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A NEW INTRINSIC CONSTRUCTION OF THE GAUSSIAN MEASURE IN Rd;

WITH APPLICATION

1. INTRODUCTION. We give in this paper a new intrinsic
construction of GQ , the (centered) (1) gaussian probability
measure of covariance Q in a d- dimensional space. Although our
approach is linked to the type of construction starting with
the definition of the density when Q is invertible, we still
manage to construct GQ with a convenient density, whether Q is
invertible or not.

Then, using the tools and results introduced before, an

application to statistics is given : a new intrinsic and (in a

sense) natural, proof of the well-known theorem which states that
the asymptotic distribution of the empirical chi-square is

x2 (d-1).
For each of these two parts we give a short survey of the

literature on the subjet as well as references illustrating the
different types of construction and proof which are essential to
our paper.

(1) The presence of a mean in the (probability) law of a gaussian
random vector X introduces only a translation term easy to handle.
In the beginning of this paper we shall thus, without loss of

generality , limit ourselves to the case where the mean is zero.



168

2 . INSTRINSIC CONSTRUCTION OF THE GAUSSIAN DISTRIBUTION. We wish to

expose first what we shall do in this section :

After the introduction of a few notations we shall, via a

proposition, introduce a very useful inner product, denoted (.,.)Q
on ImQ, a subspace of the euclidian space X in which everything
happens.

Then we shall find out a suitable Lebesgue measure (1) which
will enable us to construct the gaussian distribution GQ’ for any

positive operator.

Let X denote an inner product space of dimension d ; the inner

product is (.,.) . let) is the set of linear aperators on X. For
every T E let), T* denotes the adjoint of T. We shall give special
interest to positive operators, that is Q e satisfying :

Q=Q* and (Qx,x) &#x3E; 0 , x . (2.1)

Proposition 1. Let Q be a positive operator in X : : one defines, on

ImQ, an inner product, denoted (.,.)Q , by the relation :
= (Qx,y), x,y E X . . (2.2)

In case rkQ = d, .,.)Q is defined on the whole X by :
= x,y . (2.3)

For reasons given in the proof, we shall find convenient to say
that (.,.)Q is the reproducing inner product associated to Q.
Proof. This proposition is a particular case, but in an intrinsinc
version, of the theory of reproducing kernels introduced by
Aronzsajn 113. This tool has been popularized in statistics and
Probability theory by E. Parzen [23, so we could skip the
demonstration. Nevertheless, it is worth giving a quick proof in
the finite dimensional case :

Let Q be a positive operator in X ; with the symetry of Q, it

is first easily checked that (Qx,y) only depends on Qx and Qy.
Bilinearity and positivity of (.,.)Q are obvious. The fact that

(x, x) Q is 0, on ImQ , iff x = 0 , results directly from

KerQ = lx;x E X, (Qx,x) = 0) (for the elementary results in linear
algebra admitted as such, an excellent reference is still P.
Halmos C3J). The invertible case follows directly from the first
part of the proposition. 0

In the following section it will be useful to note the

equality

(1) Implicitely, the Borel «-field will always be chosen on inner
product spaces.
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Following the way indicated in the introduction of this

section, we have now in hand the suitable inner product on ImQ. We

shall proceed by choosing the convenient (1) Lebesgue measure on
ImQ.

Now, let e = (el, e2, ... , eq) be a basis of ImQ ; it is
convenient to use the same notation e to also denote the linear

application of ~~ into ImQ, which associates to

Let L g denote the usual Lebesgue measure of Rq.
Definition 1. The Lebesgue measure on the inner product space ImQ,

(.,.)Q is defined as the image of Xq by the application e (defined
above), where e is a basis of ImQ, orthonormal for (., .) .
Of course this definition is easily seen to be correct, ecause it
is independent of the choice of the orthonormal basis. The

specific Lebesgue measure chosen in this definition will be

denoted xQ, 
.... 

h. t.. d f... f thWe are now in position to give the intrinsic definition of the
gaussian random vectors (r.v) we are looking for : ,

Definition 2. Let Q be a positive operator in I, rkQ=q. A r, v x taki
values in X is said to be gaussian with Q as a covariance

operator, if its (probability) law Px is :

The notation GQ = Px will be used.

