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THEORY OF PLANETARY SYSTEMS

by OLIVER E. GLENN (Lansdowne, Pennsylvania).

The principle involved in the ancient law of BODE (1) for the distances of

the planets from the Sun, has been rejected by some astronomers because no
mathematical proof of this law was ever given. In this paper we prove BODE’S
principle and generalize both the law and the mathematics of which it is a

consequence. A mathematical theory of N. BOHR’S law of stationary states in
atoms is here developed. In the last section suggestions are made toward the
verification of the law of frequencies of M. PLANCK.

I. - Relations between integral curves and algebraic covariants.

A field of curves, T, to which reference will be made, is usually a narrow
ensemble of some length, of curvilinear segments. As originally considered in
this series of articles, r is a field composed of the segments into which an
orbit can be perturbed without losing it’s stability.

We consider a differential equation,

the function g being assumed rational and integral in r and in the derivatives
and otherwise numerical and real. Within a chosen field z an integral curve may
be approximately expressed by a parabolic equation,

From q(r,1)=8, each 0 gives n-1 values of r, and it follows that (2) can
represent n-1 integral curves, each in it’s field r. Assume r2) to be a

covariant of order h of q(r,, r2) under the transformations (real),

(1) JOHANN E. BODE (1747-1826), predicted the existence of a planet (Diane) on the basis
of the law in question. KEPLER and also TITUS of Wittenberg had perceived the principle
in the special form in which it was used by BODE.
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LEMMA I. - The equation (1) can be transformed rationally so 
becomes the dependent variable.

In proof we have, generally,

E being rational and Substitution in (1) gives an equation in
which the derivatives are w(l~’), (k=1,...., l), with coefficients rational and integral
in r, viz.,

SYLVESTER’S dialytic eliminant, formed between (3) and the equation 
to eliminate r, gives a rational equation in w as dependent variable with integral
polynomials in w as coefficients, i. e., q. e. d.,

Since, in B, w is 1) instead of 99(rl, r2), absolute invariance of w is

for the special case, only,

LEMMA II. - Integral curves of g=--0, as represented by (2), are transformed
into integral curves by Ti.

In proof, B=0 is only a transformed form of When Tiq(r, 1) induces
a transformation upon w=q;(r, 1), both g=O and B=O are unaltered; but q(r, 1)
is transformed, hence 1) represents integral curves.

LEMMA III. - If X is the numerical w-coordinate of a point P of an
integral curve a of B=0, the equation,

is invariant.

The invariance, evidently, is for transformation of 0=q(r, 1) by Ti.
The roots of (5) are the points where h integral curves of g=0 cross OP or OP

produced. Let P trace a, as delimited by a r. Then these roots si, (i=1,...., h),
trace h integral curves ai of g=0. When 0=q(r, 1) is transformed by Ti,
a remains fixed, or it may go into another integral curve (0) of it’s equation,
B=0. In the first alternative the curves ai are permuted among themselves by
the operation T1q(r, 1). In the second the curves respectively are sent forward
to coincidence with those of another ai-set, in general in a permuted order,
(cf. (30) et seq.).

The differential equation next to be considered, a special case of g=0, is
the known equation of central plane orbits, the force at the center 0(0, 0) being



299

the arbitrary F(r), r being the distance and m the mass of the

planet N, viz., 
-

Any integral curve of (6) will satisfy KEPLER’S law of areas, but the curve is
a stable orbit only if

+ k, 0=1’2).,2, where all letters excepting r are constants.
The general integral of (6) is known to be expressible as

c being arbitrary and (s, v, fl) a dependent set where s is the distance from 0
to an initial position I of N, v the initial velocity and fl the angle between OI
and the vector v. 

,

The covariant in the special case is F(r), (=w=~(r,1)). It is shown to be

invariant for the particular case of Ti, Sz’ : r=r’/z, (Cf. (24)). If we expand F(r)
to a polynomial of order 2n-2 in r, the invariant equation (5) becomes (9) below.

