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On existence and behaviour of the solution in quasistatic

processes for rate-type viscoplastic models

1. Introduction

Everywhere in this paper we consider the case of small deformations ,
we denote by ¢ the small strain tensor and by o the stress tensor;
the dot above a quantity will represent the derivative with respect
to the time variable of that quantity.

In order to describe the behaviour of real materials like rubbers,
metals,pastes,rocks and so on, many authors proposed rate-type models
i.e. models involving a relation between the stress rate ¢ and the
strain rate £ .For example, a semilinear rate-type constitutive

equation is an equation of the form
o= E€+F(oa,e) (1.1)

in which £ is a fourth order tensor and F 1is a given function.
Various results and mechanical interpretation concerning models of the
form (1.1) may be found for instance in the book of Cristescu and
Suliciu [1] (see also the references quotated there) .Existence and
uniqueness results for initial and boundary value problems involving
(1.1) for different forms of F were obtained for instance by Duvaut
and Lions [2) ch.5, Suquet (3], 141, [5] ,Djacua and suquet [6]
(the case when F depends only on o ),Ionescu and Sofonea [ 7],

Tonescu [ 8] (the case when a full coupling in stress and strain is

involved in F ).
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In the case when the plastic rate of deformation depends also on a
parameter y , (1.1) may be replaced by

0= Ee+ F(a, g,¢) (1.2)
Concrete examples for constitutive equations of the form (1.2) where
proposed for instance by Cristescu [9] ,[10] for rock-like materials

(in these papers y is the work / or strain / hardening parameter).
Existence and uniqueness results for problems involving (1.2) with dif-
ferent meaning of Y were given by Nefas and Kratochvil [11], John[12],
Laborde[13] (the case when F does not depend on ¢ ) and by Ionescu [81],
{147 ,sofonea [15], [16] , Tonescu and Sofcnea [17] (the case when F
depends also on ¢ ). Energy estimates for cne-dimensicnal problems in
the study of models (1.2) in which yx is the work hardening parameter
were cbtained by Suliciu and Sabac [ 18] .

‘ The aim of this paper is to studv a quasistatic problem for materials
with a rate-type constitutive equation of the form

5=E(x)é +F(a, & X (1.3)

and to deduce same suplementary results in the particular case of (1.2).
Constitutive equations (1.3) may be used in order to model the behaviour
of real materials for which both the elastic and the plastic rate of
deformation depend on a parameter Y which may be interpreted for instance
as the absolute temperature or an internal state variable.The paper is
organized as follows : in section 2 the mechanical problem involving
(1.3) is stated and same notations and preliminaries are given; in sec-
tion 3 the existence and the uniqueness of the solution is proved reducing
the studied problem to an ordinary differential equation in a Hilbert
space (theorem 3.1) ; in section 4 the continuous dependence of the
solution with respect the data is given (theorem 4.1) and a finite-time

stability result is obtained (corollarv 4.1); further one we consider the
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case of models (1.2) (i.e. E (x) = Z ) and we deduce the continuous -
dependence of the solution with respect the parameter x (theorem 4.2);
this last result is used in section 5 in order to study the connection
between two uncoupled thermo-viscoplastic problems using the Cattaneo
heat conduction law and the well known Fourier law.

2. Problem statement and preliminaries

Let Q be a damain in ® (N = 1,2,3 ) with a smooth boundary 29= T
and let T1beanopensubsetof I‘suchthatneasr'1>0.Weda:oteby
ry=r \ T, , v the outward unit normal vector on T and by .5 the
setofsecondordersymetrictensorson!RN.Iet T be a real positive
constant. We consider the following mixt problem :

Divog+b=20 (2.1)
. . in Q@ x (0,T)

o= E(Ye(a + Flo,e(u),x) (2.2)
u=f on I‘1 x (0,T) (2.3)
ov =g on T, x (0,T) (2.4)
u(0) = u ag(0) = 9 in @ (2.5)

in which the unknows are the displacement function u : @ x [0,T]—&
and the stress function o : Q x[0,T]—> Sy- This problem represents
a quasistatic problem for rate-type models of the form (2.2) in which g
is a fourth order tensor, F is a given function, e(u) defines the linea-
rized strain tensor (i.e. c(w=(Vu+QTu)) and x is a parameter;
equation (2.1) is the equilibrium equation in which b represents the
given body force and Div ¢ represents the divergence of the tensor-
valued function o ; the functions £ and g in (2.3),(2.4) are the
given boundary data and finally the functions ug and g in (2.5) are

the initial data.
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In the sequel we denote by " . " the inner product on the spaces

lRN , RM Mety) SN and by |.| the Euclidean norm on these spaces.

