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CLASSIFICATION DES AUTOMORPHISMES

ERGODIQUES ET FINITAIRES

M. BINKOWSKA et B. KAMINSKI

Dans ce travail, nous montrons que chaque système dynamique

ergodique et finitaire d’entropie finie est isomorphe au système

produit formé d’une rotation et un schéma de Bernoul 1 i .
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CLASSIFICATION OF ERGODIC FINITARY SHIFTS

M. BINKOWSKA and B. KAMINSKI

~ 

Introduction 

Adler, Shields and Smorodinsky have. shown in [1] that

every irreducible finite state Karkov shift is isomorphic to a

direct product of, a rotation and a Bernoulli shift.

In this paper we extend result tc a wider class

of shifts, the so called finitary shifts. These shifts are in-

duced by finitary processes defined by Heller in [41..- He has

proved that these processes include Markov chains and also func-

tionals of Markov chains. It is given in (41 an example of a

process, which is finitary and is ’nov a functional ui a Markov

chain. ~ 

~ 

- 

. 

-

Robertson in. [5] has shown that every mixing end finita-

ry process is a K,process.

The first author of this paper has proved in [2] that

in fact every weak mixing and finitary process is weak Bernoulli.

Thus every weak mixing and finitary shift is isomorphic to a

Bernoulli shift.

Using the Heller and Robertson representations of sto-

chastic processes / cf. [4] ~~ ~ we the ergodic ii--

nitary shifts with the finite entropy up to 
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§1. Preliminaries 

Let (I, $, /1) be c Lebesgue probability m he

an authomcrphism of (Y~~) with the finite entropy and U T be
the unitary operator defined on L 2 (X,,U) by the formula

I

Let Q = be a finite measurable partition of

X. The pair ~T, Q~ will be called a process.
Now we recall the notion of a finitary process given

by Heller in [41
Let Ay be the free associative algebra, over the field

R of real numbers, generated by I. we denote the linear

functional on ,A.1 defined as follows. ’

means the empty sequence in A-.
The pair said to be the Heller representation of the

process (T,Q).
Let y, be the largest left ideal contained in the kernel

of PIO It is easy to check that -

The process (T,Q)is said tc be finitary if the vector

space 1/Nj is finite-dimensional over R.

We s ay that T i g a finitary shift if there e xi sts a ge-

nerator Q such that the process (T,Q) is finitary.
Now we the concept of a spectral representation

of a process (T,C) G.efi ned Robertson in [6] .
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A triple iefl) is said to spectral

representation of (T,Q) if

(a) H is a complex Hilbert space,
. 

(b) e E If and Iiell = 1,

(c) for every JCJ, E ieJ W. is a contraction on H,
(d) -. W*Te =e where WT = (d) WTe ’ -. I.,,Te=- e where WT= ZiET wi t

A spectril representation iGI 1) is called a(H, e, {Wi,
reduced spectral representation, or shortly RSR of (T,Q), if

the linear subspaces are

dense in H..-

we shall use in the sequel a special RSR of  (T, Q),
called by us a standard RSR. of (T,14). constructed by Robertson

in [6j in the following manner.
Let U i be the contraction on defined by tne for-

mula

r:Á =- i1 ...i we put Ua= U ..... U ( 
n 

and for .

. 1.... n 
- i1... in ?

Ua means the identity operator.

’The following equalities are valid

Let V~ and VT be restrictions of U~ and UT respectively
to L~(j) and let H ~L~ ~(~(3~0 L2(p») where for closed
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subpaces

.. 

It is proved in [6] that H = Sp ;: 

clear that W C4 = where TTH is the orthogonal projection
of onto H. 

_ 

’

It is shown in C6-1 that the triple is

a RSR of (T,Q) . -

° 

§2. Algebraic properties of finitary shifts

’ 

be a process, Q =( Bi, ieI} and c be the,Let (T,Q) be a process, Q Bit ieI} and Ac be the
free associative algebra.over the field C of complex numbers,

generated by I. 
’

We denote by P Ithe complex linear functional- 
defined by the formula

It is easy to check that the largest left ideal Nc con-
tained in the kernel of Pj has the form

Hence we obtain at once the following

Remark. A process is finitary iff the vector spa-

ce is finite-dimensional over C. 

. 

Now, let be a RSR of (T,Q) and let H~ =

. 

~c ~
Lemma 1. The vector spaces and H I are isomorphic.
Proof. Let L~ =. It is clear that LI is

the linear subalgebra of the algebra of all linear operators of

H. Me denote by the mapping defined on Ioo by the
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formula cpeco ~ then linearly extended on AI.
It is an easy matter to see q homomorphisni of Al
onto L~.

