
ANNALES SCIENTIFIQUES

DE L’UNIVERSITÉ DE CLERMONT-FERRAND 2
Série Mathématiques

MIRCEA SOFONEA
On existence and behaviour of the solution in quasistatic
processes for rate-type viscoplastic models
Annales scientifiques de l’Université de Clermont-Ferrand 2, tome 98, série Mathéma-
tiques, no 28 (1992), p. 255-271
<http://www.numdam.org/item?id=ASCFM_1992__98_28_255_0>

© Université de Clermont-Ferrand 2, 1992, tous droits réservés.

L’accès aux archives de la revue « Annales scientifiques de l’Université de Clermont-
Ferrand 2 » implique l’accord avec les conditions générales d’utilisation (http://www.
numdam.org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit
contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASCFM_1992__98_28_255_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


255-

On existence and behaviour of the solution in quasistatic

processes for rate-type viscoplastic models

~. Introduction

Everywhere in this paper we consider the case of deformations,

denote by e the small strain tensor and by a the stress tensor;

the dot above a quantity will represent the derivative with respect

to the time variable of that quantity.

In order to describe the behaviour of real materials like rubbers,

metals, pastes, rocks and so on, many authors proposed rate-type models

i.e. models involving a relation between the stress rate a and the

strain rate I .For example, a semilinear rate-type constitutive

equation is an equation of the fom

in which E is a fourth order tensor and F is a given function.

Various results and. nechanical interpretation concerning models of the

fonn (1.1) may be found for instance in the book of Cristescu and

Suliciu [1] (see also the references quotated there) .Existence and

uniqueness results for initiale and value problems involving

(1. ~ ~ for different forms of F were obtained for instance by Duvaut

and Lions L21 ch. 5, Suquet [31 , L4] , [5] Djaoua and Suquet [6]

(the case when F depends only on o, Ionescu and Sofonea [7],

Ionescu C 8 1 (the case when a full coupling in stress and strain is

involved in F ).
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In the case when the plastic rate of deformation depends also on a

may be replaced by

Concrete examples for constitutive equations of the form (1.2) where

proposed for instance by Cristescu [ 9 1 , [10] for rock-like materials

(in these papers X is the work/or strain / hardening parameter).

Existence and uniqueness results for problems involving (1.2) with dif-

ferent meaning of X were given by Necas and Kratochvil [11] , JohnLl2],
Laborde[13] (the case when F does not depend on e) and by Ionescu [8],

[14], Solonea [15],  [16], Ionescu and Sofonea L171 (the case when F

depends also on E). Energy estimates for one-dimensional problems in

the study of nodels (1.2) in which x is the work hardening paraineter

were obtained by Suliciu and [18].
’ 

The aim of this paper is to study a quasistatic problem for materials

with a rate-type constitutive equation of the form

and to deduce sane suplementary results in the particular case of ( 1. 2 y .

Constitutive equations ( 1. 3 ) may be used in order to model the behaviour

of real materials for which both the elastic and the plastic rate of

deformation depend on a parameter X which may be interpreted for instance

as the absolute temperature or an internal state variable.The paper is

organized as follows : in section 2 the mechanical problem involving

(~.31 is stated and sate notations and preliminaries are given; in sec-

tion 3 the existence and the uniqueness of the solution is proved reducing

the studied problem to an ordinary differential equation in a Hilbert

space (theorem 3. ~ ~ ; in section 4 the continuous dependence of the

solution with respect the data is given (theorem 4.1) and a finite-time

stability result is obtained (corollary 4.1 ~ ; further one we consider the
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case of models t 1. 2 ) ~ i . e . E t X ) -= ^ ) and we deduce the continuous

dependence of the solution with respect the parameter X (theorem 4 . 2 ) ;

this last result is used in section 5 in order to study the connection

between two uncoupled thermo-viscoplastic problems using the Cattaneo

heat conduction law and the well known Fourier law.