The following notations are also used : & = [£2( @], &, = [a'( ]V,
g=[tPa)Y , 4 =Soen| pivoeny, v- 2% o™ me

spaces H, H1, 4, H, and Y are real Hilbert spaces endowed with the

cannonical inner products denocted by <,>H,<,>H ’<'>H'<’>H‘
1 1

and <, >Y respectively.

Let HI.=LH 12 F)JN and vy, : H—>H, be the trace map.We
dencte by V the closed subspace of H, defined by V ={uéH|yus0cnT,}
and let V. =y1(V).Wealsodenoteby Hl'. ande, thedualsofHI.

r

. 1 T
and V. .'Iheope.ratore:‘Hr——)H given by c=(u) =§-(Vu+vu)

r
is linear and continuous and moreover, s:i.ncemeasr'1 > 0, Korn's ine-

quality holds :

e, 3clu I\H for all ueV (2.6)
1

where C is a strictely positive constant (everywhere in this paper
C will represent strictely positive generic constants that may depend
on Q, I‘1, Z,Fand T and do not depend on time or on input data.
If o € 4, there exists yzger. such that
<Y2°'Y1u>Hf. JHy = <g,e(u) >, % <Div o,u >H
for all ueHT. By c:\)h.2 we shall understand the restriction of
Y0 on VI‘ and we denote by V the closed subspace of a, defined by
4 --{0 (= i, l Div o= 0 , ovlr2=0} . Here we consider V and ¥
as real Hilbert spaces endowed with the inner products of H1 and i,
respectively. It is well known that ¢(V) is the orthogonal camplement

of ¥ in 4 hence
< o,s(u)>q= 0 forall g€ V and ue¢Vv (2.7)

Finally, for every real Hilbert space X we denote by |[-ll, the
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normon X and by CJ(O,T,X) (j=0,1) the spaces defined as follows :

c%0,T,%) §2z:00,T]—X | z is continuous ¥

c'(0,T,%) {z:[0,T]—sXx | there exists z the derivative of z

and zec0,T,03 .

CJ(O,T,X) are real Banach spaces, endowed with the norms

Nzllg,p,x = tléﬁfé'TJ}z(t)l\x cand Nzl g =Nzl p g N2l oy -

3. An existence and uniqueness result

Iet us consider the following assumptions :
E : QxE x§—>»s, and : .
(a) E(x,¥)o.T = 0. E(x,x)t for all x<¢ RM, aTéE Sy a-e. in Q

(b) there exists a > 0 such that Z(x,x)o .0» a]o\z for all

X € CRM,oeSN,a.e.in Q

(c) there exists L>0 such that [Eijkh(x,x1)-5'ijkh(x,x2) I< (3.1
$Llxxy| for all x,, x,6R5i,3,kh =T, Na.e. in @

(@) x ———> Eijkh (x,x) 1s a measurable function with respect
to the Iebesque measure of Q ,for all xe® ,i,j,k,h=1,N

(e) there exists 8 > 0 such that [Eijkh(x,x)l £ B for all

x € R ,i,9,kh=T,N , a.e. in Q .

F:Qx SNXSNXIRM-—-)SN and :

~
(a) there exists L > 0 such that lF(x,o1,e1,x1)-F(x,02,52,x2)'g
< Li( (01-—02{ * e, | +|x1—x21 ) for all Oyr Opr €40 E5 € (3.2)
€S, , Xq7 xzetRM , a.e. in Q .
(b) x—>F(x,0,g,X) is a measurable function with respect to

the Lebesque measure on @ ,for all g, eeSN and e (RM

(¢) x~—->»F(x,0,0,0) € 7
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bec' (0,T,8) , rec',7,1) , ge c! ©,7,V, ) (3.3)
weH , o, €4 (3.4)
Div % +(0)=0 in O3 , u0=y1f(0) on 1"1, cov=g(0) on T, (3.5)

x € c2(0,T,%) (3.6)

The main result of this section is given by :
Theorem 3.1. Suppose that the hypotheses (3.1)-(3.6) are fulfilled.
Then there exists a unique soluticn uec1(0,T,H1), creC1 (O,T,HT) of

the problem (2.1)-(2.5).

