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ON SOME REPRESENTATIONS OF HYPERGROUPS

THOMAS VOUGIOUKLIS

DEMOCRITUS UNIVERSITY OF THRACE
671 00 XANTHI, GREECE

Abstract

A class of hypermatrices to represent hypergroups is introduced.
Application on class of P-hypergroups is given.

1. INTRODUCTION

The problem of representaions of hypergroups by hypermarrices
can be tackled in two ways :  First, by using hypermatrices and with
the usual muldplicadon. Second, by wusing wusual matrices with a
hypermultiplication of matrices. The former case requires a special
hyperring and the latter a permanent hyperoperadon. Bcth above

problems are almos:t open. In this paper we mainly deal with the first
problem.

The hyverg-aup in the sense of Marty is the largest cluss of
muldvalued <.wems  chat  sadsfies the group-like axioms: <H,> is a
hypergroup if .: HxH — p(H) is an associative hyperoperation which
satisfies the reproduction axiom hH = Hh = H, for every h of H.

D-hypergroups, cogroups, polygroups, canonical hypergroups,
complete hypergroups, join spaces, €tc. are special classes of the

hypergroup of Marty [1],[2],(4],(6], but also there are some related
hypergroups inmoduced and studied as in [12].

The hyperring in the general sense [10] 1is the largest class of
multivalued systems that satsfies the ring-like axioms : <R,+,.> is a
hyperring in the general sense if <R,+> is a hypergroup of Marty, (.)
is associadve hyperoperation and the distibutive law x(y+z) ¢ Xy+xz,
(x+y)z ¢ xz+yz is satisfied for every x,y,z of R . Additive hyperring
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is the one of which only (+) is a hyperoperation,
multiplicative  hyperring is the one which only () is a
hyperoperation. If the equality in the distributive law is valid then

the hyperring is called swrong or good. The most known class of
hyperrings is the additive hyperring in the sense of Krasner.

In the following we shall use the generalization of the hyperring
by dropping the reproduction axiom: <R,+,.> will be called
semihyperring if (+),(.) are associative hyperoperations where () is
distibudve with respect to (+). The rest definitions are analogous.
We remark that the definidons presending in the following as well the
results on hyperrings are also tue for semihyperrings. Note that in
the definidon of semihyperring we do not require the commutativity
even for the hyperoperatdon (+).

Remark: It is not known yet a general definiion of a hyperfield that
contains all the known classes of hyperfields.

Hypermatrices are called the matrices with enties, elements of a
semihyperring.  The product of two hypermatrices (aij) , (bij) is the
hyperoperatdon given in the usual manner

n

@by = (G = gje | agdy)

k=1

Our problem is the following one: For given hypergroup H, find a
semihyperring R suoch that to have a representadon of H by
hypermatrices with entmies from R. Recall that if MR={(aij):aije 'R},
then a map T:H — MR:h — T(h) is called a representation if

T(h h:) < T(hI)T(hz) for every hl'h?. of H.
We ur= more interested in the case when the good condition

T(h).Thy) = [ T(h): h e hihy } = T(hyh,)
i1s valid for every hl,h2 of H, in which case we con obtain an induced
representadon T  for the hypergroup algebra of H, see [11].

2. THE FUNDAMENTAL EQUIVALENCE RELATIONS
Let <H..> be a hypergroup. The fundamental equivalence relation

%
BH is the transitive closure of the relation BH defined by setting

n
a By b iff 3 xp..x e H: (a,b} ¢ {11 X
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An equivalent definition is the following:

*-*
a b iff 3 x4Xq,.%ch. ... ,h. e H  with x, = a, X, = b,
BH 01 k iy Iy 0 k
and Il,...,lk finite sets of indices such that

1.

(x._l,x.} < . nIh. , =1k
S 0=

The basic property of the fundamental reladon is that it is the
minimum equivalence reladon such that H/B;I is a group, the
fundamental group (see [2],[31,[9)). So, denotng by FH(x) the
fundamental class of the element x , we have the fundamen:al properry:
FH(a).FH(b) = FH(ab) = FH(x)* for every x e ab. The kemel of the
canonical map $H — H/BH is called core and it is denoted by O
if l,uH§=n then H is called n-hypergroup.

Remark The fundamental equivalence reladons on  hypergroupoids,

semihypergroups, hypergroups  etc. can lead us to stricter algebraic
domains from given ones, see [3].

