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ON DIFFERENCES OF HEAT SEMIGROUPS

J.A. VAN CASTEREN - M. DEMUTH

Abstract. We describe some results on pointwise inequalities for generalized
Schr6dinger (or absorption/excitation or heat) semigroup. For these inequalities
we use a kind of generalized Brownian bridge measure. The main topic of the pre-
sent paper are some results on heat semigroup differences consisting of trace class
or Hilbert-Schmidt operators. As an application stability results of essential and/or
absolutely continuous spectra of quantum-mechanical Hamiltonians are obtained.
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1. Some properties of generalized Schr6dinger semigroups.
We take a rather abstract and general point of view. Let E be a locally compact

second countable Hausdorff space and let Ao be the generator of a Feller semigroup
t &#x3E; 01 in the Banach space Co (E). This means that ~Po (t) : t &#x3E; 01 is a

family of operators with the following properties:

, implies Po(t)f 2:: 0 and, of course, Po(t) f belongs to Co(E);

In the presence of (i) and (iii), (iv) is equivalent to the strong continuity:

We suppose that the semigroup is given by

where is a symmetric function which is continuous on (o, oo) x E x E and
where m is a given fixed strictly positive Radon measure on E. Often we write dy
instead of dm(y). We also suppose

for every compact subset K of E. Here 4l is the point at infinity of E. In addition
let V : E -~ be a Borel measurable function, defined on E.
Problem. Does some version of the operator

generate a positivity preserving strongly continuous semigroup in Co (E)?
Regarding this kind of problem we mention the following references: Voigt [45]

Simon [34] and [35], Graffi [18], Cycon et al [8], Davies and Simon [12], van Casteren
[36], [38], [39] and [41]. For a concise formulation we introduce the following definition.
1.1. Definition. (a) A Borel measurable function V : E --~ [0, w] belongs to
K(E) = K(E, Ao ) if

(b) A Borel measurable function V : E -~ belongs to Kioc(E) = Ao) if
1KV belongs to K(E) for all compact subsets K of E.
In van Casteren [41] the following general result is proved. For more details see van
Casteren [36], [38], [39] and [42].
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1.2. Theorem. Suppose that V = V+ - V- is a Borel measurable function defined
on E such that V- belongs to K(E) and such that V+ belongs to 

(a) There exists a closed, densely defined linear operator A in Co (E), extending Ao - V,
which generates a strongly continuous positivity preserving semigroup t &#x3E; ol
in Every operator Pv(t), t &#x3E; 0, is of the form

where is a continuous symmetric function which verifies the identity of
Chapman-Kolmogorov:

(b) The semigroup t &#x3E; 01 also acts as a strongly continuous semigroup in
LP(E, m), 1  p  oo.

(c) If Po (t) maps into L°°(E, m) for all t &#x3E; 0 (i.e. if 
E E}  oo for all t &#x3E; 0), then Pv(t), t &#x3E; 0, maps Lp(E, m) into fQr

1pqoo.

(d) In L2(E,m) the family fpv(t) : t &#x3E; 01 is a self-adjoint positivity preserving
strongly continuous semigroup with a self-adjoint generator.
Remark 1. Let A &#x3E; 0 be large enough. Using the Markov property the following
equality is readily verified

From this equality the extension property in (a) easily follows.
Remark 2. If in (c) we assume that, for t &#x3E; 0, the operator Po (t) maps in

Co (E), then we may prove that, always for t &#x3E; 0, the operator Pv(t) maps Lp(E, m)
in Lq(E, m) nCo (E), provided that This will be explained
in Theorem 1.5.(b) and Corollary 1.6. of the present paper.
Outline of a proof. Let (X(t), Pz) be the strong Markov process associated to the
semigroup {Po (t) : t &#x3E; 0}; i.e. suppose

Define the semigroup fpv(t) : t &#x3E; 01 by the Feynman-Kac formula:

Here ( is the life time of the process:
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Define the function by:

