ottenute è certo finito perchè se ${\mathfrak L}$ e \mathfrak{L}' sono due classi distinte, o esse contengono continui nessuno dei quali separa l'altro da ∞, oppure tutti i continui di una classe £ separano i continui dell'altra classe \mathfrak{L}' da ∞ , ma allora vuol dire che esiste almeno una terza classe \mathfrak{L}'' i continui della quale sono separati da ∞ da tutti i continui di $\mathfrak{L}.$

Siano dunque $\mathcal{L}_{1}^{(i)}$, $\mathcal{L}_{2}^{(i)}$,...., $\mathcal{L}_{r_{1}}^{(i)}$ le classi ottenute. Fatto n=2 procediamo come sopra. Avremo una nuova collezione di classi $\mathcal{L}^{(2)}$. Potrà accadere che talune classi $\mathfrak{L}^{(4)}$ si trovino spezzate in più classi $\mathfrak{L}^{(2)}$ e tra le varie classi $\mathcal{L}^{(2)}$ nelle quali si trovano gli elementi di $\mathcal{L}^{(1)}$, una (al più) contenga anche nuovi elementi.

Riuniamo in una unica classe tutte queste classi $\mathfrak{L}^{(2)}$ staccate e ad esse daremo

il nome della classe $\mathcal{L}^{(1)}$ che esse costituiscono, sebbene accresciuta di nuovi continui g. Altrimenti le classi $\mathcal{L}^{(2)}$ saranno costituite di continui che non si trovano nelle classi $\mathcal{L}^{(1)}$. Daremo a queste nuove classi e soltanto a queste i nomi $\mathcal{L}_1^{(2)}$, $\mathcal{L}_2^{(2)}$,..., $\mathcal{L}_{r_2}^{(2)}$. Così proseguiamo per n=3, n=4,..... Le vecchie classi andranno via via ampliandosi e si formeranno nuove classi. Siano in definitiva \mathcal{L}_1 , \mathcal{L}_2 ,...., \mathcal{L}_m ,.... le classi così costituite.

Le proprietà a), b), c) del teorema sono evidenti. Per dimostrare la d) osserviamo che, per il Lemma 9, ogni classe occupa un insieme E che è la differenza tra due insiemi chiusì. Perciò E è un insieme di BOREL.

Se la classe \mathcal{L}_m ha un primo elemento g_0 sia P_0 un punto di g_0 . In caso contrario sia k il continuo k_2 del Lemma 9 e sia P_0 un punto di k. Sia poi g_1 l'ultimo elemento di \mathcal{L}_m oppure il continuo g_1 del Lemma 9.

Congiungiamo P_0' con ∞ mediante una poligonale l e sia P_0 l'ultimo suo punto a partire da P_0' che appartiene a g_0 (o a k). Sia P(g) il punto definito come al solito da un continuo qualunque g di \mathfrak{L}_m sopra la poligonale l. Sia P_∞ il punto limite dei punti P(g) il quale appartiene a g_1 . Sia s_0 l'arco della poligonale l compresa tra P_0 e P_∞ . Diciamo s_0 anche la lunghezza dell'arco s_0 . Sia poi s(g) la lunghezza dell'arco di l compresa tra P_0 e il punto P(g). Poniamo infine $\tau(u,v)=s(g)/s_0$ se il punto $P\equiv(u,v)$ appartiene al continuo g di \mathfrak{L}_m .

La funzione $\tau(u, v)$ soddisfa alle richieste condizioni. Vogliamo ora dimostrare che $\tau(P)$ è semicontinua superiormente in E_m . Sia P_0 un punto di E_m che sia punto di accumulazione di E_m e supponiamo, se possibile che, posto $\mu = \lim_{n \to \infty} \tau(P)$, $\mu_0 = \tau(P_0)$, si abbia $\eta = \mu - \mu_0 > 0$. Sia g_0 il continuo di \mathfrak{L}_m a cui appartiene P_0 . Indicheremo poi con $\tau(g)$ il valore di $\tau(P)$ in tutti i punti P di g. Supponiamo che per infiniti continui g di \mathcal{L}_m si abbia $\mu_0 + \eta/2 < \tau(g) \le \mu_0 + \eta$. In caso contrario esisterebbero infiniti continui g di \mathcal{L}_m per i quali $\mu_0 + \eta \leqslant \tau(g)$ e il ragionamento sarebbe analogo. Sia p il più piccolo intero tale che la classe H dei continui g di \mathfrak{L}_m , per i quali $\mu_0 + \eta/2 \leqslant \tau(g) \leqslant \mu_0 + \eta - \eta/p$, sia non vuota. La classe H verifica tutte le ipotesi del Lemma 9. Ordiniamola secondo i valori crescenti di $\tau(g)$ e dimostriamo che la classe così ordinata ha un primo elemento. Infatti in caso contrario, invertito l'ordine degli elementi di H, esisterebbe (Lemma 9, b, c) un continuo k di accumulazione contenuto in un continuo g'di \mathfrak{L}_m , che separa g_0 da ∞ , che è separato da ∞ da tutti i continui g di H e il continuo k dovrebbe contenere il punto limite P' dei punti P(g) di l corrispondenti ai continui g di H. Ma su l i punti P(g) individuano archi di lunghezza $\geqslant [\tau(P_0) + \eta/2] \cdot s_0$ e quindi anche P' individua su l un arco di tale lunghezza. Ne segue che $\tau(g') \geqslant \tau(P_0) + \eta/2$ e quindi g' appartiene ad H e ne è il primo elemento, osservando che per ogni continuo g di H si ha $\tau(g') \leqslant \tau(g)$.

Abbiamo così dimostrato che H ha un primo elemento g'. Ma $\tau(g') > \tau(g_0)$ e quindi g' separa g_0 da ∞ . Il punto P_0 è dunque contenuto in uno dei componenti limitati dell'insieme aperto $\pi - g'$. Sia $U(P_0, \delta)$ un intorno di P_0 tutto

contenuto nello stesso componente di $\pi-g'$. Osserviamo che in $U(P_0, \delta)$ debbono esistere infiniti punti P per i quali $\tau(P) > \tau(P_0) + \eta - \eta/p$ e quindi appartenenti a continui g che separano g' da ∞ . Tali punti debbono perciò appartenere al componente aperto non limitato di $\pi-g'$, ciò che è impossibile.

Abbiamo così dimostrato che $\tau(P)$ è una funzione semicontinua superiormente in E_m .