Now let <R,+,> be a hyperring in the general sense and n=0 a
natural number. The n-fundamental relation, denoted by n , is defined
as follows [10]:

(i) ana for every a of R
(i) anb,a=b iff 3 x0=a,x1,...,xk=b e R, and il"“’ike N-{0,1}:

is-l i
n s
M =
(xg.1%) < z (%) o s L.k and x eR.
v=1

The n-fundamental relatdon is an  equivalence reladon and let us
denote bv F n the n-quotient ser and by Fn(x) the n-fundamental class

of x. The 1-fundamental reladon coincides with the fundamental
relagon 8* defined only on the multiplication.
THEOREM 1

The <F @0 is an addidve hyperring where

F ()e F (¥) = (F (2): z « F (X)+F ("}

F n(x)e Fn(y) = {Fn(z): zZe Fn(x).F n(y)} .
Proof
The above hyperoperations are associative, the fundamental property
for the muldplicadon 1is satisfied i.e.F n(x)c: F n(y)=(}'-'n(z)}, Yz € Xy.
The distibudvity is not strong. For a complete proof see [10].
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THEOREM 2

A necessary condition in order to have a representation T of the
hypergroup H by nxn hypermatrices over the hyperring R is the
following:
For any fundamental class Fn(x), x € H, we must have elements a. of
R, i,j=1,..,n  such that

T(FH(x)) < { (aij) : aij € Fn(aij)’ i,j=1,...n }.
Proof See [10].

3. A CLASS OF HYPERMATRICES
Let (G,.) be a group with |G|=n, and { X

g}geG be a disjoint
family of sets indexed of the set G. We set X = U X and we
geG g
consider one more element, the zero element 0, and set X°= Xu{0}. On
X° we define the (hyper)multiplication as follows
0.x=x.0=0 for all x ¢ X°

XX = er for all X, € Xr and X € XS .

This hyperoperation is associative.  The X°  becomes a semihyperring,
sgong dismibudve, with 0O the addidvely absolute scalar idendty
and where the (hyper)addition on the rest clements can be defined in
some ways as the following ones (c.f. [10])

@ x+x={ xr,xs}

(b) x +x = Xruxs for all X, € Xr and X € XS

) x+x=X
THEOREM 3
All the above semihyperrings have

F1= {10} Juf Xg: g¢G) and F= ({0}, X}, n>1 .
Proof
The 0 is not contained in any sum of products with any other element
so F n(O)={0} for every n .

- e "
(7 7

E
One observes that the l-fundamental reladon coincides with the B

reladon on the multiplication (.). Therefore  the 1-fundamental
classes are {0} and the family {Xg}geG .

Now let n>l. We observe that the smallest hyperoperatdon is the case
(@ so it has the smallest equivalence classes. Therefore it is
enough to prove the theorem only in this case.
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If e be the unit element of G we have for all r,s € G and X < Xr,xseXS

{ xr,xs} c Xr‘JXs= Xr+Xs= X et Xre+ X se = XKgtet XX ¢ XX,
n-1 umes n-1 tmes
s So Fn(xr)= Fn(xs)= X . QE.D.

That means that xn x

Remark If G is imbedable in the multiplicative group of a field then

also the additdon can be defined by seting x X = Xr +5 then X

becomes a hyperring. In this case Fn(xr): X X € Xr’ and F rl(())={O}.

Let f1 g — M g be the regular representation of the group G by
nxn  permutation matrices. For every permutaton matrix Mgz(gij) we
consider the set of associated hypermamices

M ={ A= (aij) : aij=0 if gij=0 and aije Xg if gij=1 }

o

X, |

We observe that |[M_| =n =

THEOREM 4 )

The set M = U M, is a hypergroup with respect to the usual
geG °

muldplicaton of hybpermatrices.

Proof

Let rs e G and A=(aij) eM . B=(bij) € gs we have

AB = { C=(cij) : c:ij Ek;aikbkj } = M—rs

because every non zero product of the form aikbkj is equal to X
and the permutation matrix corresponding to the product AB is M

Therefore if A e M ,BeM ,Ce M we have

ABC) = AM) = U AD =M

’ st
DeMy,

?

TS’

Similarly (AB)C = ._\'_Irst , so (.) is associative.

Moreover for all A e M_ we have
AM= UAM = UM = UM =)
geG  ° geG °  geG °

and M.A = M . Therefore <M.> is a hypergroup.

<

Remark *

It 1s obvious that M/ BMI = n . More precisely for all A of Mr we
have Fy,(A) = M. Moreover since AB = M for every A of M_and B of
M, we obtain that <M,> is a complete hypergroup [2].

) ) v+l
We also notice that if |X_|= v = constant then we have [M|=n" .
o
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4. A REPRESENTATION

Let <H,> be a hypergroup with H/B;I be the fundamental group
which we suppose that is of finite order n . Let FH(x) be the
fundamental class of the element x and let hl’""hn be selected
elements of each class. We consider the semihyperring <X°.0,0>
inToduced above where G = Higy , X = Fgh) . i=l..n, so

x°%=H"= Hu{0} . Therefore we actualy have G = { hl""’hn }.
The hyperoperaton o is given by the relatons Oox=xe0=0, for xe H°

and xoy = FH(x).FH(y) = FH(xy) = FH(z), where ze xy and x,ye H.

The hyperoperaton @ is one of the above (a),(b) or (c).