Here t &#x3E; 0 and x and y belong to E. The various assertions in Theorem 1.3. have to
be verified. The semigroup t &#x3E; 01 is approximated by semigroups 
t &#x3E; 0} defined by

Here -oo  1~  .~  oo, Vle,l = E = U Km, Km is compact,
Km C int and Tm is the first exit time from int(Km):

The integral kernel pv(t,z,y) is approximated by the integral kernels of the semi-
groups 01. In fact we have

where x, y) is given by

Here is defined by

Remark 1. Throughout the text we freely use the strong Markov process (X (t), Pz )
associated to the semigroup t &#x3E; 01.
Remark 2. We write for the norm of the operator T considered as an operator
from LP (E, m) to Lq (E, m).
Remark 3. If ~X(t), is Brownian motion, then physicists write

Remark 4. Again let IX(t), P.1 be Brownian motion in IR’’, which begins in x. Fix
t &#x3E; 0 and y E IR’’ . It is useful to observe that the following processes have the same
finite dimensional Pz-distributions:
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The following result can be found as Proposition 1.3. in van Casteren [41]. Estimates
like the one in (a) are also interesting to find bounds for the Hilbert-Schmidt norm
of the form 

-

1.4. Lemma. Let V &#x3E; 0 be in K(E). The following assertions are valid.
(a) There exists a constant c such that

(b) (Khas’minskii’s lemma) There exist finite constants M and a such that

The following theorem gives some interesting inequalities. A proof can be found
in van Casteren [42] and if E = IRn also in Demuth and van Casteren [14].
1.5. Theorem. Suppose the symmetric integral kernel has the following
boundedness property. For every t &#x3E; 0 the supremum

is finite.

(a) Let M and a be constants for which

For 1 ~ p  q  oo the inequality

holds true.

(b) Let p and p’ be conjugate exponents:

Choose constants M and a such that
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For t &#x3E; 0 and z, y belonging to E the following inequality is true:

Before we prove this result we like to make some comments and remarks.
Remark 1. From the asumptions in the Theorem it follows that, for every t &#x3E; 0,
the operator Po(t) maps in L"(E, m).
Remark 2. Proposition 1.4.(b) yields the existence of finite constants M and a
verifying inequalities like (1.4) and (1.7).
Proof of Theorem 1.5. (a) To prove this we suppose that 1  p  q  oo and we
write r = p(q -1 )~(q - p). Applying the Riesz-Thorin theorem twice shows, for t &#x3E; 0,

(symmetry and semigroup property)

(symmetry)

The Feynman-Kac formula shows

Next let x be in E and let f be in L2(E, m). Another estimate will show
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From (1.11) it follows that

From (1.9), (1.10) and (1.12) inequality (1.5) in (a) immediately follows. Among
others these estimates show that for t &#x3E; 0 the operator Pv(t) maps LP(E,m) in

for 1  p  q:5 oo.

(b) We establish inequality (1.7) with replaced by and

replaced by po,m(t, x, y). Taking the limit for rrz to infinity will give (1 .7).
The Feynman-Kac formula for generalized Brownian bridge (stochastic bridge) yields,
for x, y belonging to intKm,

(Holder’s inequality)

(martingale property)

(symmetry and the semigroup property)

With f belonging to L 2(E, m) and x in int(Km), the Feynman- Kac formula shows

The combined inequalities (1.13) and (1.14) result in inequality (1.8). This proves
Theorem 1.5.
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1.6. Corollary. Let the notation and hypotheses be as in Theorem 1.5. Let t &#x3E; 0.