7. - L'insieme L di punti di K.

Sia \mathcal{L}_m una qualunque delle classi del teorema 6. Se \mathcal{L}_m non ha ultimo elemento, ricordando il Lemma 9, diciamo g_1 l'insieme di accumulazione di \mathcal{L}_m . Se \mathcal{L}_m non ha primo elemento, allora, invertito l'ordine degli elementi di \mathcal{L}_m , diciamo k il relativo insieme di accumulazione (continuo). Altrimenti indichiamo con k addirittura il primo elemento di \mathcal{L}_m . L'insieme F_m , occupato dai continui g di \mathcal{L}_m , da g_1 e da k, è un insieme chiuso (Lemma 9).

L'insieme $\pi - F$ è aperto. Siano a_0 , a_1 , a_2 ,.... i suoi componenti, dei quali sia a_0 quello che contiene i punti esterni di \overline{A} , e siano a_1 , a_2 ,.... gli altri eventuali. Sono immediati i seguenti enunciati:

- a) gli (eventuali) componenti limitati di πk sono tutti componenti di πF ;
- b) a_0 e i componenti limitati (eventuali) di πk sono semplicemente connessi;
- c) tutti gli altri componenti hanno una frontiera costituita di al più due componenti continui;
- d) ciascun componente delle frontiere degli insiemi a_0 , a_1 ,.... è interamente contenuto in un insieme g di \mathfrak{L}_m , o in g_1 , oppure in k.

Da qui segue che le funzioni x(u, v), y(u, v), z(u, v) sono costanti su ciascuno dei componenti delle frontiere degli insiemi a_0 , a_1 ,.... e perciò fanno corrispondere a ciascuno dei detti componenti un solo punto di K. Diciamo λ_m l'insieme numerabile dei punti di K che sono immagine di qualcuno dei componenti delle

frontiere degli insiemi considerati. Poniamo infine $L = \sum_{m=1}^{\infty} \lambda_m$.

L'insieme L è un insieme numerabile di punti di K.

8. - La funzione $\zeta(Q)$.

Sia S una superficie continua

(3)
$$S: \quad x = x(u, v), \quad y = y(u, v), \quad z = z(u, v), \quad (u, v) \, \varepsilon \overline{A},$$

e sia G = G(S) la collezione semicontinua superiormente dei continui massimali g di \overline{A} sui quali le funzioni x(u, v), y(u, v), z(u, v) sono costanti. Siano Φ_1 , Φ_2 , Φ_3 le tre trasformazioni piane e continue

$$\Phi_1: \quad x = x(u, v), \quad y = y(u, v), \\ \Phi_2: \quad x = x(u, v), \quad z = z(u, v), \\ \Phi_3: \quad y = y(u, v), \quad z = z(u, v),$$
 (u, v) $\varepsilon \overline{A}$.

Tra queste prendiamo in considerazione, ad esempio, Φ_1 . Anche questa trasformazione presenta in \overline{A} una collezione semicontinua superiormente $G^{(1)} = G(\Phi_1)$ di continui massimali g di \overline{A} sui quali le funzioni x(u, v), y(u, v) sono costanti. Evidentemente ogni continuo g di G è contenuto in uno e uno solo dei continui g di $G^{(1)}$, ogni continuo g di $G^{(1)}$ potendo contenere uno o infiniti continui g di G, tanti quanti sono i valori assunti dalla funzione z(u, v) sui punti di g.

Per ogni punto Q di K_1 consideriamo l'insieme S(Q) dei punti dello spazio (x, y, z) intersezioni della retta r(Q), parallela all'asse z e passante per Q, con la superficie S.

L'insieme S(Q) è chiuso e può contenere dei continui propri [segmenti chiusi di lunghezza non nulla della retta r(Q)]. Diciamo poi $\sigma(Q)$ l'insieme dei punti di \overline{A} la cui immagine sulla superficie S cade in S(Q). Manifestamente

$$\sigma(Q) = \Phi_1^{-1}(Q).$$

L'insieme $\sigma(Q)$ è chiuso. Diciamo $\{g\}$ l'insieme dei suoi continui massimali. L'insieme $\{q\}$ è semicontinuo superiormente. Per ogni continuo q di $\{q\}$ diciamo $\omega = \omega(g)$ l'oscillazione della funzione z(u, v) su g. Dimostriamo che l'insieme $\{\omega\}$ ha massimo. Sia $\overline{\omega}(Q)$ il confine superiore dell'insieme $\{\omega\}$. Poichè g è un insieme chiuso e z(P) = z(u, v) è una funzione continua in A, esistono due punti $P(g) \varepsilon g$, $P'(g) \varepsilon g$ tali che $z(P) - z(P') = \omega(g)$. Sia n un intero qualsiasi e sia $\{g\}_n$ la collezione dei continui g di $\{g\}$ per i quali $\omega(g) \geqslant \overline{\omega}(Q) - 1/n$ e sia F_n l'insieme dei punti di K_4 ricoperto dai continui g di $\{g\}_n$. Se una sottocollezione [g] di $\{g\}_n$ verifica le ipotesi del teorema 2, n. 2, allora il suo continuo di accumulazione è contenuto in un continuo g_0 di $\{g\}$. Consideriamo le coppie [P(g), P'(g)] dei punti $P \in P'$ corrispondenti ai continui g di [g] e ordiniamo tali coppie nello stesso ordine nel quale si trovano i continui g di [g]. Esistono in A due punti P_0 , P_0' aventi la seguente proprietà: Comunque si assegni un numero $\varepsilon\!>\!0\,$ e un continuo \overline{g} di [g], esistono in [g] infiniti continui g seguenti \overline{g} e tali che $P(g) \varepsilon U(P_0, \varepsilon), P'(g) \varepsilon U(P_0', \varepsilon)$. Ma P_0 e P_0' appartengono a g_0 e poichè $z(P)-z(P')\geqslant \overline{\omega}(Q)-1/n$, per la continuità della funzione z(P) in A, è pure $z(P_0) - z(P_0') \geqslant \overline{\omega}(Q) - 1/n$ e quindi g_0 appartiene a $\{g\}_n$. È così dimostrato che la collezione $\{g\}_n$ è semicontinua superiormente e quindi l'insieme F_n è chiuso (Teorema 3, n. 2).

