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CLASSIFICATION DES AUTOMORPHISMES

ERGODIQUES ET FINITAIRES

M. BINKOWSKA et B. KAMINSKI

Dans ce travail, nous montrons que chaque systéme dynamique
ergodique et finitaire d'entropie finie est isomorphe au systéme

produit formé d'une rotation et un schéma de Bernoulli.
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CLASSIFICATION OF ERGODIC FINITARY SHIFTS

M. BINKOWSKA and B. KAMINSKI

Introduction

Adler, Shields and Smorodinsky have.shown in [1] that
every irreducible finite state kKarkov shift is isomorphic to a
direct product of a rotation and a Bernoulli shift.
' In this paper we exfend this result tc a wider class
of shifts, the so called finitary shifts. These shifts are in-
duced by finitary processes defined by Heller in [4] . He has
proved that these processes include Markov chains and also func-
tionals of Markbv chaing. It is given in (4] an example of a
procesé;which is finitary and is nov a functional uvi a Markov
chain,

Robertson in [5] has shown that every mixing 2nd finita-
vy process is a K-process. |

The first author of this paper has proved in [2] that
in fact every weak mixing and finitary process is wezk Bernculli.
Thus every weak mixing and finitary shift is isomorphic to a
Bernoulli shift.

Using the Heller and Robertson representations of sto-
chastic prccesses / of. [4] eand [6] / we classify the ergodic fi-

nitary shifts with the finite entropry up to isomorphisn,
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§1.Preliminaries
Let (X, W,/u,) Te ¢ Lebesgue probvability spsce, T be
an authomcyrphism of (¥, 3 ,;,u) with the finite entropy and Uj be
the unitary operator defired on L2 (X,')LL) by the formula
Ugf = £°T, feLz(X,/LL) .
Let Q = {B,,ie I} be a finite measurable partition of
X. The pair (T,Q) will be called a process.
Now we recall the notion of a finitary process given
by Heller in [4] .
| Let ,»;'AI be the free associative algebra, over the field
R of real r;umbers‘, generated by I. we denote by PI the linear
functional on 4; defined as follows. ‘
SCRENEVICURN Lol R)

PI(¢) =1,

where j‘l""’jiel' v 1 and @ means the empty sequence in 4. |
The pair (‘AI’PI) is: said to be the Heller representztion of the
process (T,Q).

 Let Ny be the larsest left ideal contained in the kernel

of PI‘ It -is easy to check that

-

iy = iEE&gj‘ 1 (%)= O} ={E§AI‘_ Py (T E). = o}

oo n 0]
where I = 1}._301:1="¢'

The process (T,2)is said tc be finitary if the vector

gpace $I/ N; is finite-dirensional over R.

" We lsay that T is a finitary shift if there exists a ge-
nerator Q for T such that the process (T,Q) is finitary.
Now we xecall the concept of a spectral representation

of a process (T, C-) celined by Robertson in [6'] .
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A triple (H,e,{wi; ieI}) i1s sald to be a gpectral
representation of (T,Q) if
(2) H is a complex Hilbert space,
(® eCHand [ef =1,
(¢) for every JdI, {E—‘J W, is a contraction on H,
(d) Wpe = Ve = e where W, = 2= W
T T T ieli’

(e) <e’wo(e) =M (Bif 7"

‘v&:-_— ‘[f’i“‘wia‘oo.h’in, d=i1‘.'iﬂeln, n>/1’

A spectral representation (H,e,{‘a’i; iel}) is called a

B.A AT PP g ) yhere
1, in

reduced spectral representation, or shortly RSR of (T, Q), if
| (f) H =;’s'5{w&e ,~er°°} = Ei{afe ;.»o<c-1°°},
i.e. the linear subspaces Sp{h&e ;-delw} and Sp{lx?:é;o(elw} are
dense in H, .

We shell use in the sequel a speci:dl ESK of (’I‘,Q),
called by us a standard RSR_of (7,Q), constructed by Robertson
in [6] in the following manner.

Let Ui be the contraction on LQ(X,},L) defined by the for-

m\ll a
.I B .( T 4 . ’1 49 °

ad = 1 i { = B . i =
F?r Xel ’ d—-- l1ocoln we pu‘t UD( Ui ees Uin and for « y‘

4
Uy, means the identity operator.
Lett a0

- : _
P = k\=/1 7q ang F = 4}c\=/o":-kQ '
'The following equalities are valid
12(P) = 5p {U:1, Le I ¢} and L2('3'r) = Sp {Uo{‘, eI
Let V, and Vq be restrictions of Uy and Up respectively
to Lz(v?') and let H = LZ(F) & (LQ(F) © L2(93)> where for closed



2 T . A
subspaces H.,H, C L (%, ,L\ Hy @ H, = {fEH1 ; £1H}
It is proved in[6] that B =5p {V}1 ; xeI™},

.3 * * ¥ ’ g % .
Let VW, = vo(lH Moo= Vo {H , Wy = Wy and W, = x.,., . It is
clear that W, = 7T,V where JT; is the orthogonal projection

of T2(X,u) onto H.
It is shown in [6] thet the triple (H,1, {¥,,ieI}) is
a RSR of (T,Q) .