The operator Pv(t) maps the space in Lq(E, m) n Co(E), provided that
1pqoo, p=
Proof. From Theorem 1.5.(a) it follows that the operator Pv(t) maps the space
LP(E,m) in Lq(E, m), 1  p  q  oo. Next suppose that 1  p  that

1  p  q  oo and that f belongs to Lp(E, m). We apply Theorem 1.5.(b) with
p = p’ and p’ = p, where 

-

By inequality (1.8) there exist constants M and a such that

Put

Let 6 &#x3E; 0, choose g in Coo (E) (i.e. the function g is continuous and has compact
support) in such a way that 

-

and put ,K = supp(g~. From (1.15), from (1.16) and from H61der’s inequality it follows
that

Since = 0, we conclude from (1.17) that (z)1 ]  E

for x "close" enough to ~. By the semigroup property and by (a) it follows that the
operator Pv(t) is a mapping from LP(E, m) to LOO(E, m) see e.g. [36] and
[41]. Consequently Pv(t) maps LP(E, rn) in Lq(E, m) n Co(E). This proves Corollary
1.6. for 1  p  oo. For p = 1 the proof is similar and much simpler.
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2. Semigroup differences consisting of trace class or Hilbert-Schmidt op-
erators.

In this section we write Po (t) = exp(-tKo ), where -Ko is the generator of the
semigroup ~Po (t) : t &#x3E; 01 viewed as a strongly continuous semigroup in L2 (,~, rn),
instead of Pv(t) the symbol Pv(t) = exp (--t(Ko + V )) is employed and pv(t, x, y) is
often written as pv (t, x, y) = exp (-t(,Ko + V)) (z, y). If E is an open subset of E and
if r = E , E, then we usually write = exp (-t(Ko + V)E) (x, y) for the
integral kernel of the semigroup killed in r. For t &#x3E; 0 and f E L~(E, m) the following
equality is valid:

where T ~ inf ~s &#x3E; 0 : X(s) E E B FI, the exit time from E. It is perhaps useful
to notice that the semigroup (exp + V)r) : t &#x3E; 01 is strongly continuous
on the subspace {f E L2(E, m) : f lr= 01 with a generator denoted by (Ko +
V)r. Sometimes it will be convenient to write J* exp (-t(Ko + V)E) J instead of
exp (-t(Ko + V )~ ), where the operator J is defined by J f ~ f ir,, f E L2 (E, m).
Then [J*f ](x) .= f (x), for x E E and [J* f](z) = 0, for r. The set ~’ supports a
potential barrier and is called a singularity region. Another convention we use is the
following. Instead of dm( z) we write dx and the inner-product of f, 9 in is
denoted by  f , g Next let 1-l be a real or complex Hilbert space
and let T : 1-l --~ 1i be a (hermitian) positive operator, i.e. suppose  T f , f &#x3E;~ 0
for all f E 7~. We say that ~’ is a trace class operator or that T belongs to Z’1, if its
trace, trace(T), is finite. Here trace(T) is defined by

where E 1N~ is any orthonormal basis in 1-l. The expression in (2.1) is

independent of the choice of the basis E An arbitrary operator T in £(H)
belongs to if its absolute value ITI possesses a finite trace. For T E Ti we define
its trace norm JITIJZ, by IITllxl = trace(ITI).

An operator T in £(1-£) is a Hilbert-Schmidt operator if T *T belongs to Tl . Its
Hilbert-Schmidt norm IITllx2 is defined by

where as above ~r~~ : j E IN} is an orthonormal basis in 7~. If 1i = m) and if T
is a (hermitian) positive operator of the form
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where t : E x E -~ [0, oo) is a continuous function, then

These facts are well-known. For example the reader may consult Reed and Simon
[32].

We begin this section with an elementary proposition.
2.1. Proposition. Let v &#x3E; u &#x3E; 0 be functions in L2(E, m~. Put 
So that

The following assertions are valid:

Proof. The eigenvalues of the operator T can be computed explicitly:

Then 0 &#x3E; A2, so that trace(T) =l1+l2, =l1 - l2 and IITlli2 = B2 + a2.- - -T2 1 2 *

The assertions (i), (ii) and (iii) readily follow from these equalities. 
2.2. Theorem. and V2 be potential functions verifying Kato’s conditions,
i.e. with negative (= attractive) parts in K(E) and with positive (= repulsive) parts
in Kloc(E) and suppose v2. ~ Also suppose that