2. Problem statenent and preliminaries

Let 0 be a domain in If (N = 1, 2, 3 ) with a sncoth boundary r

and let r1 be an open subset of r such that neas ri &#x3E; 0. We denote by

r~ = r B , v the outward unit normal vector on r and by - SN the

set of second order synnetric tensors on tIP . Let T be a real positive

constant. We consider the following mixt problem :

in which the unknows are the displacement function u : 3 x [.O~T]2013~K
and the stress function (j: n SN. This problem represents
a quasistatic problem for rate-type models of the form ( 2. 2) in which E

is a fourth order tensor, F is a given function, c (u) def ines the linea-

rized strain tensor (i.e. E (u) _- ~ ( + u ) ) and x is a parameter?

equation (2.1) is the equilibrium equation in which b represents the

given body force and Diva represents the divergence of the tensor-

valued function 0 ; the functions f and g in (2.3),(2.4) y are the

given boundary data and f inally the functions o and a 0 in (2.5) are

the initial data.
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In the sequel we denote by 
" ." the inner product on the spaces

N T£t"1 (Me 0) , SN and the Euclidean norm on these spaces.

The following notations are also used : H = [L2 C Q]N , H1 = [H1( ( Q)]N,
H=[L2 (Q)] N xN S,
spaces and Y are real Hilbert spaces endowed with the

cannonical inner products denoted by  , &#x3E; H ’ ,&#x3E; H,,&#x3E; H, ,&#x3E;  H , H1cannonical inner products denoted by  , n  , 1  I n  , &#x3E; 

1
and , &#x3E;y respectively.

Let Hr = L ’ 1/2 (r)]N and y trace map.we

denote by V the closed subspace of H1 defined by V on r,
and let also denote by Hf and Vr the duals of Hr
and V-. The operator c : 1 H 1 H given by du) 

is linear and continuous and moreover, since meas  T1&#x3E; 0 , Korn’s ine-

quality holds :

where C is a strictely positive constant (everywhere in this paper

C will represent strictely positive generic constants that may depend

on Q , E , F and T and do not depend on time or on input data.

If o there exists y2a c Hr such that

= &#x3E;~ + Div o,u &#x3E;H

for all By we shall understand the restriction of

Y2o on Vr and we denote by I~ the closed subspace of Ii, defined by

V I Here we consider V and V

as real Hilbert spaces endowed with the inner products of H 1 and H 1
respectively. It is well known that c (v) is the orthogonal complement

of V in Ii hence

Final.ly, for every real Hilbert space X we denote the
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norm on X and by the spaces defined as follows :

.

C3 0, T, Xy are real Banach spaces, endowed with the norms

3. An existence and uniqueness result

Let us consider the following assumptions :

u

(b) there exists a &#x3E; 0 such that

(c) there exists L&#x3E;0 such that

(d) x 201320132013~ measurable function with respect

to the Lebesgue measure of

(e) there exists 6 &#x3E; 0 such that

N

(a) there exists L &#x3E; 0 such that

(b) is a measurable function with respect to

the Lebesgue measure °n Q ’ for all a, 
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The main result of this section is given by :

Theorem 3 .1. Suppose that the hypotheses ( 3 .1 ) - ( 3 . 6 ) are fulf illed.

Then there exists a unique solution of

the problem (2.1)-(2.5).

Remark 3 .1. Let us observe that if the problem (2.1)-(2.5) has a

solution (u,a) such that then the

hypotheses (3.3)-(3.5) are fulfilled.

Renark 3.2. In the case when E does not depend on x theorem

3.1. as well as theorem 4.1. of section 4 was proved by Ionescu and

Sofonea [7] . Here we extend the technique presented in C 7 in the
case when E = E ( X) .

In order to prove theorem 3.1 we need some preliminary results;

we start with the following lemma whose proof can be easily obtained:

Istma 3 .1. Let (3.1) and (3.6) hold.Then for all 

o~ ---~ E ( defines a linear continuous invertible operator on

H and if we denote by ~- 1 CxCt» his inverse , we have :

for all ú E H. Moreaver, I for every a E H the maps t - E(X(t)) cr
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and (x(t))a are continuous from (O,T 1 to H .