Scelto un punto Q_n di F_n , Q_n appartiene ad un continuo g_n e, posto $P_n = P(g_n)$, $P_n' = P'(g_n)$, si ha $z(P_n) - z(P_n') = \omega(g_n) \ge \overline{\omega}(Q) - 1/n$. Consideriamo ora la successione g_n , n = 1, 2,..... Per ogni n, $P_n \varepsilon \overline{A}$, $P_n' \varepsilon \overline{A}$ e quindi esiste una sottosuccessione $[g_{n_m}]$ tale che $\lim_{m \to \infty} P_{n_m} = P_0$, $\lim_{m \to \infty} P_{n_m}' = P_0'$, $P_0 \varepsilon \overline{A}$, $P_0' \varepsilon \overline{A}$

e, per il teorema di ZORETTI, l'insieme di accumulazione della successione $[g_{n_m}]$ è un continuo k che, per la semicontinuità superiore dell'insieme $\{g\}$, è contenuto in un continuo g_0 di $\{g\}$.

Ma z(P) è una funzione continua e, d'altra parte,

$$z(P_{n_m}) - z(P_{n_m}') = \omega(g_{n_m}).$$

Quando $m \to \infty$ si ha

$$z(P_0)-z(P_0')\geqslant \overline{\omega}(Q)$$

e quindi $\omega(g_0) \geqslant \overline{\omega}(Q)$. Ma deve essere anche $\omega(g_0) \leqslant \overline{\omega}(Q)$ e quindi

$$\omega(g_0) = \overline{\omega}(Q).$$

Indichiamo con $\zeta(Q)$ il massimo delle oscillazioni della funzione z(u, v) = z(P) sui componenti continui g di $\sigma(Q)$ se $Q \in \Phi_1(\overline{A})$, altrimenti poniamo $\zeta(Q) = 0$.

9. - Dimostriamo il

Teorema 7. - La funzione $\zeta(Q)$ è semicontinua superiormente.

Sia Q_0 un punto di K_1 e sia $\mu = \overline{\lim} \zeta(Q)$. Dimostriamo che $\zeta(Q_0) \geqslant \mu$. Per ogni intero n consideriamo quei punti Q di K_1 per i quali $\overline{QQ_0} \leqslant 1/n$, $\zeta(Q) \geqslant \mu - 1/n$. Sia $\{g\}_n$ la collezione di tutti quei continui g di $G^{(1)}$ la cui immagine in K_1 per la Φ_1 cade nei punti Q considerati. Ragionando come nel numero precedente si vede che la collezione $\{g\}_n$ è semicontinua superiormente. Sia F_n l'insieme chiuso dei punti di \overline{A} ricoperto dai continui g di $\{g\}_n$ e sia P_n un punto di F_n . Il punto P_n appartiene ad un continuo g_n di $\{g\}_n$. Sia Q_n l'immagine di P_n per la Φ_1 . Si ha

$$\lim_{n\to\infty}Q_n=Q_0, \quad \lim_{n\to\infty}\zeta(Q_n)=\mu.$$

Per ogni n esistono dei punti P_n ε \overline{A} , P_n' ε \overline{A} che appartengono ad uno stesso continuo g_n di $o(Q_n) = \Phi_1^{-1}(Q_n)$ e tali che $z(P_n) - z(P_n') = \zeta(Q_n)$, $\lim_{n \to \infty} [z(P_n) - z(P_n')] = \mu$. Esiste allora una sottosuccessione $[Q_n]$ tale che $\lim_{m \to \infty} Q_n = Q_0$, $\lim_{m \to \infty} \zeta(Q_n) = \lim_{m \to \infty} [z(P_n) - z(P_n')] = \mu$, $\lim_{m \to \infty} P_n = P_0$, $\lim_{m \to \infty} P_n = P$

$$\lim_{r\to\infty} \overline{PP_r} = 0.$$

D'altra parte, per ogni r, si ha

$$\{\Phi_{1}(P), Q_{0}\} \leq \{\Phi_{1}(P), \Phi_{1}(P_{r})\} + \{\Phi_{1}(P_{r}), Q_{0}\}.$$

Ma $\Phi_1(P_r) = Q_{n_{m_r}} \equiv Q_r$, $\lim_{r \to \infty} \overline{Q_r Q_0} = 0$. Inoltre, in base alla (4) e per la continuità di $\Phi_1(P)$, si ha $\lim_{r \to \infty} \{\Phi_1(P), \Phi_1(P_r)\} = 0$ e quindi, successivamente,

$$\{\Phi_{i}(P), Q_{0}\}=0, \quad \Phi_{i}(P)=Q_{0}.$$

È con ciò dimostrato che il continuo k è tutto costituito di punti di $\Phi_1^{-1}(Q_0)$. D'altra parte $z(P_0)-z(P_0')=\mu$ e quindi su k, e a maggior ragione su g_0 , l'oscillazione della funzione z(P) è almeno μ . Il teorema 7 è con ciò dimostrato.

10. - Una proprietà geometrica delle superficie continue.

Dimostreremo nei numeri 11-18 il seguente

Teorema 8. - Sia S una superficie continua

(5)
$$S: \quad x=x(u,v), \quad y=y(u,v), \quad z=z(u,v), \quad (u,v) \, \varepsilon \overline{A},$$

e sia G la collezione semicontinua superiormente dei continui massimali g di \overline{A} sui quali le funzioni x(u, v), y(u, v), z(u, v) sono costanti. Inoltre le trasformazioni piane e continue

$$\begin{array}{lll} \boldsymbol{\Phi}_{1}: & x = x(u, v), & y = y(u, v), \\ \boldsymbol{\Phi}_{2}: & x = x(u, v), & z = z(u, v), \\ \boldsymbol{\Phi}_{3}: & y = y(u, v), & z = z(u, v), \end{array}$$

$$(u, v) \, \varepsilon A,$$

siano a variazione limitata. Allora, per quasi tutti i punti Q di K_1 , K_2 , K_3 , i componenti continui degli insiemi chiusi di punti di \overline{A}

$$\Phi_1^{-1}(Q), \qquad \Phi_2^{-1}(Q), \qquad \Phi_3^{-1}(Q)$$

sono anche continui q di G.

11. - Anche qui ci occuperemo esclusivamente della trasformazione Φ_1 . L'enunciato del teorema equivale al seguente: Per quasi tutti i punti Q di K_1 si ha $\zeta(Q)=0$. Infatti, se $\zeta(Q)=0$, su tutti i componenti continui dell'insieme chiuso $\sigma(Q)=\Phi_1^{-1}(Q)$ la funzione z(u,v) è costante e, d'altra parte, le funzioni x(u,v) e y(u,v) sono pure costanti. Ne segue che ciascuno di detti componenti è un continuo sul quale le funzioni x(u,v), y(u,v), z(u,v) sono costanti. Esso è poi un continuo massimale rispetto a tale proprietà perchè su ogni continuo più ampio le funzioni x(u,v), y(u,v) non sono più costanti. Il viceversa è evidente.