§2. Algebraic properties of finitary shifts

Let (T, Q) be a process, Q ={IBi, ieI} and AS be the

I
free associative algebra.over'the field C of complex numbers,
generated by I.

o

We denote by PI the complex linear functlonal on.éi

defined by the formula
c . . c
PHE) = q(reg) + i-Pr(imk) , e A7,
It is easy to check that the largest left ideal Ni con-
+ained in the kernel of Pl has the form .
N = Np o+ 2Ny = {¥esf ; PI(aFE) =0} .
Hencc we obtain at once the following
Remark. 4 process (T,Q) is finitary iff the vector spa-

c
AI/h is finite-dimensional over C.

~ Now, 1et'(H,e,{Wi,ieI}) be a RSR of (T,Q) and let Hy =
=Sp{ho(e yX€I®) . o
Lemma 1. The vector spaces AE/N? and Hy are isomorphic.
Proof. Let Ly = Sp{ ¥, xeI™}. It is clear that L is
the linear subalg€bra of the algebra of all linear operators of

H, ¥We denuvte by ? H Ai-—&LI the mapping defined on I”'by the
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formula () = W , «eI%and then linearly extended on AI,
It is an easy matter to see that ¢ is « homomorphism of AI
onto Lj. |
Now we define a mapping f=* A%—#HI by
£(5) = Qe , Xedl.
It is, of course, a homomorphism of .Ag: onto Hy. We shall show

that N? = ker f.

From the property (e) of (H,e, {V,»ie 1}) follows
Pg(d) = (e,¥We) » 0, xeI®, 'Hence_P(I’(o() = (Wie,e) and so P%(E}:
c
=(9@) e,‘e) » EE Af.

Since @ is a homomorphism we have
c c Cru . °C
Ny = {gear 5 Pr(ng) =0, mear } =
AC c
={E€"*x. (P(npye,e) ;C' "*)e*"l} =
c 3 NS
| ={ke41 5 (9= @eie) =0, mearlt
Now, by (f) the subspace Sp {wj ; Xe Iw}is dense in H and so
c .C :
NI ={§é J*I ’ ¢(§)e = &}"‘ keI‘ fo
e« This equality end the fact that H = f(A ) J_mply the vector

e

spaces. I/N and H; are isomorphlc, what completes the proof.

Since every finite-dimensional sub.space of a linear
normed space is closed we have at oné:é the following
ngollarz_. 1. The following conditions are equivalent
(i) A process (T,Q} is finitary,
(11) for every RSR (H,e, {¥,,icI})of (T,Qholds.
dim H<co, _
(iii) there exists a RSR (H,e, {w,, ic 1P of (7,Q) with

dim H<co
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Gorollary 2.4 process (T,Q) is finitary iff there

exists a spectral representation (H,e, {Wi,ie I})with dim H< o,
Proof. In view of Corollary 1 it is enough to prove

only the sufficiency.

' Let (H,e,{lﬁi,iel}) be a spectral representation of (T,Q)

with dim H< oo . We shall show that for any ESR (e} {V],1ie I})

of (T,Q) holds dimfH  din H vhere Hy = Sp { Wle] €I},

First we shall prove that

s 3
if f‘:=.'31 aiﬁﬁ"xie = 0 then é aiw‘ii,e,= O,s}‘l.

The first equality implies'
S ¥
0= 2 ai(wdie,wﬁe) = ij;I a.i(‘v‘?ﬁo(i e,e)
for every ge I '
Since (H,e, {!a’i,iel})'and (Hy e; {W{,i&l}) arc representa-
tions of the same process we have (Wje,e) = (I.ifo(’e‘; e), LeI%

Thus we obtain : _
_' ’ ’ 7. ¥/ o0
0= E:':I ai(‘ P"‘Le’e) = (é, aiwo(ig,wﬁ e), aBeI .

The fact that (H:e’, {la’i/,iel}) is reduced implies the equality

H = Sp {Iﬁ’;x'e', o(elm}and s0 _,_2:-:. ailﬂ,_.:ae’= O.
Novr, let Yol HI-—> H:‘['

For every ol€ I” we put Y(We) = \'l;e' and then 9y is linearly

be the mapping defined as follows.

extended on H.From the above remark follows that the mapping W is
. . . . R . ) !

well defined. Since Y is onto we’obtaln dim h} d::m }112, dim HI'

Now our assumption implies dim HI<00 and so dim H<o0o , Using

‘again Corollary 1 we obtain the desired result.