Suppose a to be a curve (8) in r and a the corresponding uniquely deter-
mined curve of the force (an integral curve of B=0). As N passes a point Q(r, 0)
of a, the corresponding point P (on 0 Q produced) of a, is such that w of P

is the force which 0 exerts upon N at the instant when N is passing through Q.
Theorem 1 now follows. The curves Ci are curves ai of Lemma III and X has
it’s former interpretation.

THEOREM 1. - If g=0 is the equation (6) and a a uniquely selected
integral curve of the corresponding equation B=O, there will be as many
curves Ci appropriate for orbits- of N and having a as their common force-
curve, as there are real positive roots of the invariant equation F(r) = X, viz.,

THEOREM 2. - If m is fixed, all curves Ci of Theorem 1 are separaled,
no two are consecutive geometrically.

In proof, a relation between an orbit Ci in a 1:, and any· curve I~Z into
which Ci has been perturbed, can be written in the form,

(2) We refer (in the text) to Ri , Rz, R3, the following memoirs respectively : GLENN~
Annali della R. Scuola Normale Superiore di Pisa, ser. 2, vol. 2 (1933-XI), p. 297; vol. 4

(1935-XIII), p. 241; vol. 6 (1937-XV), p. 29.
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We form the time-derivatives in T’, and multiply through by the mass m and
obtain,

where S(r) is the formula of instantaneous energy-potential, or vis viva, of the
planet N, ~

The direction of the work ds is along r. The force which 0 exerts upon m at
a point (r’, 0’) of Ki is greater or less than that exerted upon m at the corre-
sponding point (r, 0) on Ci, according as

so being taken positive when Kz is on the side opposite Ci from the origin.
If G&#x3E;0 (3), and Ki is outside of Ci, the orbit is stable if the increase, in F(r)
along r, from C (= Ci) to Ki, exceeds the increase, from C to Ki of Q= (mo-
mental force + centrifugal force). If the perturbation of C is inward (so negative),
the decrease in F(r) must exceed the decrease in IJF. These are the conditions

for the property of self-restitution characteristic of a stable orbit.
If G ~ 0, so F(r’) ~ F(r) when is outside of C, the property of stability

is that the decrease in F(r), along r from C to Ki should be less than the
decrease of IJF from C to Ki. If Ki is inside of C the increase in F(r) from C to Ki

must be less than the increase of Q from C to Ki.
The pair of cases G&#x3E; 0, G--O may be included

in a single statement as follows: Let W (called the
effective force) be the component, along the radius,
of F(r), the momental force, and the centrifugal
force. Then if a stable orbit C is perturbed, inward
or outward, the curve of W is always perturbed
outward (Fig. 1) (4). However, q. e. d., this property
would not hold if, for C, we take a K2.

Another type of conclusion is obtained by solving G0 for r. If n=4 the

result is

Assume R to be very small in absolute value. Then the limiting value of r for
stability of motion of m upon C, in the case approximates the smallest
number of the pair, - _ I _ -- - _ , _ ,~

(3) When G &#x3E; 0 it is not to be assumed that it is very much larger, since So . 0.

(4) This fact is related to a property of metals which become harder when deformed

by pressure.
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Either sign in the latter formula may give a very small limit. Hence,
LEMMA IV. - When the ratio of the central force to the formula of vis

viva, S(r), of the rotating body is very large, a stabilizing condition, for
example G  o, may compel the radial distance r of N to be, as a com-
pensation, exceedingly small. This is the case within an atom.

The equation of the orbit of the electron in the atom of hydrogen, near
aphelion, is 

,

this equation being the integrated form of

The number - u is positive and small, and v negative, and I v I very small in

comparison with I u I. .
With n=3 the relation C  0 gives

Thus, a necessary and sufficient condition in order that r of (15) should be appro-
priate to the hydrogen atom is that 1IR should be very large in absolute value.