Indicheremo rispettivamente con $\Psi_1(x, y)$, $\Psi_2(x, z)$, $\Psi_3(y, z)$ le funzioni caratteristiche delle trasformazioni Φ_1 , Φ_2 , Φ_3 .

12. - Diciamo e_0 l'insieme dei punti di Q ove $\zeta(Q)=0$. Diciamo e_n l'insieme dei punti Q ove

$$\zeta(Q) \geqslant \frac{1}{n}, \qquad n=1, 2, \dots.$$

La funzione $\zeta(Q)$ è semicontinua superiormente e perciò di BAIRE. Ne consegue che gli insiemi e_0 , e_n , n=1, 2,..., sono di BOREL. Infine $e_n \subset e_{n+1}$, n=1, 2,..., ed esiste perciò il limite

$$F = \lim_{n \to \infty} e_n = K_4 - e_0.$$

L'insieme di Borel F è l'insieme dei punti su cui si ha $\zeta(Q) \neq 0$. Osserviamo che

$$|F| = \lim_{n \to \infty} |e_n|.$$

13. - Diciamo $\varphi(P, Q) = \varphi(u, v; x, y)$ la seguente funzione definita per tutti i punti P di \bar{A} e per tutti i punti Q di K_1

$$\varphi(u, v; x, y) = \begin{cases} 1 \\ 0 \end{cases}$$

secondochè $Q\equiv(x,y)$ è l'immagine in K_1 del punto $P\equiv(u,v)$ di \overline{A} oppure no. Se $\varphi(P_0,Q_0)=0$ allora P_0 ha una distanza $\delta>0$ da $\Phi_1^{-1}(Q_0)$. D'altra parte esiste un numero $\sigma>0$ tale che per ogni $\overline{QQ}_0<\sigma$ si ha $\{\Phi_1^{-1}(Q),\Phi_1^{-1}(Q_0)\}<\delta/3$. Ne segue che per ogni $\overline{PP}_0<\delta/3$ e $\overline{QQ}_0<\sigma$ si ha $\{P,\Phi_1^{-1}(Q)\}\geq\delta-\delta/3-\delta/3>0$ e quindi $\varphi(P,Q)=0$. Dunque $\varphi(P,Q)$ è nulla in un insieme aperto dello spazio prodotto $\overline{A}\times K_1$ e $\varphi(P,Q)$ è costantemente uguale all'unità positiva nell'insieme chiuso complementare. La funzione $\varphi(P,Q)$ e perciò semicontinua superiormente.

14. - Diciamo $\varphi^*(P, P') \equiv \varphi^*(u, v; u', v')$ la seguente funzione, definita per tutte le coppie di punti P, P' di \overline{A} ,

$$\varphi^*(u, v; u', v') = \begin{cases} 1 \\ 0 \end{cases}$$

secondochè i punti $P \equiv (u, v)$ e $P' \equiv (u', v')$ appartengono ad uno stesso componente g di $G^{(1)}$ oppure no.

Siano P_1 e P_2 due punti tali che $\varphi^*(P_1,P_2)=0$ e quindi $\overline{P_1P_2}>0$. Supponiamo che, per ogni intero n, sia non vuota la collezione $\{g\}_n$ dei continui g di $G^{(1)}$ per i quali $\{P_1,g\}\leqslant 1/n$, $\{P_2,g\}\leqslant 1/n$. Ragionando come nel n. 8 si vede che la collezione $\{g\}_n$ è semicontinua superiormente. Sia F_n l'insieme chiuso dei punti di \overline{A} ricoperto dai continui g di $\{g\}_n$ e sia P_n un punto di F_n . Il punto P_n appartiene ad un continuo g_n di $\{g\}_n$ e quindi esistono su g_n due punti P_n' e P_n'' tali che $\overline{P_n'P_1}\leqslant 1/n$, $\overline{P_n''P_2}\leqslant 1/n$. Poniamo $Q_n=\Phi_1(P_n')=\Phi_1(P_n'')$, n=1, 2..... Sia Q_∞ un punto di accumulazione della successione Q_n e $[Q_{n_r}]$ una sottosuccessione tale che $Q_{n_r}\to Q_\infty$ quando $r\to\infty$. Ma i continui g_{n_r} contengono i punti P_{n_r}' e $P_{n_r}''\to P_2$, $P_{n_r}'\to P_1$ e quindi, per il teorema di Zoretti e la semicontinuità di $G^{(1)}$, esiste in $G^{(1)}$ un continuo g_∞ contenente P_1 e P_2 e perciò $\varphi^*(P_1,P_2)=1$ contro il supposto.

Ne segue che $\varphi^*(P_1, P_2)$ è nulla in un insieme aperto dello spazio prodotto $\overline{A} \times \overline{A}$ e quindi costantemente uguale all'unità positiva nell'insieme chiuso complementare. La funzione $\varphi^*(P_1, P_2)$ è dunque semicontinua superiormente.

15. - Ricordiamo che abbiamo supposto la superficie S completamente interna al cubo K. Supporremo inoltre nel seguito che K sia il cubo (0, 0, 0; k, k, k) con k>0. Ne segue che, per ogni $P \in \overline{A}$, si ha 0 < z(P) < k e quindi $2k+z(P_2) - -z(P_1) > k > 0$. Ne segue che la funzione di P_1 , P_2 , Q, $(P_1 \in \overline{A}, P_2 \in \overline{A}, Q \in K_1)$

$$f(P_1, P_2, Q) = \varphi(P_1, Q) \varphi^*(P_1, P_2) [2k + z(P_2) - z(P_1)]$$

come prodotto di due funzioni semicontinue superiormente per una funzione continua (tutte non negative) è semicontinua superiormente. Posto $P_1 \equiv (u_1, v_1)$, $P_2 \equiv (u_2, v_2)$, per il teorema 4 del § 2, n. 1, esistono quattro funzioni di BAIRE

$$u_2(Q)$$
, $v_2(Q)$, $u_4(Q)$, $v_4(Q)$, $Q \in K_4$,

tali che, posto $P_2(Q) \equiv [u_2(Q), v_2(Q)], P_1(Q) = [u_1(Q), v_1(Q)],$ si ha, per ogni $Q \in K_1$,

$$f[P_1(Q), P_2(Q), Q] = \max_{P_1 \in \overline{A}, P_2 \in \overline{A}} f(P_1, P_2, Q).$$