Now, let YeBbe such that T¥ = Y and u(¥))> 0.
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Ye consider the dynemical system (X, 5‘?;1,,//.1,, Ty )
where ‘%Y = :3:’} Y, /LY =’/U~('l Y) and Iy = TIY' For a partition
Q of X we put.Qy = QnT.

Theorem 1. If T is finitary then Ty is finitary.

Proof. Let Q = { B;,i€I} be 2 finite generator for T
such that the process (T,Q) is finitary and (H,‘I, {Wi,iel}) be
the standard RSR of (T,Q). The assumption and Corollary 1 yields
dim H< 0@ , Since QY is a generator for TY it is enough te prove
that the process (Ty,Qy) is finitary.

For f,g eLZ(X,/u) we put

(fv g)Y =/f(43;{‘5 ng(x)‘é’&)}»‘(dx) ’ "f"Y =-“ (f, f)Y

and Hy = (H, (-,-)y). Of course dim'HZ oo,

Ve assert that the triple (H!,Xl,, {‘.\’i,iel}) is a spec-
tral representation of (TY’QY)’ i.e. it satisfies the properties

The properties (a) and (¢) are trivial., Since TY =Y we
have UpXy =Xy + It follows from lemma (5.1) of [6} that Yy €E
“and so Y y€Hy. It is clear that [[X¢[y = 1 and thus (b)is ful-
filled. The equality TY =Y and the fact that?y € Hc1{#) imply

VpXy = Ty UpXy = TgXy =Xy
and |
¥ X 1

Wy Xy = Vo Xy = BNy T F) = 2(RylF) =%y
vhere:E-denotés.the conditional expectation operator. Hence (4d)
is satisfied. It remains to prove (e) . Let A = i1i2"‘in [ If”.

: ?

since W =T0, U, we have
) '(XY"‘#XQY"<XY’U¢X'I)\:'
An easy computatinn and the equality TY = Y give

(@ Uy = Xg.ar'Bn..onr @ Ay -
3y 1 in
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The equalities (1) and (2) imply
J = =15 - (n-1
(XY,‘..'V('XY)Y. _/u\z(sidnf By eee T 3 n)
and so (H‘Y’ Xy ‘{‘-':’i‘:, ieI]) is a2 spectral representation of(Ty, Qy)
with dim HY<oo . Using Corollary 2 we obtain the result.

Theorem 2, If T is finitary then T" is finitary,ny 1.

Proof. Let Q = {Bi,iel}be a finite generator for T such
that the process (T,Q) is finitery al%d n» 1 be an arbitrary na-
tural number. The partition_ En = E\ZO TT)EQ is ,of'course, a
generator for T". We shall show that the process (,Qy) is fi-
nitary.» |

Let (Ap»Pp) and (,Z‘,P*) be the Hellér representations of
(T,Q) and A(Tn,-Qn) respectively.It is clear that &= Aqn. We de-
fine a map @ * .A*-—>AI as follows. For every ol e(@”

d*’:‘. (0(1100. d»]n) (((24'0:0 0<2n) oonooo(d’r‘looo_Q{'rn)- we put

q’)@zs: d11... O<1n0(21... dzn-oofou O(r1-oo0(m and then we

. * -
extend @ on: A linearly. It is easy to:see that P is an injec-
tion. and
‘ : 2% .
) B =2(@@®), L.

¥
TLet N_.CA_ and N‘C.A be the ideals corresponding to P

IT'I
*
and P respectively. We shall check that

(4) (™) = @(nyy .
Let E*e Nand melm. Suppose the lenght of ')7 is k .

I

Then we may write k = gn+l where 0,1 are nonnegative integers
with O\<lé‘n—1. Thus dn-}q?e (]0(.&*) where O = 5%’1 i . Let af‘)*e;ﬁ:-k
‘be such that @)= 33"'1.71 . Since {t is T-invariant, @ 18 ho-

momorphism anc Z:x? N we obtzain by (3)

Pr(n o) = 3?;(31"1’)7 p(e%) = Pr(P*Em) = ¥ (4 E") = o.
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This means that Q(E7)el; and so (N c @Inn; .

To prove the converse inclusion. et us suppose gG@{KvANI
and E*= ¢"{E. It is enough to check that E'e N'. Let njé 4t
Using the same arguments asg above and the fact that Ee NI we
have | |

PO = 2 (07 = 2 (@) = o,
i.e. ¥¥e N'and the equality (4) is proved.