II. - Energy, and a hypothesis of Laplace.

The historical, but hypothetical, concept of an ether undoubtedly allows

« properties » of ether which are inexplicable (not merely unexplained). Any
conclusion derived by experiment upon such a « substance » is subject to question
as to it’s validity, on philosophical grounds. Accordingly, in our reasoning about

energy, we shall not speak of waves in the ether. Energy will be considered only
in it’s association with mass.

We enlarge the concept of the field ~ of potential of a material body b which
is at rest within a region S, to include all forms of energy which exist in X

because of the presence of b. If b begins to move in S, there will be a transfor-
mation of ~ since an energy lVl (kinetic) of momentum of b in S then inter-

venes. But lVl is the capacity for doing work of b’s momentum m(dsldt), in S,
(s=distance), measured by

and is the instantaneous rate of change of the momentum. At the instant,
Annali della Scuola Norm. Sup. - Pisa. 22
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momental energy ~VI is a component (5) of the field of b, which is still a field ~,
to be designated by and regarded as the transformed of the original field Z
of b. From this point of view there is but one type of energy, that of a field Z
associated with a mass b at an instant of time.

A mechanical system (automatic machine) is to mean here any set of related
objects which, within itself, is capable of doing work in response to an associated
energy E, and if E is all confined within the system, the system is said to

embody a level of energy. Least action and least work are both involved in

energy-levels. If a mechanical system at rest has energy introduced and acts
thereafter as a level and an automatism, the general motion to which it con-

verges, under the principle of least work, is that in which the energy-field Zj
associated with any object in the system, remains as near constant as the

structure and action of the system permits. It follows from this principle alone
that planetary motions in a solar system, with the lapse of time, will tend toward
the circular form (s). Conditions in the environment of a mechanical system may
be variable, and such that the system will converge to different ultimate motion-
types at different times. Most energy-levels in nature lose energy by leakage,
for instance in the form of radiation, but atoms of elements normally are

exceptions.
The essential fact of LAPLACE’S hypothesis is that a solar system evolves by

the concentration to a center 0, along infinite spiral paths, of nebular material,
small particles, (R3, p. 34). It is as important to note that much of the energy
which will be associated with the system, flows to 0 in association with the
nebular masses. When a sufficiently large concentration has reached 0, a force
function of the form becomes dominant, particles at a sufficient distance

retreat because 0 has become repellent for particles and the mechanical system
becomes a level of energy. The normal situation then is that planetary nebular
masses of large sizes will have formed and will be in rotation around a central

mass or sun. A good example of this stage of the evolution is the circular nebula
Messier (M5), in the constellation Canes Venatici.

Within a field r, the orbit of a typical planetary nebular mass will be of
the form, (R3, - p. 30),

In order that (17) should represent a stable orbit it is necessary and sufficient

that F(r), as determined by substituting in (6) from (17), should reduce to the
functional form (7) and it will if certain n-2 rational relations exist between

(5) Cf. EDDINGTON: The Mathematical Theory of Relativity (1923), p. 135.

(6) KRALL: limite, etc. Proc. Internat. Math. Congress, Zurich (1932), vol. 2, p. 258.
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the coefficients ~(~), ~(~),...., p(~), of the respective powers of r in (17). For
example, when n = 5, the relations are, ,

When n = 4 they are,

The relations exist within the degree of approximation of the coincidence of

(in the form (17)), with the orbit’s segment in T.

III. - The law of Bode and it’s generalization.

By theory of the equations (2), (17), the (n-1) inner orbits of a solar

system, each within a specific perturbational field T, have a universal equation,

When it’s coefficients (numerical) are substituted in known relations which

connect v,...., ~O with the respective a,...., k, then F(r) becomes a numerical

function of r. When n = 5 the relations in question are,

To obtain the equations for n = 4 we change a, b, c, d to 0, a, b, c,

respectively, to 0, v, ~, 0, in the last four relations for n=5,
(R3, p. 32).