(a) Then

and
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(b) If lIexp(-tKo)lkoo  oo and if VI - V2 belongs to then (2.6) is auto-
matically satisfied.
Proof. (a) We shall estimate the integral:

(Chapman-Kolmogorov and Feynman-Kac formula)

(variation of constants formula)

(Fubini and Chapman-Kolmogorov)

This proves (a).
(b) From Theorem 1.5 inequality (1.8) it follows that, for appropriate constants M
and a,

So (b) easily follows.
2.3. Corollary. Fix t &#x3E; 0 and let V = V+ - V- be such that V+ belongs to KI.,(E)
and such that V- belongs to K(E). In addition let V belong to L1 (E, m) and suppose
ilexp  oo. Then
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belongs to 12 and, for appropriate constants M and a,

Proof. Repeating the arguments of the previous proof With Y2 = V and Vi = 0 yields

Then apply Theorem 1.5. to obtain (2.13).
2.4. Theorem. Fix t &#x3E; 0 and let be potential functions as in Theorem 2.2.
If the expression

is finite, then

belongs to 11 and IID(t)lIz1 ::; 2M(t).
Proof. Notice the identity

where

Let D(t) = U ID(t)1 [ be the polar decomposition of D(t). Then

Next we apply Proposition 2.1, item (ii), to obtain
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This inequality yields the desired conclusion.
2.5. Corollary. Suppose E = IR" with Lebesgue measure and let Ko be -î6. Let

V2 be potential functions with the usual Kato properties, i.e. their negative
parts belong to Kv and their positive parts are in Put W = Vi - V2 and
suppose that for every p &#x3E; 0 the following integrals are finite:

Then the operators

belong to 11 -
Proof. Fix t &#x3E; 0 and put

From Theorem 1.5 inequality (1.8) it follows that there are constants M and a such
that the expression in (2.15) is dominated by

It is elementary to verify that the integrals
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are dominated by constant multiples of the integrals in ( 2.20), (2.21) and (2.22)
respectively. The constants involved (like p) depend on t but not on W.
Remark 1. Let W be a non-negative Borel function, defined on IRv and consider
the following integrals:

It is perhaps useful to observe that the integrals in (2.20), (2.21) and (2.22) are finite
if and only if the integrals in respectively (2.20’), (2.2l’) and (2.22’) are finite. The
involved estimates are elementary but a little elaborous.

Remark 2. The same proof works if Ko generates a symmetric Feller semigroup of
the form

where, for every to &#x3E; 0 there are constants ao and bo such that

for 0  t  to and for all x, y in IR". Here po,"(t, x, y) is the Gaussian kernel (2.24).
In what follows we write T = inf ~s &#x3E; 0 : X(s) E ri, whenever r is a singularity

region. Quantum-mechanical particles do not penetrate singularity regions. In fact

singularity regions support potential barriers. In the presence of such a potential
barrier supporterd by r the Hamiltonian in its complement generates the so-called
semigroup killed at r; see the beginning of this section. Fix A &#x3E; 0 and define the
function E --~ (o,1~ by

We are going to describe some of the ’relevant properties of the function va. The
function vx is lower semi-continuous (i.e. for every a &#x3E; 0 the set {vx &#x3E; a} is open),
it is finely continuous in the sense that, for every z E E, the function s H vÀ(X(s)) is
Px-almost surely right-continuous and it is A-excessive in the sense that, for all x E E,



133 -

and

if T decreases to 0. Moreover vx(x) = 1, for x E rr, and m(r ~ = 0. For more

details see Blumenthal and Getoor [5, p. 86, Proposition (4.4), Theorem (4.5) and
Theorem (4.8)]. The function va is called the A-equilibrium potential of r and the
quantity À J is called the l-capacity of the set r. For this terminology in
the context of Brownian motion see Port and Stone [30, p. 42]. The reader may also
consult Demuth and van Casteren [14] for more details.
2.6. Theorem. Let r = E ( £ be a singularity region. Let V be a potential function
with the usual Kato properties; i.e. V- E K(E) and V+ E Let + V)E
be the generator of the semigroup lexp (-t(Ko + V)m) : t &#x3E; 01. Put