Remark 3.1. Let us observe that if the problem (2.1)-(2.5) has a
solutian (u,0) such that ueC'(0,T,H,) , c€C'(0,T,7,) then the

hypotheses (3.3)-(3.5) are fulfilled.

Remark 3.2. In the case when F does not depend an y theorem
3.1. as well as theorem 4.1. of section 4 was proved by Ionescu and
Sofcnea [ 7] . Here we extend the technique presented in[?]in the

case when Z = E( y).

In order to prove theorem 3.1 we need same preliminary results;

we start with the following lemma whose proof can be easily obtained:

Lemma 3.1. Let (3.1) and (3.6) hold.Then for all t€[0,T]
o—>E( x(t))o defines a linear continuous invertible operator on

B and if we denote by E | (x(t)) his inverse , we have :

I 2ol < Bloall, (3.7)
Hs:‘1 (x () off, < &1-][0)[[1 (3.8)
Z(x(t)o, o >.2a noan (3.9)
<z ] (x(E)a, o> -‘é‘i ol 5 (3.10)

for all ceHd.Moreover, for every o € ¥ the maps t —> E(x(t)) o



On existence .....viscoplastic models 261

and t—> E,"'1 (x(t))o are continuous from [0,T] to #

Iet now X = VxV be the product space endowed with the cannonical

inner product < , >, and let Eec’ (O,T,H1), 5&C1 (0,T,H1) be two

X
functions such that

a=f on T, x(0,T) (3.11)
~ .

Divo+b=20 in @ x (0,T) (3.12)

v =g on r, x (0,T) (3.13)

(the existence and regularity of U, T can be easily proved using
(3.3) and the proprieties of the trace maps Y4 and yz) . Let

a:[0,TIx XxX—R and G : [0,T]x X—>X be given by

a(t,x,y) =~ EE(x(t))s(u),e(v) >H + <E'.1 (x(t))o,r>H (3.14)
<GlE,x) ,y>, = <E (X () F(a+F(E) e+ (@ (8),x(E)) > )
- <F(0+3(t) ,e(u) +e(d(t)) ,x(t)) ,elv) > +
: N a (3.15)
+< ‘&'(t)-E(x(t))e(u(t)),e(v)>H +
¢ el@®)- T, v,
J
for all x=(u,0) , y=(v,T)€X and te[0,T].
Let now denote by
T=u-4, G=0-30 , x = (G,73) (3.16)
T= uO-CI(O) , Ty =030, x=@,3) (3.17)

Lemma 3.2. The pair (u,0) & C' (0,T,H,x#,) is a solution of (2.1)-
(2.5) iff x €C'(0,T,X) is a solution of the problem
alt,x(t),y) = <G(t,x(t)),y>, for all t€[o,T] (3.18)

x(0) = Xy (3.19)
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Proof. Using (3.11)-(3.13),(3.16),(3.17) it is easy to see that
(w,0) € C' (0,T,H,x4,) is a solution of (2.1)-(2.5) iff x€CH0,T,%) and

T= ElYe@ +FE5 @@, 0+ a0e@-0 in  ox (0,T) (3.20)

(3.21)

u(0) = Uy s g(0) = A in @ .

let us suppose that (3.20) and (3.21) are fulfilled.Using (2.7) we have

<E(X)e(ﬁ).e(v) > = <F(5+0, € (D) +s(f1'),x),s(v) > <E’(x)e(t';'),€(v)>q +

~
+ <o.e(V)>H ’