In order that F(r), thus evaluated, may be an attraction r must not be too
large and (the coefficient next to the last in (19)), not too small.

A set of generators of T is the following:
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We also employ the nonhomogeneous transformation,

We have,

where

hence, for n general, the relations corresponding to (20) give

THEOREM 3. - The force-function w=F(r) of (7) is a relative covariant

when 0=f(r, 1) is transformed by Sz’.
The statement of the theorem is readily verified by substituting from (22) in,

The result is,

The formula which defines force is a function of two variables, mass and
acceleration. Hence we can make the relation of invariancy (24) absolute

whenever it is permitted to alter independently either the unit of mass or the
unit of acceleration.

The transformation of 0=f(r, 1) by Sz’k multiplies the radial coordinate w
by (k=1, 2,....), while we have, in (9), the equations, (k=1),

The first relation (25) shows that the roots of (9) are all multiplied by z.

The rest of (25) shows that (9) is an equation of such a special nature that
it remains invariant when 1) is transformed by Sz’. Hence the roots
of (9) are permuted by this transformation. Iterating Sz’ we therefore obtain
only a finite number of permutations of the 2n - 2 roots by means of a

transformation of infinite order. This is a paradox. It is explained however
by noting that (9) does not terminate at the left with any specific Aa . It would
become an infinite series with the indefinite increase of rt, except that the upper
coefficients converge to zero, within the approximations, thus terminating the
series before n reaches a very large value.
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If si i is the least positive root, and Z8i the second in magnitude,

is a sequence of roots. Let Sj+i be the least positive root not in ( j =1, 2,...).
Then all numbers,

are roots and the sequences are mutually exclusive if z is chosen so no z.8 equals
a quotient silsj. All positive roots of (9) are represented by z), ( j =1, 2,...).

Since the roots of (9) are intersections of integral curves of (6) with a

chosen radial line, it follows, q. e. d., 
’

THEOREM 4. - If S1 is the mean distance from the sun of the innermost

planet of a solar system and z is selected so ZSi is the mean distance to
the second theoretically there exist planets at all distances zksi ,
(k=0, 1, 2,....), until the outer edge of the energy-level is reached.

This is a general form of BODE’S law. We next prove that if any stable orbits
having a as their force-curve intersect OP in respective points s~’ exterior to the
set of points representing the positive roots of (9), these exterior points are also
represented by numbers in Z(sj, z) when the latter is regarded as an algebraic
formula in two arbitrary parameters. For example when the roots z) are
the mean distances of the planets in our solar system, the distances of the
asteroids may give exterior points.

Assume the roots of f(r, 1) =0 to be zs1,...., Since all are roots

of (9), f(r, 1) will be termed an inside quantic. Let Z’ be any set of n -1

, values of r corresponding to intersections with OP of stable orbits for a, which
includes at least one point 5/. Then Z’ is the set of roots of a quantic 
which we designate as an outside quantic. Let (i=1,...., n-2), be the
conditions for stability of 0=fi(r, 1), Tin being the same function of the coeffi-
cients of fi that Cin is of the coefficients of f. Then the set vanishes because

the set Cin vanishes, (both groups of curves, 0=( 0=fi being orbits of F(r)).
However Ci+ln and Cin are of different weights, and if we begin with n = 3
where there is only one Cin, and Tin, and proceed inductively, it is seen that,
respectively, because Gn=0, (i =1,...., n - 2), hence,

(27) (2=1,...., n-2),

S~i being undetermined. Therefore 1) is the transformed of 1)
by a linear transformation which leaves the conditions for stability invariant,
as in (27). Of the generators of T, however, only Sz (here S~’), induces a

transformation which leaves the Cin invariant. Hence fi(r, 1)=--f(rl$, 1), and is

an inside quantic, contrary to hypothesis, if ~s1 is a root of (9); otherwise the
roots of f,(r, 1) are in z), i. e. in I(sj, z) as an algebraical formula, q. e. d.
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If the unit of length is chosen as -si, (26) is