For the group G and the above semihyperring we consider the hypergroup

M of the associated hypermarrices.

We have, if H be finite, |M, |=n and M= } o
i i=1

We consider any map T: H — M such that if FH(x)= FH(hi) we have

T(FH(x)) c Mh.' Then T is a representation of H by hypermarices.
i

Since M is complete it is possible to represent hypergroups with order
greater than |H|. We give such a construction in the following:
Let us consider the maximal k.’s such that

IFH(h)I < n and let k = min {kl’ K

(Fyghp!

).
We consider the union K of the cartesxan products (FH(h )) i.e.
K={k‘1,,k)E(F(h)):1—,,n}
In K we define a hyperoperadon * as follows :
. k k
if (xppeX ) € (Fy(h))™ and (y{-y)) € (FH(hj)) then

(Xlz---,xk)*(yl,---,yk) = (PH(hth))k

It is immediate that any map T: K — M such that

k
T(E)) < My
is a representation of K by hypermatrices.

In the special case for which IFH(hi)|= v for every i then the above
set K is isomorphic to the set
= {(h., XX ) :i=1,...,n  with X X, € FH(hi) }
with hyperproduct
(hi,x1,...,xv)*(hj,y1,...,yv) = {(hihj’z1""’zv):zl""’ZVEFH(hihj)}=
= ( hihj’ FH(hihj)"“’ FH(hihj)) .

n
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5. APPLICATION ON P-HYPERGROUPS

A large class of hypergroups is the following one [7],[8]:
Let (S,) be a demigroup and P < S, P = o . The <SP > is called
P-semihypergroup if the associative P-hyperoperation P’ is defined
by seing xP y = xPy for all xy of S. If <SP > is a hyperzroup
then it is called P-hypergroup. One defines P-hyperoperations on

semihypergroups instead of semigroups as well. So the following
theorem is also true for this case.
THEOREM 5

Let (S,.) be a semigroup, then the P-semihypergroups <S,P*> are
hypergroups iff (S,.) is a group.

Proof

If (S,.) is a group then obviously <S,P*> is a hypergroup.

Now let us suppose that (S,.) is not a group, then we have an element
x of S such that xS ¢ S.

We remark that the greater P-hyperoperation is for P=S, ie. for all
uve S and P<S we have uP*v < uSv. Therefore it is enough to prove
that <S,S*> is not a hypergroup. Let us take an element y ¢ xS and
suppose that the reproducdon axiom is valid for <S,S*> then
y e xS*S = xSS < xS which is a contradicdon. Q.E.D.

We can obtain a representadon (isomorphic) on a class of
P-hypergroups using the constuction given in the above sections 3,4
as follows:

Let ‘{ G for all ge G and (G,.) be a group, then in the above
construcdon |M|~ nn+1 . We consider the cartesian product anl and
we take the set

P = {(g)-ngy) : gnge G ) = (e)x G i
where ¢ be the identity of G. Then in G the P-hypergroup is
defined where the P -hyperoperation P is given by

(881 g)P (88} -2)) = (22')x G,

We consider thc map

n+l
T: G — M (°’°1’ ’°n) — A = (aij)
where A € M_ is such that in the permutaton matix M  we set a.= g

j =1
for all 3= 0. This map ( which is not uniquea) is  obviously

*x
an isomorphic  representation of the  P-hypergroup <Gn+1,P > by
hypermarrices. It is clear that the good condition is valid.
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6. P-HYPEROPERATION ON MATRICES

In this section we use ordinary matrices but we introduce a new
hyperoperadon on them.
DEFINITION

Let men be the set of mxn matrices with entries from a given ring.
*
Let also P = { P eI} < M_ . we can define a P-hyperoperation pt

on M mxn extending the Ree’s multiplication, see [5], as follows
AP'B = AP'B , v AB e M
’ b mxn

where P'= {P§ : ie I} is the set of transpose matrices of the set P.
This hyperoperation is defined always and is obviously associatve.
Therefore < men,Pt*> is a semihypergroup , which we shall call
also P-semihypergroup.
Remark
The set men is not a semigroup for m=n, but this P-hyperoperation is
actually defined on the set of all matrices (for every m and n) where
an associative partal operaton (the multplicaion of matrices) s
defined. Therefore P-hyperoperations can be defined on subsets of
sets equipped with partial associative operations.

Using the P-hyperoperation on the set Mn of square matrices
we can represent all P-hypergroups as follows:

Let (G,.) be a group with |Gl=n and let

'I‘:G—>Mn:g-—--->’['(g)=Mg
be the ordinary representation of G by permutaton martrices and we
set M= {M_:geG ). Let PcG and we consider the P-hypergroup
<GP'> In M_ we take the set | Mj ipe P} =P then the map T is
a representation of the P-hypergroup <G,P > on the set Mn using the
P-hyperoperaton P .
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