Ne segue che, per ogni Q dell'insieme $\Phi_1(\overline{A})$ contenuto in K_1 , i punti $P_1(Q)$ e $P_2(Q)$ debbono appartenere ad uno stesso continuo g(Q) di $\Phi_1^{-1}(Q)$, cosicchè $\varphi_1(P_1,Q)=1$, $\varphi^*(P_1,P_2)=1$, e precisamente ad uno di quei continui g(Q) di $\Phi_1^{-1}(Q)$ nei quali l'oscillazione ω della funzione z(P) ha il suo valore massimo $\zeta(Q)$. Di più si ha

$$z\lceil u_2(Q), v_2(Q)\rceil - z\lceil u_1(Q), v_1(Q)\rceil = \zeta(Q).$$

Poniamo

$$z_1(Q) = z[u_1(Q), v_1(Q)], z_2(Q) = z[u_2(Q), v_2(Q)].$$

16. - Sia $G^{(1)}$ la collezione dei continui massimali g di \overline{A} sui quali le funzioni x(u, v) e y(u, v) sono costanti e sia $G_1^{(1)}$ la collezione (eventualmente vuota) di quei continui g di $G^{(1)}$ che separano il piano $\pi \equiv (u, v)$. Abbiamo già visto che la collezione $G_1^{(1)}$ può scomporsi in un numero finito o una infinità numerabile di classi \mathcal{L}_1 , \mathcal{L}_2 ,...., \mathcal{L}_m ,.... secondo il teorema 6 del n. 6. Di più l'insieme E_m occupato dai continui della classe \mathcal{L}_m è un insieme di Borel. È perciò un insieme di Borel anche l'insieme E_0

$$E_0 = \overline{A} - E_1 - E_2 - E_3 - \dots$$

Siano $\varphi_0(u, v)$, $\varphi_1(u, v)$, $\varphi_2(u, v)$,.... le funzioni caratteristiche degli insiemi E_0 , E_1 , E_2 ,..... Tali funzioni sono tutte funzioni di BAIRE.

Per tutti i punti Q di $\Phi_1(A)$ poniamo

$$\varphi_m(Q) = \varphi_m[u_1(Q), v_1(Q)], \quad m = 0, 1, 2,$$

Per tutti i punti Q di $K_1-\Phi_1(\overline{A})$ poniamo inoltre $\varphi_0(Q)=1$, $\varphi_m(Q)=0$, $m=1, 2, \ldots$.

Anche le funzioni $\varphi_m(Q)$, m=0, 1, 2,..., sono tutte funzioni di BAIRE perchè ottenute per composizione di funzioni di BAIRE. Esse sono perciò le funzioni

caratteristiche di certi insiemi di BOREL I_m , m=0, 1, 2,..., che hanno le seguenti proprietà:

a)
$$K_1 = \sum_{m=0}^{\infty} I_m$$
, b) $I_m I_{m'} = 0$, $m \neq m'$, $m, m' = 0, 1, 2, ...$

Consideriamo ora gli insiemi

$$F_{nm}=e_n I_m, \qquad m=0, 1, 2,..., \qquad n=1, 2,....$$

Manifestamente

$$e_n\!=\!\sum_{m=0}^\infty\!F_{nm}, \quad F_{nm}\;F_{nm'}\!=\!0, \quad m\!=\!m', \;\; m, \;\; m'\!=\!0, \; 1, \; 2,\!..., \quad n\!=\!1, \; 2....$$

e quindi

(7)
$$|e_n| = \sum_{m=0}^{\infty} |F_{nm}|, \quad n=1, 2,....$$

Si deve dimostrare che |F|=0. Poichè $|F|=\lim_{n\to\infty}|e_n|$ basterà dimostrare che per ogni n, $|e_n|=0$.

Ragioniamo per assurdo e supponiamo che, per un dato n, si abbia $|e_n| > 0$. Allora dalla (7) segue che, per qualche m, deve aversi $|F_{nm}| > 0$.

17. - 1° Caso
$$|F_{n_0}| = \sigma > 0$$
.

Poichè le funzioni $u_1(Q)$, $v_1(Q)$, $u_2(Q)$, $v_2(Q)$, $z_2(Q)$, $z_1(Q)$, $z_2(Q)$ sono di BAIRE, epperciò quasi continue, esiste un plurintervallo Δ di K_1 , di misura superficiale $<\sigma/2$, tale che in tutti i punti $K_1-\Delta$ le funzioni menzionate sono continue. Tali funzioni sono perciò continue anche nell'insieme $F_{n_0}-F_{n_0}\Delta$ la cui misura è $>\sigma-\sigma/2=\sigma/2>0$.

Diciamo I_{xy} l'insieme dei punti $P \equiv (\bar{x}, \bar{y})$ di K_1 tali che

- a) $P \equiv (\bar{x}, \bar{y})$ è un punto di densità di $F_{0n} F_{0n} \Delta$;
- b) le rette $x=\bar{x},\ y=\bar{y}$ di K_1 segano l'insieme dei punti di densità di $F_{0n}-F_{0n}\Delta$ in insiemi di misura (lineare) positiva. Manifestamente $|I_{xy}|=$ $=|F_{0n}-F_{0n}\Delta|>\frac{\sigma}{2}$ e ogni punto P di I_{xy} è punto di densità di I_{xy} . Diciamo I l'insieme dei punti (x,y,z) di K tali che

$$z_1(Q) \leq z \leq z_2(Q)$$
, $Q \equiv (x, y) \varepsilon I_{xy}$.

Ricordiamo che

$$z_2(Q)-z_1(Q)=\zeta(Q)\geqslant \frac{1}{n}.$$

L'insieme I ha misura spaziale $\geqslant |I_{xy}|\frac{1}{n}>\frac{\sigma}{2n}>0$ e quindi anche le proiezioni I_{xy} , I_{xz} , I_{yz} di I sui piani coordinati hanno misura positiva. Diciamo i_x e i_y le proiezioni dell'insieme (piano) I_{xy} sulle rette y=0 e x=0. Gli insiemi i_x e i_y hanno misura (lineare) positiva. Sia \overline{x} un punto di i_x . La retta $x=\overline{x}$ del

piano (x, y) sega I_{xy} in un insieme di misura positiva. Sia N un intero qualunque e $Q_1 \equiv (\bar{x}, y_1), Q_2 \equiv (\bar{x}, y_2), ..., Q_N \equiv (\bar{x}, y_N)$ N punti distinti di I_{xy} .