Now we define a mapping f": b

It is, of couxse a homomorphism of onto Hi 0 We shall show

that NcI = ker f.
From the property (e) of (H,e, I}) follows

Since y is a homomo rphisa we have

Now, by (f) the subspace ;: dense in H and so

"This equality and the fact that Ac imply the vectorI
f 
I

spaces, and HI are isomorphic, what completes the proof.

Since every finite-dimensional subspace of a linear

normed space is closed we have’at once the following .

Corollary 1. The following conditions are equivalent

(i) a process (T,Q) is finitary,

(ii) for every RSR (H., e 1, (T,Q) holds
dim I! 00 

, 

’

(iii) there exists a RSR (H,e, {Wip (T,Q) with
dim Hc3 .
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Corollary 2.A process is finitary iff there

exists a spectral representa.tion (H~e~ dim Hco.

Proof. In view of Corollary 1 it is enough to prove

only the sufficiency.

, 

Let a spectral representation of (T,Q)
with dim H  00 . 1ie shall show that for any FcSR 

of (T,Q) holds dim H where Hsp 
First we shall prove that 

The first equality implies

for every je 00 
-’ 

. for every 

.Since and are representa-

tions of the same process we have = e e 
Thus we obtain ..

The fact that Hf er reduced implies the equality

let lg t Hf be the mapping defined as follows.
For every put = then if is linearly
extended on H.From the above remark follows that the mapping Y is
well defined. Since v is onto we obtain dim E &#x3E; dim HI&#x3E; dim HI.
Now our assumption implies dim and so dim Using

again Corollary 1 we obtain the desired result.

Now, let YEB be such that TY = Y and 0.
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I"e consider the dynamical system (y,
where 2y = ~y and Ty = T For a partition
Q of X we put.Qy = Q (’B Y .

Theorem 1. If T is finitary then Ty is finitary.
Proof. Let Q = {Bi, ieI} be a finite generator for T

such that the process is finitary and (H,1, 
the standard RSR of (T,Q). The assumption and Corollary 1 yields

dim Hoo. Since Qy is a generator for Ty it is enough to prove
that the process ( Ty, Qy) is finitary.

For we put

and -Fly = (H,~.)~). Of course 
We assert that.the triple liy y I a spec-

representation of (Ty,Qy), i.e. it satisfies the properties

(a) - (e).

The properties (a) and (c) are trivial. Since TY = Y we

have U TXY = 7wy . It follows from-lemma (5.1) of [6] that 

- and so It is clear that y - 1 and thus (b) is ful-

filled. The equality TY = Y and the fact that X YE H C L2 imply

and

Where E denote. the conditional expectation operator. Hence (d)
is satisfied. It remains to prove e~ . Let c4 = i1i2...i E 1~. ! ~ 2 n .

we have

easy computation and , the equality TY - Y give
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The equalities (1) and (2) imply

and so is a spectral representation 

with dim Hyc)o Using Corollary 2 we obtain the results

Theorem 2. If T is finitary then Tni s finitary, n&#x3E;1.
Proof. Let Q a finite generator for T such

that the process (T,Q) is finitary and n&#x3E; 1 be an arbitrary na-
n-1 - k

tural numbers The partition Qn = V k=0 T-k Q is of course,, a

generator for T n We shall, show that the process (Tn’ Qn) ’s fi-
nitary* ..

Let and (l£P*) be -the Heller representations of
(T.9) respectively.It is’ clear that ~=- Ajn~ We de-
fine a map as follows. For every 

we put

and then we

*

extend q on A linearly. It is easy to see that T is an inj’ee-
tion. and ,

T,o t hT c A and gfic #be the ideals corresponding to pLet NI C AI and the ideals corresponding to P I
*

and P respectively. We shall check that 
.

Let nEI oo. Suppose the lenght of rq is k .
Then we may write k ::. qn+l where c.1 are nonnegative integers

Thus where ~= i . Let ex.
be such that Since u is T-inva.riant, T i 8 ho-
momorphism and obtain by (3)
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This means that and so 

To prove the converse inclusion, let us suppose 

and E*=y-1(E). it is enough to check that ’*C- N’ Let 

Using the same arguments as above and the fact that EE N I we
have

the equality (4) is proved. 
*

Now we shall show that "-he vector space A/N* is isomorphic
to a subspace of ;IN,

* *

AI/NI be a map which to a coset Ce] rA/N*
assigns the coset From (4) follows that 

implies [1(*;.:-)I= I,e. § is well defined. O is, of course,
a homomorphism. Using again (4) and the fact that (p is one-to-one
we see that ~ is-,one-to-one. Hence

Since T finitary we have dim and thus dim 

’:,e, the process (etqn) is finitary.