Then f &#x3E; 0, f E L2(E,m) implies 0. Fix t &#x3E; 0 and write A = 1/(2t). If

then belongs to T2 and

Here the function V verifies the usual Kato conditions. Before we prove this
theorem we want to make the following remarks. From Theorem 2.6 it follows that
the operator DE(t) is a Hilbert-Schmidt operator whenever r has finite A-capacity
(A = 1~(2t)) and whenever lIexp(-2t(Ho +  oo. In fact in section 3 we
shall prove the following inequality: 

’

where t &#x3E; 0 and where V is as in Theorem 2.6. In fact inequality (2.31) can be
interpreted as saying that the quantity 2 f +V ))(x, Z )Vl/t(Z )dz dominates
the trace of the operator In [9] Davies elaborates on in the case of Brownian
motion in W (Ko = 2 L~) and V = 0. He considers the situation where r is a lower
dimensional surface in IR".

Proof. Inequality (2.29) is proved in the same way as inequality (2.9) and inequality
(2.30) is a consequence of inequality (2.31), which will be proved in section 3. In
Demuth and van Casteren [14] a proof of (2.31) is given as well.
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2.7. Theorem. Let V be a potential function verifying the usual Kato conditions
and let r also be as in Theorem 2.6. Suppose that the quantity M(t~ defined by

is finite. Then the operator

and

Proof. As in the proof of Theorem 2.4. (inequality (2.19)), it follows that

Employing the time dependent strong Markov property it may be verified that

For a proof the reader is referred to Theorem 4.7 in Demuth and van Casteren [14].
If V = 0 and if is Brownian motion a similar result can be found in Port
and Stone [30, pp. 12-15].
2.8. Corollary. Again consider E = mil and Ko = -§4l. Let V be a potential
function verifying the ususal Kato conditions. Let r be a singularity region and let
S be the first hitting time of v’2r. If the expression

) J belongs to 11.
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Remark. Upon replacing the Cauchy-Schwarz inequality by the more general
Holder’s inequality and by replacing v’2 by another constant a similar result is also
valid for operators Ko which generate semigroups verifying (2.2fi~.
Proof. By Theorem 2.7. it suffices to prove that the constant M~t~ in (2.32) is finite.
We apply Cauchy-Schwarz inequality to obtain

- I

(Theorem 1.5.)

In the final line we used the time scaling properties of Brownian motion. From (2.32)
and (2.35) we infer

From (2.34) it follows that (2.36) is finite. Hence M(t) is finite and consequently
Dr (t) is a trace class operator.
2.9. Corollary. Let the hypothese be as in Corollary 2.8. but with a bounded

singularity region 1,. Then the operators t &#x3E; 0, belong to II.
Proof. Let C be closed compact set containing v’2r and let ~i be the first hitting
time of C. If S is the hitting time of v’2r, then

From Lemma 21.3, p. 227 of Simon [34] we see that the right-hand side of (2.37) is
dominated by the quantity
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It follows that (2.34) is dominated by

Since C is bounded the integrals in (2.38) are finite. Hence Corollary 2.8. yields
Corollary 2.9.

The following theorem gives sufficient conditions in order that uess(Ko + 
oess (K0).
2.10. Theorem. Let r = E B E be a singularity region, let va be the A-equilibrium
potential of r and let V be a potential function verifying: V+ E and V- E