Sia Q_m uno degli N punti considerati. A Q_m corrispondono in \overline{A} due punti $P_{1m} \equiv [u_1(Q_m), v_1(Q_m)], P_{2m} \equiv [u_2(Q_m), v_2(Q_m)]$ che appartengono ad un unico continuo g_m di $\{g\}$ sul quale la funzione z(u, v) ha una oscillazione

$$\zeta(Q) = z_2(Q_m) - z_1(Q_m) = z(P_{2m}) - z(P_{1m}) \geqslant \frac{1}{n}.$$

Ne segue che i punti P_{1m} e P_{2m} hanno una minima distanza $\delta_0 > 0$.

Inoltre $\Phi_1(g_m) = Q_m$. Siano Q_{1m} e Q_{2m} i punti $Q_{1m} \equiv [\bar{x}, y_m, z(P_{1m})]$, $Q_{2m} \equiv [\bar{x}, y_m, z(P_{2m})]$. I continui $g_m, m=1, 2,..., N$, non hanno punti in comune e non separano il piano.

e non separano il piano. Consideriamo poi l'insieme chiuso $I = \sum_{m=1}^N \Phi_1^{-1}(Q_m)$ del quale fanno parte i continui (componenti) $g_1, g_2, ..., g_N$. Esistono allora N poligoni semplici $\pi_1, \pi_2, ..., \pi_N$, esterni l'uno all'altro, tali che π_m contiene nel suo interno g_m e π_m^* non ha punti in comune con I, m=1, 2, ..., N (18). Sia $\delta_1>0$ la minima delle distanze $\{g_m, \pi_m^*\}$ e $\{Q_m, \Phi_1(\pi_m^*)\}$. Sia $\omega(\delta)$ il modulo di continuità della rappresentazione (1) della superficie S. Sia δ_2 il più grande numero reale tale che $\omega(\delta_2)\leqslant \frac{1}{8n}$, $\omega(\delta_2)\leqslant \delta_1$.

Sia δ' il più piccolo dei numeri $\delta_0/3$, δ_1 , δ_2 . Le funzioni

$$u_1(Q), u_2(Q), v_1(Q), v_2(Q), z_1(Q), z_2(Q)$$

sono continue in I_{xy} nel punto Q_m e il punto Q_m è punto di densità di I_{xy} Esiste perciò un numero η_m abbastanza piccolo affinchè per ogni punto $Q_{m'}$ di I_{xy} tale che $\overline{Q_{m'}Q_m} < \eta_m$ si abbia

(8)
$$|u_1(Q_m') - u_1(Q_m)| \leq \delta'/4, \dots, |v_2(Q_m') - v_2(Q_m)| \leq \delta'/4, \\ |z_1(Q_m') - z_1(Q_m)| \leq 1/8n, |z_2(Q_m') - z_2(Q_m)| \leq 1/8n.$$

I punti $P_{1m'}\equiv [u_1(Q_{m'}),\ v_1(Q_{m'})],\ P_{2m'}\equiv [u_2(Q_{m'}),\ v_2(Q_{m'})]$ sono certamente interni a π_m . Inoltre $P_{1m'}$ e $P_{2m'}$ appartengono ad uno stesso continuo g' di $\{g\}$ e g' è completamente interno a π_m .

⁽¹⁸⁾ Consideriamo il continuo g_4 e osserviamo che esiste in \overline{A} (Lemma 2, n. 1) un poligono semplice π' la cui periferia π'^* non ha punti in comune con I e separa g_4 da g_2 . Ma g_4 non separa il piano $\pi \equiv (u, v)$ e quindi (Lemma 5, n. 1) l'insieme aperto $\pi - g_4$ è semplicemente connesso e contiene, insieme a π'^* , tutti i punti esterni a π' . Ne segue che g_4 è interno e g_2 esterno a π' . Se, ad esempio, g_3 è interno a π' , allora, ripetendo il ragionamento, esiste in π' un poligono π'' per il quale g_4 è interno e g_3 esterno a π'' e inoltre $I\pi''^*=0$. E così di seguito. Esiste dunque un poligono semplice π_4 per il quale g_4 è interno a π_4 , g_2 ,..., g_N sono esterni a π_4 e $I\pi_4^*=0$. Poniamo $\overline{\pi}_4=\pi_4+\pi^*$, $I'=I+\overline{\pi}_4$ e ripetiamo il ragionamento partendo dal continuo g_2 , dai continui $\overline{\pi}_4$, g_2 ,..., g_N e dall'insieme I'. E così di seguito. In definitiva otterremo N poligoni semplici π_1 , π_2 ,..., π_N aventi le proprictà richieste.

Siano $Q_{m'}\equiv (x_{m'},\ y_{m'})$ e $Q_{m''}\equiv (x_{m''},\ y_{m''})$ due punti di I_{xy} tali che $\overline{Q_mQ_{m'}}<\eta_m,\quad \overline{Q_mQ_{m''}}<\eta_m,\quad x_{m'}<\overline{x}< x_{m''}.$

Siano poi g_{m}' e g_{m}'' i relativi continui contenuti in π_{m} .

I continui $g_{m'}$, g_{m} , $g_{m''}$ non hanno punti comuni. Sia $2\delta''$ la più piccola delle distanze

$$\{g_m, g_{m'}\}, \{g_m, g_{m''}\}, \{g_{m'}, g_{m''}\}.$$

Sia poi 2d la più piccola delle quantità $x_m'' - \bar{x}$, $\bar{x} - x_m'$ e sia $\bar{\delta}_1$ il più grande numero reale tale che $\omega(\bar{\delta}_1) \leqslant d$. Sia infine $\bar{\delta}_2$ il più piccolo dei numeri δ'' , $\bar{\delta}_1$. Esistono due poligonali semplici λ_m' e λ_m'' , che congiungono rispettivamente P_{1m}' e P_{2m}' , P_{1m}'' e P_{2m}'' , ogni punto delle quali ha una distanza dagli insiemi chiusi g_m' , g_m'' minore di $\bar{\delta}_2$ (Cfr. § 3, n. 1, Lemma 4).