Let now X = VxU be the product space endowed with the cannonical

- 1 -.1 1
inner product  , &#x3E; X and be two

functions such that

(the existence and regularity of u , ~ can be easily proved using

~3.3) and the proprieties of the trace maps y 1 and y2). Let

Let now denote by

3 . 2 . The pair (u, a) c- is a solution of ( 2.1 ) _

(2.5) iff x E is a solution of the problem
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Proof Using (3.11) - (3.13) , (3.16) , (3.17) it is easy to see that

Let us suppose that (3.20) and (3.21) are fulfilled.Using (2.7) we have

for all and t~(o,T1. Using now (3.14) and (3.15) ~ get

(3.i8).

Conversely, let ~ 3 . i 8 ) hold and let

for all t C- [0, T2 . Taking y=(v,0)~X in (3.18) and using (2.7) we get

z (t) , £ (v) &#x3E;.1’ 0four all v E V and tE [0,T]. (3.23)

Taking (3.18) and using again (2.7) we get

Since the orthogonal canplement of E (V) in H is V , fran ( 3 . 23 ) we

get z (t) ~ ~ for all t e[0, T] . Thus we may put T = z(t) in (3.24)

and fran (3.10) we deduce z ( t) =0 for all Using now

(3.22) we get (3.20).

Hence, we proved that (3.20) is equivalent to (3. ~ 8) and we finish

the proof with the remark that ( 3 . 21 ) is equivalent to (3.19).

Lentna 3 . 3 . For every and xe X there exists a unique

element zeX such that
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Moreover the operator A : X - X defined by A(t,x) = z is

continuous and there exists C &#x3E; 0 such that

proof. Let Using lemna 1.1 and (2.6) we get

that a(t,.,.) is a bilinear continuous and coercive form on X

hence the existence and uniqueness of z which satisfies (3.25)

follows from Lax-Milgram’ s lemn.

Let new consider xi=(ui’ cri) 6 x and let be

 z . = (w . , T . ) E X defined by z. =A(t.,x.), i= 1,2. Using (3.25) we have
i i i i i

and fran (3.9), (3.10) and (2.6) we get

In a similar way, fran (3.7), (3.8) and (3.2) after sane manipulations

we get 
- l
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Using now lenma 3 .1, ( 3 . 61 and the regularity in time of the functions

u (3.30) we get when 

and X . Hence A is a continuous operator. Moreover,

taking t 1=t2 in (3.30) we get (3.26).

Proof of theorem 3.1.

Using (3.4) and (3.5) we get that x o defined by (3.17) belongs to

X and by lenma 3.3 and the classical Cauchy-Lipschitz theorem we get

that there exists a unique solution of the following

Cauchy problem :

Theorem 3 .1 f ollows now from the def inition of the operator A and

lentna 3.2.

4. The continuous dependence of the solution upon the input data

The continuous dependence of the solution of (2.1)-(2.5) with respect

to the data is given by :

Theorem 4 .1. Let ( 3 .1 ) - ( 3 . 2 ) , ( 3 . 6 ) hold and let be the

solutions of ( 2,1 ) - ( 2 . 5 ) for the data such

that (3.3)-(3.5) hold. Then there exists C &#x3E; 0 such that
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Proof . Let (ui, oi) be two functions which satisfy ( 3.11 y - ( 3 .13)

for the data i=1, 2 and

As it results fran the proof of theorem 2.1 we have

where the operators A , i are defined by leinma 3.3 replacing (1~) by
in ( 3 .14 ) , ( 3.15 ) , i=1,2. In a slinilar way in wlhich (3.30) was

i i

proved we obtain

which implies

Using (4.4) and (4.6) we get

hence by (4.5~ and a Gronwall-type lama it follows

for all t6[.0,TJ.
Using again (4.4) and (4.6) , fran ( 4 . 7 y we deduce



266

hence iran (4. 2) , (4. 3) , (4.7) and (4.8) we get

Using standard arguments fran t 3 . Z 1 ) ~- ~ 3 .13 ) we get

hence ( 4 . 9 ~ implies (4.1 .