Now we shall show that the vector space A/N*is isomorphic

40 a subspace of mi/NI .

Let @ : A*)N*—-) AI/NI be a map which to a coset [g“]eAjN*
assigns the coset [C})(g"‘)]EAI/NI . From (4) follows that [}g"‘]:[:fq*]
implies [q)(‘g*)]= [CP(’Y]*)] , i.e. (_@ ig well defined. @ is,of course,
a homomérphism. Using again (4)and the fact that @ is one-to-one

we see that (13 is: one-to-one. Hence
¥ . % .
aim &/ = ain & ("‘/n*) < dim. ‘AI/NI .
, 2
Since T is finitary we have dim *A'I/NI< CO0 and thus dim ‘A/N""<oo,

°i.c. the process (Tn,Qn) ig finitary.

§3. Isomorphism theorem_

Lemma 2, If T is finitary then the number of eigenvalues
of Uy is finite. |

Proof. Let T be finitery, Q = {B;,1eI} be a finite gene-
rator for T such that the process (7,Q) is finitary and
(8,1, {wi,iel}) be the standard RSR of (T,Q). Corollary 1 implies
dim H<&0 and so the set of eigenvalues of the contraction Wp is
finite. By theorem (5.2) of [6] every eigenvalue A of W, with

x| =1 ig an eigenvalue of Up. Thus the number of eigenvalues
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of UT is finite and the lemma isg pfoved.

Corollary 3. Every totally ergodic finitary shift is
weak mixing.

Proof. It is enough to show that 1 is the only eigen-
value of Up » Let us suppose , on the contrary , that there

exists A # 1 which is also an eigenvalue of U,. Since T is to-

T
tally ergodic the numbers 'ﬁ-n, ne Z form an infinite subset of
the set of all eigenvalues of Up. But this is a contradiction
to lemma 2.
Since every weak mixing finitary shift is isomorphic
to a Bernoulli shift (ct. [2])we have at once the following
Gorollary 4. Every totally ergodic finitary shift is
isomorphic to a Bernoulli shift. ' |
‘Definition. We éay that an automorphisni T admits a
n-stack if there exists a set Be B such that T*B , Ogign-1
ére disjoinﬁ and IQ; TiB =X a.e. o
We shall need in the sequel the following
Lemma 3. [3]T admits a n-stack iff the nth roots of
.unity are proper values of Un.
Now, let T be an ergodic finitary shift and let 4 = d(T)
éenote the number of eigenvalues of U .

T

If p: is. a natural number, then Zp" will denote the addi-

tive group of integers mod p equipped with the measure mp defi-
ned by m, .(i) = % » 0<ig<p-1. Let Q =9p be the rotation on: Zp
defined by the formula Q(z) = =z + 1) mod p.
Theorem 3. If T is an ergodic finitary shift with d -1
then T is: isomorphic to de p where P is a Bernoulli shift,
Proof. The ergodicity of T implies the set of eigeava~

lueg of UT is a cyclic group of rank d., Thus from lemma 3%



- 36 -

follows that T admits a d-stock, i. e. there exists a set Ye&B

. d"'1
1 . s on . L1 i .
such that TY, 0 Ligd=1 are disjoinl and 0 T°Y =X a.e.

It is clear that TdY =Y, Let T% = Td‘Y .

‘The ergodicity of T implies T% is ergodic. We shall
show that, in fact, T3 is totally ergodic.

Let us suppose, on the contrary, that T% is not to-
tally ergodic. Hence theré exists a naturgl number k> 2 and
an eigenvalue A#1 of UT? such that AK = 1., From lemma 3
applied to Y and T% follows that there exists a setZBéSB,

BCY such that (29)* B = 1'B, 0<i<k-1 are disjoint and
ket |
YU, 1198 = ¥ a.e. Hence (1'B, 0¢igki-1) is a kd-stack.

Applying again. lemma 3 we see that kdth roots of ﬁnity are
eigenvalues of Up. But this, in view of the 1nequa11ty k2,
is impossible. Thus TY is totally ergodlc.‘

Since T is flnltary, theorem 2 implies Td is also fi-
nitary. Using theorem 1 to ¢ we see that Tg is finitary.
Combining this with the fact that T% is toéally crgodic and
using Corollary 4 we conclude T% is 1somorphic to 2 Bernowlli
shift.
| Now, proceeding in the same way as iﬂ the‘proof of

Theorem 2 [f], we obtain the desired result.

From theorem 3 easily follows

Corollarvy 5. Two ergodic finitary shifts are isomor-

phic iff they have the same number of eigenvalues and the same

entropy.
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