Le curve l_{m}' e l_{m}'' , immagini di λ_{m}' e λ_{m}'' sopra la superficie S, congiungono i punti

$$Q_{1m'} \equiv (x_{m'}, y_{m'}, z_1(Q_{m'})),$$
 $Q_{2m'} \equiv (x_{m'}, y_{m'}, z_2(Q_{m'})),$ $Q_{1m''} \equiv (x_{m''}, y_{m''}, z_1(Q_{m''})),$ $Q_{2m''} \equiv (x_{m''}, y_{m''}, z_2(Q_{m''})),$

e ogni loro punto dista dalla retta $(x=x_{m'}, y=y_{m'})$, oppure $(x=x_{m''}, y=y_{m''})$, per meno di d e quindi le proiezioni l_1 e l_2 di $l_{m'}$ e $l_{m''}$ sul piano (x, z) non hanno punti in comune con la retta $x=\bar{x}$.

Consideriamo i segmenti $\varkappa_m' \equiv P_{1m}' \ P_{1m}'', \ \varkappa_m'' \equiv P_{2m}' \ P_{2m}''$ e siano h_m' e h_m'' le loro immagini. Le curve h_m' e h_m'' sono interamente contenute nelle sfere di centro Q_{1m} e Q_{2m} e raggio 2/8n. Infatti i segmenti \varkappa_m' e \varkappa_m'' hanno lunghezza minore di δ' e così pure sono minori di δ' le distanze $P_{1m} \ P_{1m}',, \ P_{2m} \ P_{2m}''$. Ma $\omega(\delta') \leqslant 1/8n$ e quindi, se Q è un punto di h_m' (o di h_m''),

$$\overline{Q_{1m} Q} \leqslant \overline{Q_{1m} Q_{1m'}} + \overline{Q_{1m'} Q} \leqslant \omega(\delta') + \omega(\delta') \leqslant \frac{2}{8n}.$$

Le proiezioni h_1 e h_2 delle linee $h_{m'}$ e $h_{m''}$ sul piano (x,z) sono completamente contenute in due cerchi di centri $(\bar{x},z(P_{1m}))$ $(\bar{x},z(P_{2m}))$ e raggio 2/8n. Diciamo infine $\bar{\lambda}_{m'}$ l'arco di $\lambda_{m'}$ compreso tra l'ultimo punto in cui $\lambda_{m'}$ incontra $\varkappa_{m'}$ e il primo punto in cui $\lambda_{m'}$ incontra $\varkappa_{m''}$. Analoga definizione abbia $\bar{\lambda}_{m''}$. Allora gli archi $\bar{\lambda}_{m'}$, $\bar{\lambda}_{m''}$ e due opportuni segmenti contenuti in $\varkappa_{m'}$ e $\varkappa_{m''}$ costituiscono una curva di Jordan γ_m alla quale corrisponde sul piano (x,z) una curva chiusa C_m costituita di archi di l_1 , l_2 , h_1 , h_2 , la quale circuita tutti i punti del segmento

(9)
$$s_m: x = \bar{x}, z_1(Q_m) - \frac{1}{4n} < z < z_2(Q_m) + \frac{1}{4n}.$$

Per questi punti si ha, in altre parole,

(10)
$$O(\bar{x}, z; C_m) = +1, \quad z_1(Q_m) - \frac{1}{4n} < z < z_2(Q_m) + \frac{1}{4n}$$

ove

$$z_2(Q_m)-z_1(Q_m)\geqslant \frac{1}{n}.$$

Ne segue che i segmenti s_m hanno ciascuno lunghezza $\geqslant \frac{1}{2n}$, m=1, 2,..., N, e $\Psi_2(\bar{x}, z)$ è non minore del numero dei segmenti s_m che passano per il punto (\bar{x}, z) . Se con $|s_m|$ indichiamo la lunghezza del segmento s_m si ha

(11)
$$\int\limits_{0}^{k} \Psi_{2}(\overline{x},z)dz \geqslant |s_{1}| + |s_{2}| + + |s_{N}| \geqslant \frac{N}{2n}.$$

Ma \bar{x} è un qualsiasi punto dell'insieme i_x di misura positiva. Perciò

$$\iint\limits_{K_2} \Psi_2(x,z)\,dx\,dz\geqslant \big|\,i_x\big|\frac{N}{2n}=\frac{|i_x|}{2n}\,N.$$

Poichè N è un numero arbitrario, si ha

$$\iint\limits_{K_2} \Psi_2(x,z) \, dx dz = +\infty,$$

ciò che contraddice l'ipotesi del teorema.

18. - 2° Caso. $|F_{nm}| = \sigma > 0$ per un m > 0.

Ad ogni punto Q di F_{nm} corrispondono i due punti $P_1(Q) \equiv [u_1(Q), v_1(Q)]$ e $P_2(Q) \equiv [u_2(Q), v_2(Q)]$ che appartengono ad un continuo g che separa il piano $\pi \equiv (u, v)$ e che appartiene alla classe \mathcal{L}_m . Sia $\tau(u, v)$ la funzione semicontinua superiormente definita in tutti i punti $P \equiv (u, v)$ dell'insieme E_m occupato dai continui g di \mathcal{L}_m (n. 6, Teorema 6) e che è costante su ogni continuo g di \mathcal{L}_m .

Introduciamo la funzione di BAIRE

$$\tau = \tau [u_1(Q), v_1(Q)], \quad Q \in F_{nm}.$$

Se Q e Q' sono due punti di F_{nm} , ad essi corrispondono due continui g e g' di \mathfrak{L}_m che separano il piano π e g separa g' da ∞ , oppure viceversa, secondochè $\tau(Q) > \tau(Q')$, oppure $\tau(Q) < \tau(Q')$.

Ripetiamo le considerazioni del n. 17 ove dobbiamo soltanto sostituire il seguente ragionamento.