§3. Isomorphism theorem

Lemma 2. If T is finitary then the number of eigenvalues

of U T is finite.

Proof. Let T be finitary, fBigiGII be a finite gene-
rator for T such that the process (T,Q) is finitary and

. 

(H,1,. be the standard RSR of (T,Q). Corollary 1 implies

dim Hoo and so the set of eigenvalues of the contraction WT is

finite. By theorem (5.2) of every eigenvalue h of with

=1 is an eigenvalue of UT* Thus the number of eigenvalues
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of UT is finite and the lemma is proved

Corollary 5. Every totally ergodic finitary shift is

weak mixing. 
°

Proof* It is enough to show that 1 is the only eigen-

value of UT . Let us suppose , on the contrary , that there

exists which is also an eigenvalue of Since T is to-

. tally ergodic the numbers n n E Z form an infinite subset of
the set of all eigenvalues of UT. But this is a contradiction

to lemma 2.

Since every weak mixing finitary shift is isomorphic

to a Bernoulli shift (cf. ~2~ we have at once the following
. corollary 4. Every totally ergodic finitary shift is

isomorphic to a Bernoulli shift.
~ -Definition. We say that an automorphism T admits a

n-stack if there exists a set such that 
, 

. n-1 i . - .

are disjoint a.e.

We shall need in the sequel the following
’ 

-Lemma 3. a T admits a n-stack iff the nth roots of

unity are proper values of UTe -
Now, let T be an ergodic finitary shift and let d = d(T)

denote the number of eigenvalues of U,.
. 
If p. is. a natural number, then Z denote the addi-

ti ve- group of integers mod p equipped with the measure m 
1 

p

ned by m (i) = .. 
, 0  i  p--1. Let 0 =- 0 be the rotation. 011: Zned by m i * (i) Let be the rotation on: Z P

defined by the p .

Theorem 5. If T is an ergodic finita.ry shift with 

then T is: isomorphic to f d x P where j@ is a Bernoulli shift.

Proof. The ergodicity of T implies the set of eigenva-

lues of UT is a cyclic group of rank d. Thus. from lemma 3
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follows that T admits a d-StD.c1, i.e. there exists a set 

such that are disjoint d-I i Y - X a.e.
It is clear that T d Y :: Y. Let = T~ y .

The ergodicity of T implies Ty is ergodic. We shall
show thatt in fact, Ty is totally ergodic.

Let us suppose, on the contrary, that TdY is not to-
tally ergodic. Hence there exists a natural number k&#x3E;Z 2 and

am eigenvalue l=1 of U T d such that l k =-l. From lemma 3
y

applied to Y and Ti follows that there exists a set 
BCY such that (TdY)i B = T id B, are disjoint and

id T B = Y a.e. Hence (TiB, 0 i kd -1 ) is a kd-stack.
-Appl-ying again, lemma 3: .we that kdth roots of unity are

eigenvalues of UT . But this, in view of the inequality k&#x3E;/ 2p

is impossible. Thus. 5b£ is totally ergodic.
Since T is -finitary, theorem 2 implies Td is also fi-

nitary~ Using. theorem 1 to T we see that Ti is finitary.
Combining this with the fact that Ti is totally ersodic and
using Corollary 4 we conclude T£ is. isomorphic to a Bernoulli

shift.

Now, proceeding in tnp same way as in the proof of

Theorem 2 we obtain the desired result.

_ 

From. theorem 3 easily follows

Corollary 5* Two ergodic finitary shifts are isomor-

phic iff they have the same number of eigenvalues and the same

entropy.



37

References

[1] R.L.Adler, P.Shields, M.Smorodinsky," Irreducible Markov

shifts", Ann. Math. Statist.,1972,vol.43,No 3,1027-1029.

[2] M. Binkowska, " Weak mixing finitary shifts are Bernoulli",

(to appear in Bull. Ac. Pol. : Math.)

[3] J.R.Blum, N.Friedman," On commuting transformations and

roots", Proc.Amer. Eath. Soc., vol 17, No 6, 1966, 1370-1374.

[4] A. Heller " On stochastic processes derived from Markov

chains", Ann.Math.Statist.36 (1965),1286-1291.

[5] J.B. Robertson," The mixing properties of certain processes

related to Markov chains", Math. Syst. Theory vol 7, No 1,

(1973), 39-43.

[6] J.B.Robertson, " A spectral representation of the states

of a measure preserving transformation" , Z.Wahr.verw.Geb.

27, 185-194 (1973).

M. BINKOWSKA and B. KAMINSKI
Institute of Mathematics
Nicholas Copernicus University
Chopina 12/18

87-100 TORUN
Poland

Requ en Janvier 1984