<E"(x)a‘,T>H = <F (Y F(3+3, e (@) +e (@), ¥) o+ <e@, —<g (X,

for all y=(v,7)€ X and t€[0,T] . Using now (3.14) and (3.15) we get

(3.18).
Conversely, let (3.18) hold and let

z(t)= Glt) -E(x(t)) e @ (1)) -F (3(£) +3(t) , e (TlE) )+ (Q(E)) Hx(t))=
(3.22)

- Zlx() e (@) +5(b)

for all te[0,T] . Taking y=(v,0)€ X in (3.18) and using (2.7) we get
<z(t),e(v)>, =0 for all veVand te(0,T], (3.23)

Taking y=(0,7 )€ X in (3.18) and using again (2.7) we get

< (x(0)z(t), >, =0 for all t€V and t€[0,T) (3.24)

Since the orthogonal complement of e(V) in # is V ,from (3.23) we
get z(t) € V for all te€[0,T] . Thus we may put T = z(t) in (3.24)

and from (3.10) we deduce z(t)=0 for all te€[0,T] . Using now

(3.22) we get (3.20).
Hence, we proved that (3.20) is equivalent to (3.18) and we finish

the proof with the remark that (3.21) is equivalent to (3.19).

lemma 3.3. For every té€{0,T] and x€X there exists a unique

element 2z €X such that
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a(t,z,y) = <G{t,x),y> for all yeX (3.25)
X

Moreover the operator A : [0,T]x X—» X defined by A(t,x) = z is

continuous and there exists C > 0 such that
Nade,x ) -Alt, 2)“x § Cllx;=x,|ly  for all x,,x,eX and te[0,T] (3.26)

Proof. let te€[0,T]and xe€X. Using lemma 1.1 and (2.6) we get
that alt,.,.) 1is a bilinear continuous and coercive form on X
hence the existence and uniqueness of 2z which satisfies (3.25)
follows from Lax-Milgram 's lemma.

Let now consider t.,t,€ o,7] . x;=(u;, 0;)€X and let be

zi=(wi,'ri)ex defined by zi = A(ti,xi), i=1,2. Using (3.25) we have
a(t1,z1,z ) a(tz,zz,z 22) <G(t1,x )-G(tz,xz) 12 22 X (3.27)

and from (3.9),(3.10) and (2.6) we get
>
2
a(t1,z1-22)—a(t2,22,z1—22) 3C “21'22“ -

- lE(x(E))=Elx(t) ) e(w wll Nz, )l - (3.28)

-e! ( x(t))-E (x(tz)))rzl\qlz “Z, | « J

In a similar way, from (3.7),(3.8) and (3.2) after same manipulations
we get . N
<Glt,,x, )-G(tz,xz) Z,"2y § C{_ux x2“X+ no(t) o(tz))IH

nc(t )- o(tz)ll +“u(t )=a(t) | n* llu(t )Tie 8 +llx(t1)-x(t2)HY+

+ BE T (e -2 (X (£ 02+0(t2),e(u2)+s(u(t2)),x(tz))"H*-

+ NEXEI-E(x(E) ) etale ) + (3.29)
q

s 1E g2 e Na ) Iz, -2 )

So, fram (3.27)-(3.29) it results
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]

Y -~ -1 -

+ | xRy et W) =TiEDN, + 15TE) =T (e NT (e Vel +
. . 1
shate)-ute )l + Ixte)=xtelly + (3.30)
# IE (x(£)=F (xl) )P (0y#3(E,) s () +e(Fit)) ,x (£ 1+

o (BB ) G ENN 2+ 1E (xte =5 (x (e TN, | )

Using now lemma 3.1, (3.6) and the reqularity in time of the functions

G and G ,from (3.30) we get z,—>z, in X when t1—---»t2 in [Q,T]

and X, = X, in X . Hence A 1is a continuous operator.Moreover,

taking t,=t, in (3.30) we get (3.26).

Proof of theorem 3.1.
Using (3.4) and (3.5) we get that X, defined by (3.17) belongs to

X and by lemma 3.3 and the classical Cauchy-Lipschitz theorem we get

that there exists a unique solution xeC1 (0,T,X) of the following

Cauchy problem :

x(t) = A(t,x(t)) for all telo,T} (3.31)
x(0) = x, ' (3.32)

Theorem 3.1 follows now from the definition of the operator A and

lemma 3.2.