Then, in restoring the arbitrariness of the unit, we may adjoin the transformation
which expands the point-circle, (0, 0), into the concentric circle of radius - QolPo, y
thus obtaining, (Cf. Lemma V),

Rules for practical use of BODE’S principle are now as follows. [1] Measure in
any convenient unit the respective mean distances qi, q2, q3 of the three

innermost orbits of a solar system. [2] With we then have BODE’S

formula in the form,

[3] Substitute in the latter equation, successively, (k=0, r=q2), (k==l, r==q,,),
determine Po, Qo, and this gives a numerical formula for r in a numerical

case and the following in the general case,

Each value of k gives the position of a planetary orbit. Since the three qi
in (29) remain arbitrary, any three (inner) curves known to exist as orbits of
respective planets, determine a bodeian cycle. Thus our zone of asteroids probably
constitutes a bodeian cycle. This can be verified when the various mean distances
have been found by astronomical measurement.

For planets of our sun the formula (28) was identified by BODE in the
form Po =1~3, Qo= -4/3. It is shown in Table I that the present
method improves these values.

Relations to the nebular hypothesis. - LAPLACE assumed that the planets
originally were nebular and diffuse. We have assumed that the motions of these
nebular masses were stable and therefore that the central force (in any system)
was a definite F(r) (Cf. (7)). Both hypotheses are here verified since the tables
below show that all satellites of Sun, Saturn and Jupiter, (except for some
disarrangement of two of Jupiter’s outer moons), are such that the positions
now occupied by discovered satellites, after the latter have undergone conden-
sation and altered their attractions to the newtonian formula of inverse squares,

are the proper positions, under the general bodeian principle, for the nebular

planets corresponding to F(r), the approximations being all close. The satellites

of the Sun, of Saturn, and Jupiter have been able to maintain these positions
of their orbits, while condensing to their present forms. We therefore have

important elements of proof that the nebular hypothesis of LAPLACE is true.
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The following tables give the respective mean distances of the satellites of
our Sun, of Saturn, and Jupiter, as computed from the formula (28), and as
compared with the distances obtained by astronomical measurement.

We have completed the list of names of these satellites. This seemed desirable
although perhaps the numerical notation will be the one adopted eventually for
the asteroids. 

’ 

, 
,

The variations from the accurate bodeian positions, shown by the moon
Dirce and Eurydice, of Jupiter, are probably due to the disturbing influence
which was introduced when the adventitious « eighth » moon was captured by
Jupiter’s gravitational field. Both Phoebe in Saturn’s system and Ptolemaios in

Jupiter’s, have retrograde motion. In our theory of a finite field, z, the direction
of motion of a planet, in it’s orbit, is immaterial.

The planets of our solar system.. ,

Unit of distance, one tenth of the earth’s mean distance from the sun.

~=~/~i== 7.2/3.9; (Revised to z=1.93). Formula,

The mean distance from the sun, of the newly-discovered planet Pluto is

equivalent to 5,419,415,000 miles. 
°

TABLE I
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The moons of Saturn.

Unit of distance, the equatorial radius of Saturn, (37500 miles). z=3.94/3.07 ;
(Revised to z=1.3). Formula,

PICKERING announced that he had found a tenth moon, Themis. The

discovery has not been verified.

TABLE II
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The moons of Jupiter.

Unit of distance, the mean radius of Jupiter, (43250 miles). z= 5.93~2.55 ;
(Revised to z=1.’7). Formula,

The exceptional « eighth » moon of Jupiter, (considered to be a captured
asteroid), has eccentricity .4, inclination greater than 30°, retrograde motion,
mean distance 337.58.