: Now that we have found a law, which is a "candidate" to achieve
the construction we aim at, we must check up that (2.6) coincides,
when 9G = Rd, with the similar distribution obtained by another
classical route. 

’

A few remarks must be done befare :

Remarks .

1) Let e be a basis of ImQ , orthonormal for ( . , . ~ ~ ; the

application e defined in (2.5) is clearly an isometry of Rq on
ImQ.
Then we observe that G~ is the image by e of Gq , the standard

gaussian distribution on Rq :

(1) On a euclidian space the Lebesgue measure, being invariant by
translations, is unique up to a constant ; the point is precisely
to make an unambiguous choice.
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for sake of clarity (. , . ) q denotes the natural inner product of

Rq,

2) The Fourier transform(l) Gq of Gq is

using again the isometry e easily gives a first expression of
the Fourier transform of Go : for any v e ImQ,

This formula gives the characteristic function of X , inside

ImQ ; therefore we have not yet reached our goal which is to

identify Eexp[i(u,X)3 for every u E ~d 5 t ; [here
(., . )d a (., .) ]. .
3) It should be noted that the law PX concerned by (2.~) and (2.9)
is always "spherical" as soon as a good inner product (.,.)Q is
used in the space ImQ in which X really takes its values.

We shall end our construction, by proving that, in the case
x = Rd , G is identical with G (d) the gaussian law with
covariance matrix Q defined by any other method in the literature.
For this we shall use characteristic functions :

Proposition 2. Let X be a r.v in suppose that its probability
law PX is GQ , then 

~ -

Proof. As X E ImQ (a. s) , and with (2.4) ,

using (2.9) and (2.2) . a

For further need we shall give two useful propositions :

( 1 ) In Probability theory it is classical to define the Fourier

transform of a probability u in Rq 

Rq) . If, as often, the law of some r,v X ,

The right hand side of this last equality is
called the characteristic function (c.fl of X.
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Proposition 3. Suppose the probability distribution of a r.v X is

GQ, with rkQ = q , then :
X E ImQ a.s, and

the law of llXil2 is x2 ~q~ (1).
The proof is obvious when one uses the isometry e in (2.5) and

if one relies on the following convenient definition of x2(q) :

Definition 3. Let X be a gaussian vector in Rq , with I (the
, , , , 2 (d) .. , ,q
identity) for covariance matrix, then x2(d) is by definition the
probability law of IIXI12
Proposition 4. (Central limit theorem in Rd).
Let be i . i . d random vectors in Rd . m (me Rd) and Q are
the mean an covariance matrix common to all Xk .

n 
S 

E Sn- nm
Let S n = E Xk . Then, when n - oo, the law of Sn - nm converges to

k=l in
~ GQ .

A proof of this proposition can be found, for example in [43.

3.SHORT SURVEY OF OTHER AVAILABLE CONSTRUCTIONS. It is well-known

that, in the literature one finds many other constructions of the

gaussian probability in Rd . By "construction" we mean both a

definition and the basic properties (in a certain order). There
are three main types of constructions :

The density approach at least dates back to P. Levy [53. In

this construction one starts defining in ~d the density of 
which is obvious, or the density of G ~Q~ , when Q is non degenerate
and positive (in this case the constant in front of the

exponential has to be identified). Excellent exemples of this
approach are given in W. Feller 163, A. Renyi [73, L. Breiman [43,
and (in french) M. M6tivier L 8 ) .

(1) is a distribution, famous in statistics, where it is

extensively used. As often this distribution can be defined in

many ways the integer n counts what is called the degrees of
freedom. x ( n ~ has a density on R+, explicitely : ·
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The characteristic function approach seems to be less popular.
This construction starts, straight away, by defining G(Q) in Rd as
the distribution which characteristic function is :

Or course the fact that such a function is a c.f is part of the

problem.
Two excellent illustrations of this approach are given in H.
Cramer [9] and A.N. Shiryayev [103.

The definition by linearity : a r.v X = (Xk)lCk4d with
values
in ~d is said to be gaussian, if any linear form has
a gaussian distribution in ~.
We shall not comment here this apparently non-constructive
definition. Obviously such a definition is very appropriate to
gaussian processes (it also works perfectly well for random

vectors). This approach is illustrated in four excellent books

(two of them in french) :
C.R. Rao 1113, J. Neveu [123, A. Monfort [133 and P. Br6maud [143.