4. The continuwous dependence of the solution upon the input data

The continuous dependence of the solution of (2.1)-(2.5) with respect

to the data is given by :

Theorem 4.1. Let (3.1)-(3.2),(3.6) hold and let (ui,ci) be the

solutions of (2.1)-(2.5) for the data bi’fi'gi'uoi’aoi , i=1,2 such

that (3.3)-(3.5) hold. Then there exists C > 0 such that
““1'“2“1,1‘,31* lloy-o, i 1,1,4, gl “01‘“02"51*" 001-002".'{1 *

(4.1)
#lo =bylly oo+ f1“f2"1,'r,nr+ ”91‘92“1,1',VI: )
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Proof. Let (ﬁi,a'i) be two functions which satisfy (3.11)=(3.13)

for the data bi'fi'gi , i=1,2 and

o Gy= 0,3 =(@;,3 4.2
Uy 03 0370y X;=(8;,0;) (4.2)
u°l~u01-ul(0), 001-001- oi(O) R (uOl,cOl) ,1=1,2 (4.3)

As it results fram the proof of theorem 2.1 we have

:’zi(t) A, (t,x, (£)) for all te(o0,T] (4.4)

(4.5)

]

xi(O) X i

where the operators Ai are defined by lemma 3.3 replacing {3 by
(Ji,'éi) in (3.14),(3.15),i=1,2. In a similar way in which (3.30) was

proved we obtain

A, (t,y,) -3, (5, y,)lly < CUI Yy Yol W, (&) -0, (el l\u (£) -, (t)n +
+l\o (t) o (t)h + no (t) o (t)l\ ) for all té(_O Tland yvyze X
which implies

LA (%, (£)) A, (6%, (E))] ¢ & COII, ()%, (t) |+ |\u u2]{1 T H1

(4.6)

+13,-7, u1,T,H1 ) for all tefo,T]

Using (4.4) and (4.6) we get
<k, (£) =%, (£) %, (E)=%, (£) > & CLIK, (E) =%y (E)]] o+ I Ty B’Z“WH;
+0= Sll y pp) UE (%0, forall tel,T]:
’ l‘1

hence by (4.5) and a Gronwall-type lemma it follows

for all té[O,T] .
Using again (4.4) and (4.6) , from (4.7) we deduce

[l ()% (®Nl ¢ € COlx, %l Tl‘1"“3‘2“1,'1' H, +15, “Slly, 1, #,) (4.8)

for all tefo,T)
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hence from (4.2),(4.3),(4.7) and (4.8) we get

u,~u + Jo,-o. )l gCl flu,~u i, +llo.-o N, +
1 2"1,1*,1{1 17%l, 7,4, S S m 1% 02! 5HY g

~

-d ~ -~
+ u1--uz\|1'.r'H1 + Jo,=0, || 1,78, ).
Using standard arguments from (3.11)-(3.13) we get

-~ v -~ N
"“1'“2"1,T,H1 + "1"’2“1,1',;1160( by, gt f1‘f2"1,1',HI, *

917950l 4, 7,01 )
hence (4.9) implies (4.1).

In particular , from theorem 4.1 we deduce

Corollary 4.1. Let the hypotheses of theorem 4.1 hold. If b1=b2,

£1°E3r 9979, then

W32l 2,1, * 1017020, m, 5, €€ 0aly * 101002k (4.10)
Remark 4.1. From (4.10) we deduce the finite-time stability of

every solution on (2.1)-(2.5) (for definitions in the field see for

instance Hahn [1 9] ch.5). Some unidimensional examples can be considered

in order to prove that generally stability does not hold (see Ionescu

and Sofonea [17]).