TABLE III

IV. - The law of N. Bohr (1).

When, under appropriate circumstances, a PLUCKER tube is attached to an
induction coil, the central force (Cf. (7)), F(r), within an atom of the gas in the

(~) NIELS H. D. BOHR : The Theory of spectra and atomic constitution. (Transl.
Camb., 1922).
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tube, is altered by the occurrence of small variations of the numbers 

(Cf. (17) and R3, p. 34). The physical counterpart of these variations will be

perturbations of any specific electronic orbit in the atom in question. If the exciting
force is so far increased that for some i, this will be because of a decrease
of the denominator [O(m)]n of Cin to the same or a higher order of smallness
than that of the numerator. Then, catastrophically, the electron becomes unstable
upon it’s original orbit q and seeks a new orbit q’ upon which the conditions
for stability, y Cin=O, are automatically restored. To determine events, note that,
in view of the algebraic uniqueness of (Cf. (26) et seq.), as the formula
for planetary distances, any orbit to which the electron can go and remain stable,
is a transform, in 0=f(r, 1), of q by an which transformation leaves

the Cin invariant.
Hence the new orbit is one of a bodeian set, which may contain q, or

not, sufficiently distant front 0 that, in the invariant relations,

corresponding to the transformation of O=f(r, 1) by the in

the denominators annul all functions Gin which were not already zero

at the instant of instability. This the principle of stationary
states.

Moreover, the electron, in it’s transition from q to q’, can remain on a stable
path. This results from the following argument.

LEMMA V. - With ao Limited above, we can transform the orbits in 7:

by D : without destroying the property of stability.
Since the stable orbits in z are given by the equation,

the transformation D leaves the form of their equation invariant, q. e. d.; however,
if ao is too large, T’ would not be suitable, after the transformation D, to carry
an orbit into a perturbed orbit, and this would cause a contradiction of the

general theory of F(r).
We observe next that, if F(?.) approximates closely to the formula of the

inverse cube, H~r3, the general integral of (6) is

The doubly spiral integral curve is all in the finite plane with the (u - I)-st
circuit (measured from 8=0) intersecting the u-th, if
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It follows that the spiral curve in Figure 2, is stable, with F(r)
equal to a particular form considerably different from H~r3. Assume that
the exciting force, in the example of the PLUCKER

tube, causes the original force, F(r), to assume the

form Fi(r) while passing to the ultimate functional

form, of the force, in the new level of energy.
Then the electron on q which originally approxi-

.

mated to the inner dotted circle of radius ao, retreats

to it’s new orbit q’ in approximate coincidence with
the outer dotted circle, but it makes the transition

along the stable spiral path. Our interim spiral is a

special, but typical case.
With the restoration of the original energy-level,

the electron may return along the same spiral but usually the hour-hand (polar
axis) will have rotated between the two catastrophic instants.

Remark concerning Planck’s law of frequency. - Any astronomical planet
or solid sun has a gravitational field such that concentric spaced layers of

gaseous and other particles will form around it, (KENNELLY and HEAVISIDE),
(R3 , p. 36). The successful hypothesis that a solar system is a model of an atom
of a chemical element therefore gives a logical basis for assuming that an electron,
in rotation within an atom, is surrounded by HEAVISIDE layers. On the basis of
such an inner mechanism conclusions about radiation follow; however perhaps
experimentation should precede the development of a mathematical theory. We
only mention two facts.

[1~. If , an electron, surrounded by layers, is shot through a gold foil it would
necessarily leave an impression like interference bands. This effect has already
been identified, first in the laboratory of J. J. THOMSON.

[2]. The formula W2 - WI, y (W2, y being the numerical measures of the
energy-field 03A3 of the electron, as 03A3 exists upon two respective BOHR orbits C2, Ci),
can be evaluated in terms of the sum of all numerically represented quants of
energy which, as the electron falls from C2 to Ci , are projected outward from

. the Heaviside layers in association with material particles. It can be shown that

frequencies develop in the projected energy. These considerations give an approach
to a proof of PLANCK’S law.