In particular , fran theorem 4. i we deduce

Corollary 4. .1. Let the hypotheses of theorem 4 .1 hold. If b, =b2’

Remark 4 .1. From ( 4 .10 ) we deduce the finite-time stability of

every solution on (2.1)-(2.5) (for definitions in the field see for

instance Hahn (19~ ch. 5 ) . Sorne unidimensional examples can be considered

in order to prove that generally stability does not hold (see Ionescu

and Sofonea [ 17]) .

Further one we consider the case when E in (2.1) does not depend

on x and we replace (3.1) by the following assumption

(a) for all a.e. in

(b) there exists a&#x3E;0 such that for all 

a.e. in Q , (4.11)

(c) G for all ir j,krh = 1,N

We have the following result :

Theorem ~.2, Let I4. ~x,~,Q3.2) - (3.5) hold and let be the

solutions of (2.1)-(2.5) for x =~ i,i=1,2 such that (3.6) hold. Then
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there exists C &#x3E; 0 such that

Proof . Let (ü,cr) be two functions which satisfy (3.11)-(3.13) and

As it results from the proof of theorem 3.1 we have

where x is given by (3.13) and the operators A. are defined byo . i

lenna 3 . 3 replacing , X by X’ in (3.14), (3.15) , i= 1 , 2. In a similar

way in which ( 3 . 3 0 ) and ( 4 . 6 ) were proved we obtain

for all hence fran (4.14) , (4.15) using a standard technique

we get
4-

for all Theorem 4.2 follows now fran (4.13),(~.16)and (4.17).

5. A convergence result in the study of uncoupled thermo-

viscoplastic processes

In this section we study uncoupled thermo-viscoplastic processes i.e.

problems of the form (2.1)-(2.5) in which the parameter x is denoted

by 6 and it is interpreted as the absolute temperature. In order to

model heat-propagation processes, differents laws relating the temperature

field 6 and the heat flux q can be considered. One of them is the

well known Fourier law
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in which k &#x3E; 0 is the heat conduction coef f icient and Q 8 is the temperature

gradient.As well known, this law implies a very unpleasant feature: a thermal

disturbance at any point in the body is felt instantaneously at ever other

point; or in thems less precise then evocative, the speed of the propagation

of thermal signals is infinite.To rencve the afonnentioned paradox Cattaneo

p0] by means of statistical consideration, proposed a generalization of

the Fourier law in the homogenuous and isotropic case which is

wiiere E &#x3E; 0 is the thermal relaxation time and it represents the time-lag

required to create steady-state heat conduction in an element of volume

when a temperature gradient is suddenly imposed on that element (for

detailed references on this subject see for instance Cristescu and Suliciu

L 1 J p. 190) .
Let us now consider a heat propagation processes in Q x (0, T) and let

us denote by 6 the temperature field in the context of Fourier law (S. 1)

and by 8 the temperature field in the context of Cattaneo law (5.2) .
tk1der appropriate hypothesses on the date we may assume that 

Suppose now that ( 4 . 9 ) , ( 3 . 2 ) - ( 3 . 5 ) hold and let ( u, a ) be the solution of

(2.1)-(2.5) for X= 6 and (u oCT be the solution of (2.1 ) - (2.5) for

( w~e in (2.2) and M=1 in the definition of the

space Y). Using theorem 4.2 we get

example [ 15 1 , [21] we get

The physical signifiance of the previous convergence resuit is the
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following : at high temperatures (room temperatures for the materials

considered) when the relaxation becomes very short (i.e.

when we are dealing with "higly conductive heat materials") the

uncoupled th.eJ:I1D-viscoplastic problem 2 .1 ) - ( 2. 5 ) can be considered

in the context of Fourier’s theory. This means that the relaxation

time ~ does not influence the quasistatic processes in "higly

conductive heat" materials.

Remark 5.1. A relatively simple example of model of the fotm

(1.2) satisfying (3.2) may be found for instance in ~ 15 ~ , ~,21~ .

Moreover, the convergence result (5.3) improves a result obtained

in .
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