Further one we consider the case when Z in (2.1) does not depend

on ¥ and we replace (3.1) by the following assumption :

(a) Zx)o.t=0. FX)T for all o,T¢& SN , a.e. in Q

(b) there exists o0 such that Z(x)o. caaqc\z for all ceS,,

a.e. in o , (4.11)

© 244 € @) for all i,k =1,N

We have the following result :

Theorem 4.2. Let (4,29)3.2)-(3.5) hold and let (ui,oi) be the

solutions of (2.1)-(2.5) for yx =y +1=1,2 such that (3.6) hold. Then



On existence .....viscoplastic models 267

there exists C > 0 such that

"“1‘”‘2“1,1',31 * “<’1"C’2"1,'r,1;r1 S Clxxallo,r,y (4.12)

Proof. Iet (G,0) be two functions which satisfy (3.11)-(3.13) and

- ~
u,=u.-u

(4 B’i= 0.-3 , x,=(d,,5,) , i=1,2 (4.13)

1

As it results from the proof of theorem 3.1 we have

X (8) = A (ex(t)  for all telo,T] (4.14)
x;(0) = xg (4.15)

where X, is given by (3.13) and the operators A, are defined by
lemma 3.3 replacing. ¥ by Xi in (3.14),(3.15),i=1,2. In a similar

way in which (3.30) and (4.6) were proved we obtain
(A, (t,x, (£))-A, (£,x, (Bl < COllx, (8) =, () + [IXq (£) =X, (B)]] )

for all t€[0,T] hence from (4.14),(4.15) using a standard technique

we get

t
I\ x, (=%, () | (&C % I X4 (s)=x, (s) ||, ds (4.16)
% (€)%, () )| ¢ & CUIX, (B) =%, (E)] + ] Xq (B) =X, (B)]] ) (4.17)

for all te[0,T) . Theorem 4.2 follows now from (4.13), (+.16)and (4.17).

5. A convergence result in the study of uncoupled thermo -

viscoplastic processes

In this section we study uncoupled thermo-viscoplastic processes i.e.
problems of the form (2.1)-(2.5) in which the parameter y is denoted
by 6 and it is interpreted as the absolute temperature. In order to
model heat-propagation processes, differents laws relating the temperature

field 6 and the heat flux g can be considered.Cne of them is the

well known Fourier law
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q=kV8 (5.1)

in which k > 0 is the heat conduction coefficient and V6 is the temperature
gradient.As well known,this law implies a very unpleasant feature: a thermal
disturbance at any point in the body is felt instantaneously at ever other
point; or in therms less precise then evocative, the speed of the propagation
of thermal signals is infinite.To remove the aformentioned paradox Cattaneo
[20] by means of statistical consideration,proposed a generalization of

the Fourier law in the hamogenuous and isotropic case which is

Eg+q=kVo (5.2)

where £ > 0 is the thermal relaxation time and it represents the time-lag
required to create steady-state heat conduction in an element of volume
when a temperature gradient is suddenly imposed on that element (for
detailed refergnces on this subject see for instance Cristescu and Suliciu
(1] p.190).

Iet us now consider a heat propagation processes in Q x(0,T) and let
us denote by 6 the temperature field in the context of Fourier law (5.1)
and by 6g the temperature field in the context of Cattaneo law (5.2) .
Under appropriate hypothesses on the date we may assume that e.eEeCO(O,T,LZ(Q)) .
Suppose now that (4.9),(3.2)-(3.5) hold and let (u,o) be the solution of
(2.1-(2.5) for y=6 and (u.,0,) be the solutian of (2.1)-(2.5) for
x=6g (we take £(x)=F 1in (2.2) and M=1 in the definition of the

space Y). Using theorem 4.2 we get

Moy, g0+ Nogolly,g,z € CCl8g?N o,1,r2())

and since 9, —> in c%0,1,02(@)) when £—> 0 ( see for
example [157, [21] ) we get
G—>u in c'o,mE) 0y —>0 in c'(0,T,4,) when £—50 (5.3)

The physical signifiance of the previous convergence result is the
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following : at high temperatures (roam temperatures for the materials
considered) when the relaxation time £ becomes very short (i.e.
when we are dealing with "higly conductive heat materials”) the
uncoupled thermo-viscoplastic problem (2.1)-(2.5) can be considered
in the context of Fourier's theory. This means that the relaxation
time £ does not influence the gquasistatic processes in "higly
conductive heat" materials.

Remark 5.1. A relatively simple example of model of the form

(1.2) satisfying (3.2) may be found for instance in [157, [21].

Moreover, the convergence result (5.3) improves a result obtained

in [21] .
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