K(E). In addition we suppose that, for every t &#x3E; 0,

Then, for t &#x3E; 0, the operators

are Hilbert-Schmidt operators and

If for every t &#x3E; 0 the quantity  oo, then (a) is satisfied if r
has finite 1/t-capacity and (b) and (c) are satisfied if V belongs to 
Proof. The result follows by considering the differences of (pseudo-)resolvents:

for A &#x3E; 0 sufhciently large. These differences are compact operators because by
Theorem 2.2. and Theorem 2.6. the differences

are Hilbert-Schmidt operators. The claim in the theorem on the stability of the essen-
tial spectra then follows from a general two space criterion as exhibited in Br3ning,
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Demuth and Gesztesy [6]; see also Theorem 4.1. below. We have to employ this theo-
rem twice. A first time with T = I, 1-lI = X2 = L2(E, m), Al =- Ko and A2 + Ko + V.
A second time with T defined by Tf = f JE, 1-lI = L2(E,m), X2 = 
A1 = Ko + V and A2 = (Ko + V)~. To apply this result we need the compactness of
the operators 1r exp (--t(Ko + V)), t &#x3E; 0. Since, by (a),

these operators are in fact Hilbert-Schmidt operators. So certainly they are compact.
We also have an application to the stability of the absolutely continuous parts of

the spectra. As in Theorem 2.10. T is the first hitting time of r.
2.11. Theorem. Let V and r be as in Theorem 2.10. Suppose in addition that, for
all t &#x3E; 0, the quantities

I ,

are finite. Then, for all t &#x3E; 0, the operators

are trace class operators and

Proof. From Theorem 2.4. and Theorem 2.7. it indeed follows that the operators in

(2.42) are trace class operators; see the proof of the Hilbert-Schmidt analogue in the
previous theorem. For the sake of completeness we repeat here a version of the two
space trace class condition for the existence of wave operators due to Pearson: see
e.g. Reed and Simon [32, p. 24~.
2.12. Lemma. Let and (Ko + V)E be as above. Then Ko is a selfadjoint
generator in L 2(E, m) and (Ko + V)~ is a selfadjoint generator in L2(~, m). Let the
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operator J be defined by Jf = f 11J. Here f belongs to L2(E,m). Suppose that the
operator

is a trace class operator. Then the wave operator

exists. Here denotes the projection onto the absolutely continuous
subspace of Moreover by the invariance principle for wave operators (see
also [32, p. 31] or for the two-space situation Baumgartel and Wollenberg [4, pp. 246
ff.] the existence of the wave operator

follows. If, additionally, the operator

is of trace class and if for all f in 

then the wave operator W+ ((Ko + is complete. This implies the stability
of the absolutely continuous spectra, i.e.

For the latter the reader may consult Demuth [13, p. 17 ff.~. In order to prove

(2.43) observe that w- limt~~ + V))Pac(Ko + V) = 0. So by an ap-
proximation argument it suffices to show that for every s &#x3E; 0 fixed the operator
lr exp (-s(Ko + V)) is compact. From (a) it follows that it is a Hilbert-Schmidt

operator: again see the proof of Theorem 2.10. and notice that the quantity in (a)
dominates ~’r exp(-t(Ko + V))(z, In order to see that (2.43) suffices indeed
for completeness we first may verify that W+ (Ko + V, I, Ko ) exists and is complete
and that the same is true for W+((Ko + V)E, J, Ko + V) provided (2.43) is valid.
Consequently, the claims on the invariance of the absolutely continuous and essential
spectra follow from an invariance and stability result in mathematical scattering the-
ory. For more details the reader is referred to Demuth and van Casteren [14, section
5].

Condition (b) (condition (c)) in Theorem 2.10 is valid if 
for all t &#x3E; 0 and if V- (V+) belongs to L1 (E, m). In Demuth and van Casteren [14]
similar results are obtained if E is replaced with IRn. The proofs in [14] to verify (a)
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and (b) are the same in the present situation. In these verifications the inequalities
in Theorem 1.5. are important.