Al punto generico Q_m corrispondono in \overline{A} i punti

$$P_{1m} \equiv [u_1(Q_m), v_1(Q_m)], \qquad P_{2m} \equiv [u_2(Q_m), v_2(Q_m)]$$

che appartengono ad un unico continuo g_m di $\{g\}$ sul quale la funzione z(u,v) ha una oscillazione

$$\zeta(Q) = z_2(Q_m) - z_1(Q_m) = z(P_{2m}) - z(P_{1m}) \gg 1/n.$$

Ne segue che i punti P_{1m} , P_{2m} avranno una minima distanza $\delta_0 > 0$. Consideriamo gli N numeri tutti distinti $\tau(Q_m)$, m=1, 2,..., N. Possiamo supporre di ordinare i punti Q_m in modo tale che $\tau(Q_1) > \tau(Q_2) > \dots > \tau(Q_N)$ cosicchè g_1 separa g_2 da ∞ , g_2 separa g_3 da ∞ ,..., g_{N-1} separa g_N da ∞ . Sia η' la più piccola delle differenze $\tau(Q_m) - \tau(Q_{m-1})$. Gli insiemi g_m , $m=1,2,\dots,N$, non hanno punti in comune. Sia δ_1 la minima delle distanze tra due insiemi g_m . Sia δ_2 il più grande numero reale tale che $\omega(\delta_2) \leqslant \frac{1}{8n}$. Sia δ' il più piccolo tra i numeri $\delta_0/3$, δ_1 , δ_2 .

Sia η_m un numero tale che per ogni $Q_{m'} \varepsilon I_{xy}$, $\overline{Q_{m'}} \overline{Q}_m < \eta_m$, valgano le (8) del n. 17 e inoltre $|\tau(Q_m') - \tau(Q_m)| < \eta'/2$.

Ne segue che i punti $P_{1m'} \equiv [u_1(Q_{m'}), v_1(Q_{m'})], P_{2m'} \equiv [u_2(Q_{m'}), v_2(Q_{m'})]$ appartengono ad un continuo $g_{1m'}$ che non può avere punti in comune non solo con g_m ma neppure con altri continui $g_m, g_{m'}, m = 1, 2,...$. Di più entrambi i continui g_m e $g_{m'}$ separano i continui g_{m+1} e g'_{m+1} da ∞ .

Siano $Q_{m'} \equiv [x_{m'}, y_{m'}], \ Q_{m''} \equiv [x_{m''}, y_{m''}]$ due punti di I_{xy} tali che

$$\overline{Q_m}Q_{m'} < \eta_m, \quad \overline{Q_m}Q_{m''} < \eta_m, \quad x_{m'} < \overline{x} < x_{m''}.$$

Siano g_m' e g_m'' i relativi continui. I continui $g_m, g_m', g_m'', m=1, 2,..., N$ non hanno punti in comune. Sia $2\delta''$ la più piccola delle loro distanze. Sia 2dla più piccola delle quantità $x_m'' - \bar{x}$, $\bar{x} - x_m'$. Sia δ_i il più grande numero reale tale che $\omega(\overline{\delta_1}) \leq d$. Sia infine $\overline{\delta_2}$ il più piccolo dei numeri δ'' e $\overline{\delta_1}$. Si deve avere τ_m , τ_m' , $\tau_{m''} > \tau_{m+1}$, τ'_{m+1} , τ''_{m+1} , m=1, 2,..., N-1. Tra i numeri τ_m' , τ_m'' si avrà $\tau_m' < \tau_m''$, oppure $\tau_m' > \tau_m''$, il numero τ_m potendo essere interno o esterno all'intervallo (τ_m, τ_m') . Per fissare le idee supponiamo $\tau_m' < \tau_m''$ e quindi g_m'' separa $g_{m'}$ da ∞ . Ne segue che $g_{m'}$ apparterrà ad un componente β aperto e semplicemente connesso (non contenente A^*) di $A-g_m$ ". Si osservi che β^* è un continuo tutto costituito di punti di g_m ". Per il Lemma 2 del n. 1 esiste una poligonale semplice e chiusa π'' tutta costituita di punti di $\beta - q_m''$ contenente q_m' nel suo interno e possiamo sempre supporre che tutti i punti di π'' distino da β^* e quindi da g_m'' per meno di $\overline{\delta}_2$. Esisterà poi per la stessa ragione un'altra poligonale semplice e chiasa π' tutta costituita di punti interni a π'' e contenente $g_{m'}$ nel suo interno e possiamo sempre supporre che tutti i punti di π' distino da $g_{m'}$ per meno di δ_{2} . Dunque $g_{m''}$ è tutto costituito di punti esterni a π'' e $g_{m'}$ di punti tutti interni a π' . Descriviamo due cerchi μ_1 e μ_2 di centri P_{1m} e P_{2m} e raggio δ' . Si ha $P_{1m}P_{2m} \geqslant \delta_0 \geqslant 3\delta'$ e quindi μ_1 e μ_2 sono esterni l'uno all'altro. D'altra parte $\overline{P_{4m}'P_{4m}} < \delta'/2$, $\overline{P_{4m}''P_{4m}} < \delta'/2$, e quindi i due punti $P_{{}_{1}m}{'}$ e $P_{{}_{1}m}{''}$ sono entrambi interni a $\mu_{{}_{1}}$. Analogamente i punti P_{2m} e P_{2m} sono interni a μ_2 . Diciamo \varkappa_1 e \varkappa_2 i segmenti congiungenti P_{4m} con P_{4m} e P_{2m} con P_{2m} . I segmenti \varkappa_4 e \varkappa_2 sono completamente interni a μ_1 e μ_2 rispettivamente. Il segmento \varkappa_1 congiunge un punto esterno a π'' con un punto interno a π' e quindi esiste un segmento $\bar{\varkappa}_1$ tutto contenuto in \varkappa_1 congiungente un punto di π'' con un punto di π' e non contenente altri punti di $\pi' + \pi''$. Analogamente esiste un segmento $\overline{\varkappa}_2$ contenuto in \varkappa_2 congiungente un punto di π'' con un punto di π' e non contenente altri punti di $\pi' + \pi''$. Siano λ_1'' e λ_2'' gli archi di π'' nei quali π'' viene spezzato dalle intersezioni con \varkappa_1 e \varkappa_2 e analoga definizione abbiano λ_1' e λ_2' . Posto $\lambda_m'' = \lambda_1''$, con una conveniente scelta dell'arco $\lambda_m' = \lambda_1'$ (oppure $= \lambda_2'$) si può fare in modo che la curva di Jordan γ_m^* costituita dagli archi $\lambda_m'', \overline{\varkappa}_2, \lambda_m', \overline{\varkappa}_1$ non contenga nel suo interno l'insieme g_m' e che la regione di Jordan γ_m da essa definita sia tutta costituita da punti interni a π'' ed esterni a π' .

Ne segue che tutte le regioni di Jordan γ_m , m=1, 2,..., N, sono l'una esterna all'altra in \overline{A} . Si può ora completare il ragionamento esattamente come nel n. 17. Il teorema 8 è così completamente dimostrato.

(continua)