4. CONVERGENCE TO x2 . In this section we shall use both the

reproducing inner product (.,.) on ImQ and the central limit
theorem (proposition 4), in order to give a new proof of the
well-known result stating that under some conditions the
distribution of (the so-called "empirical X2") converges to

x~(d-1). The whole result will be denoted :

(Of course we shall define every ingredient of this formula in

proper time~ .

Beforehand a few preliminaires :
Let I be a finite set (d = card I) and p = a

probability on I, such as Pi - 0, for every i E I. Let lei, i E I)

be the natural basis of RI, and X a r.v with values in RI, the law

of which is defined by
PCX = si3 = pi, i E I . (4.2)

Of course,
EX = (Pi; I e I) = p e RI ; (4.3)

whereas the covariance Q of X satisfies

Oij = Pi 8ij - Pi Pj , , , 1, (4.4)Qij = 1J pipj, I 
(4.4)

where 8 is Knonecker.

We point out two facts :
As usual , X 6 EX + ImQ (a. s~ ; (4.5)
Q is the covariance matrix of the n-multinomial law in the special
cas n = 1.
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Now we shall proceed and identify the reproducing inner product
associated to the covariance Q of the above r.v X. Q can also be

seen as the matrix with typical element given by (4.4).

Proposition 5.
1 (i) The subspace ImQ is exactly constituted by the y satisfying

1(it) The inner product
Proof. For x e RI and with (4.4),we see that (Qx)i=pixi-piX pjxj.
So it is clear that = 0 . On the other way let 3 be an

i 
y

element satisfying E yi = 0 . Such a y belongs to ImQ, since the

equations yi = (Qx)i (we want to solve in x) admit a solution

Yi
x = (xi) with xi - Yi (4.7)~ ~ 

Pi
Hence ImQ, exactly identified, has d-1 for rank.

The proof of (ii) is straightforward :
Let y = Qx and y’ = Qxl be in ImQ, (2.2) and (4.6) give
successively :

(y,y’)Q = (x,Qxl) , and

Now we are in a position to ive a precise version of the

proposition of the convergence to x (d-1) -

Proposition 6. (Theorem of convergence to x2~.
Let be an i . i . d sequence of random vectors in

d) , the common distribution is the law of X defined in

Then, when n - +o

d 
the distribution of Ed npi converges to x2(d-1). (4.8)

I-i npi
Proof. The fulfills the hypothesis of proposition 4.

n 

’

Therefore, denoting Nn = 2: xk , as n - +m, the distribution of
k=1

Nn-npNn-np converges to GQ , where Q is the covariance matrix (4.4).
4n
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Clearly Nn-np e ImQ a.s (see remark (4.5)). So, taking the square
of the norm associated to the inner product (.,.)Q we see (with
the use of proposition 3) that, as n - +0 :

the distribution of converges to (1) .
n 

n Q 
, ,

By using part (ii) of proposition 5, we can explicit the square of
the norm above and obtain :

this gives the desired result. a

5.SHORT SURVEY OF OTHER AVAILABLE PROOFS. In the literature one
can find different proofs of this x2 theorem. They are essentially
of two types :
The characteristic fonction approach starts with taking the r.v

Nn = which has been defined in proposition 6. The
distribution of Nn is multinomial, hence his c.f is well-known.

One deduces from this the c.f of the r.v (Nn (i) -npi) Vnpi AsOne deduces from this the c.f of the r.v 

14i4d 

. As

- Vnpi 
n + +oo , one obtains then, essentially with calculus, the limit of
this c.f which appears to be the c.f of a singular gaussian
distribution.. The end of the proof is close. In their book H.

Cramer [93 and M. Fisz [153 exactly follow this line of proof.
The central limit theorem approach is a short way to find the

gaussian limit of the r.v . Then the question is to find thegaussian limit of the r.v 201320132013 . Then the question is to find the
Vn

image of this distribution by the continuous application :

This can be done differently according to the style of the author.
This line of presentation is, nowadays, often chosen ; see, for

example C153 and [16] (this reference is in french).

(1) We have implicitely used the continuity of the function
x ~ Ilxll2.
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