Problem. Theorem 2.10. shows how to change the original state (=configuration)
space E’ to E = E B r, without changing the essential spectra of the Hamiltonian. Are
such stability results true in spaces other than For example is such kind
of stability true in m).
3. A proof of inequality (2.29)

A proof of inquality (2.29) is contained in the following theorem.
3.1. Theorem. Let r = EB E be a singularity region, let T’ be the first hitting time
of r and let va be the A-equilibrium potential of r. Suppose that V is a potential
function verifying the standard hypotheses (i.e. Y is a member of and V+
belongs to Klo,(E)).Then

where tA =1.
Proof. Equality (3.1) is a consequence of the strong Markov property: see Theorem
4.6 in [14]. A proof of inequality (3.2) can be obtained as follows. Suppose that
V is bounded and continuous. An approximation argument will yield the required
inequality for general V. For brevity we write v = va, tA = 1, m = 2n, ms = t and
we introduce the hitting times T~, ~ &#x3E; 0, by

We also write

whenever Y is an appropriate random variable. The function ha(~, x, z~ is defined as
follows:

, v.v ,

and notice that X7 z) = 0 if v(x) &#x3E; ~.
Next let U be an open subset of E and let Tu be its hitting time: Tu =

inf f s &#x3E; 0 : X(s~ E Since the measure
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(where XO = zm) is invariant under cyclic permutations we have:

Hence

Consequently, by the definition of Ex(Y), we get
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From (3.7) we infer

Hence we may conclude
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Since

since V is bounded and continuous, since = 0, Pz-almost surely, since

and since

whenever ~(s) decreases to ~ and whenever z(s) tends to z in E, we deduce from (3.9)
and from standard arguments in integration theory that

Since the measure of r B rr is zero and since vx(z) =1 for x E rr inequality (3.2) and
therefore (2.29) follows from inequality (3.10). Strictly speaking we only proved (3.1)
for continuous and bounded functions V. Employing standard approximation argu-
ments will show that inequality (3.10) remains valid for arbitrary Borel measurable
functions V which take values in [-oo, oo] and which verify the usual Kato properties.
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4. A two space criterion for invariance of essential spectra.
The following general two space criterion, as exhibited in Bruning, Demuth and

Gesztesy [6], was used in the proof of Theorem 2.10.
4.1. Theorem. Let A1 and A2 be two selfadjoint operators in some complex,
separable Hilbert spaces Hi and ?~2 respectively. Let T be bounded operator from

to 112 and let A be a point in the resolvent set of A1 as well as A2. If, for some p,
q, r e IN,

then

Here 2oo (Hi, Hi) denotes the space of compact operators between 1-li and 
As a consequence we have the following result, which is applicable in the present

situation. We use the notation and convention of section 2 and 3. In addition the

operator J : L2~E, m) -~ L2(~, m) is defined by J f = f JE, f E L2(E, m).
4.2. Corollary. Suppose that, for some A &#x3E; 0, the operators

and

are compact. Then aess(Ko) = + 

Here, as above, (Ko + is the generator in L 2 (E, M) of the semigroup
, defined by

where f belongs to ~2(~, m).
A corresponding stability result for the absolutely continuous parts of the spec-

trum reads as follows. A combination of Theorem XI.7 (Pearson’s Theorem) in Reed
and Simon [32, p. 24], the two space invariance principle [32, pp. 30-32], Proposition
4 [32, p. 34] and Proposition 5, assertion (c), [32, pp. 35-36] yields the following
stability result. Another valuable source of information is Bamgartel and Wollenberg
[4].
4.3. Theorem. Suppose that the operator

is a trace class operator and suppose that, for some A &#x3E; 0, the operator
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is compact. Then the wave operator

exists and its restriction to is surjective and injective from to

1iac ((Ko + V)~). Moreover the restriction Ko is unitarily equivalent to
(Ko + In particular + = 

Remark. Examples of applications of differences of heat semigroups in scattering
theory are among others:
A general formulation of the invariance principle (see Baumgärtel and Wollenberg [4,
p. 341] or the completeness of certain scattering systems due to the Enss method
(see e.g. [4, p. 331]). Other examples of spectral properties depending on semigroup
behaviour can be found in Reed and Simon [33] or for Schr6dinger operators in [35]
or [1].
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