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0. Introcuction.

‘When solving polynomial equations by radicals over a field K, one

generzily cannot express the seolutions as raticnal functions of roots cf elements

in K. Forexample, to express the radical \/1 +V1+V2 over Q , cne has

3

to ex:ract roots in 3 steps and no fewer: Q@ C Q (v2) € Q(V1 + \IE) -

=

Q(V1+ V1 + *1-2') (Example 2.1(b) below). Mcre generally, this paper

deals with the question of how many steps are needed to obtain the "total root
closure" of a given domain. Often the number of steps is infinite (Example

2.1(a)). Even though the number of steps is finite for any affine domain, it is
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unbounded in the class of affine domains (Theorem 2.2 and Example 2.1(b)) .

For background and related work, see [BCM], [An], and especially [A],

[All], and the references in all these papers.

1. Preliminares.

We first present some basic conventions, definitions and facts.
Thrcughout this paper, we denote by S a ncnempty subsetof M =(1, 2, 3,...} .
All rings in this paper are commutative with identity.

We assume in this section that A C B are rings. The ring A is called
S-rect closed in B if whenever be B and bl A for some n in S, then
be A. Thering A iscalled S-glogsed in B if whenever be B and bl A for
all nin S,then be A. (See[A, §3, especially Thecrem 3.2]) . These twe
definitions coincide in case S contzins just one element n ; we say in this case
that A is n-root closedin B . In this paper, we will use mainly the first definition.

The smallest subring of B which centains A and is S-reot closed in B

is called the total S-roct closure of A in B and is dencted by RS(A, B) . Thus

QS(A, B) is the intersection of all the subrings of B which contain A and are

=]

S-root closedin B. For 0 <m < =, define ‘R%A, B) inductively as fellows:
Rg(A, B)=A;andfor m>0, anf(A, B) is the subring of B generated by

m-

neS. Thusfor 0<m<os, :qfn(A. B) = 83(1S [A/B).B). Note that if
| m-

7S ((A.B) andthe elements be B such that b e *ﬂrSn 1 (A, B) for some

S C T,then an(A, B)__C_R;;(A, B) forall 0Sm<e. Incase S=N, we delete

reference to S ; so the total root closure means the total N-root closure. |f
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S ={n}, we write Rr:(A, B) rather than ?REQ}(A, B).

Rather than representing the total S-root closure as an intersection, the
following proposition represents it more expiicitly as an ascending union.
PROPOSITION 1.1. Let AC B berings. Then RS(A,B)= _ U RS (A B).

) O0sm<= m
PROOF. Since ’RS(A, B) is S-roct closed in B, we obtain by incuction cn m
that arSn(A, B) . RS(A,B) forall 0<m<e: s0
D:= U RS(A, B)C RS(A, B). Ontheotherhand, let be B and ne S
OsmM<e= m o
suchthat b e D. Thereis aninteger m suchthat bM< ﬂ?n(A, B), so
be Rsm (A, B) . It follows that the ring D is S-root closedin B, so

+1
RS(A, B) € D, and we have equality. ©

o0

Let S be a subset of N . We denote by D(S) the set of all divisors cf
integersin S. The set S will be called divisoriglly closed if S =D(S). Of

ceurse, D(S) is always divisorially closed. Mcreover, it is easy to show that for

all 0<Em<oo, Zﬂg(A, B) = ﬁra(s)(A, B) . However, on the other hand, we

have

EXAMPLE 1.2. Let S and T be two distinct diviserially closed subsets of N .
We can assume that S $ T,andlet re S\T. Let F be a field of characteristic

0,and X anindeterminate over F. Let A=F[XN and B =F[X]. Clearly

R?(A. B) =B . However, X ¢ ‘RT(A, B) . Otherwise, there exisis ge B and

te T suchthat gt e A and the coefficient of X in g is nonzero. If the constant

coefficient of g is nonzero, then X has a nonzero coefficientin gt (since
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char(F) =0),whence X< A and r=1, a contradiction. So we can assume

that the constant coefficient of g is zero, whence Xte A. Hence r is a diviscr

of t and re D(T) =T, a contradiction. It follows that R1S(A, B) = 9T1<A, B).C

Let <{S> be the multiplicative submoncid of M generatedby S (by

cefinition, 1 <S>). Itis easy to see that RS(A, B) = RS$S>(A, B). Thus, A is

(==}

S-roct clcsed in B ifand only if A is <S>-rcctclosedin B.

PRCPOSITION 1.3. Let P be the set of primes which divide socme integerin S.
Then RS(A, B)=®P(A B).

(=~

PROOQF. Evidently, <D(S)> = <P> . Hence RS(A, B) = RD(S)(A, B) =
R<D(SP (A, B)=R<P>(A, B)=RP(A,B). ©

o0 [~ =]

EXAMPLE 1.4. Let P and Q be two distinct sets of primes in N . Assume that
F&EQ. InExample 1.2 above, take S=P and T=Q. We have, icrall

0<m<w,B=RPA B)=RQA B) . o

o oo

If A is a domain with quotient field Q(A), the S-total root closure ¢f A is
defined as ®S(A, Q(A)) , and denoted by RS(A) . Similarly, define ‘R%A) ior

al 0Sm<e. Also, Rp(A) means ‘RrI:I(A, Q(A)) ; and a roct closed domain

means as usual a domain which is root closed in its quotient field.
We now return to the general case of rings. The transitivity of the S-rcct

closure is straightforward. More precisely, we have the following easy
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PROPOSITION 1.5. Let AC B € C be rings such that B is S-root clcsed in C.

Then A is S-root closedin B if and only if A is S-root closedin C.

Similarly, we have

PROPOSITION 1.6. Let AC B C C berings suchthat B is S-clcsedin C.

Then A is S-closedin B ifandenlyif A is S-closedin C.

THEOREM 1.7. Let A and B be rings with a commonideal |. Then A is
S-rcot closed in B if and only if A/l is S-roct closed in B/l . Moreover, if

v: B — B/l is the cancnical hcmomorphism and 0 £ m <, then

2S(A, B) = v-1(RS(A/, B/Y) .
m m

PROQOF. The thecrem follows frcm the fact thatfor be B and ne N ,bll e A if
andenlyif b+NNe Al . C

In particular, let F be a field, D asubringof F, B aring containing F,
and | aprcperidealof B. Then D +1 is S-roctclosedin F +1 ifand onlyif D
is S-roct closed in F. (This follows from Thecrem 1.7 since we have canonical
isomorphisms (F+1)/1=F and (D +1)/1=D.) If we assume in additionthat 1=0
and F + | is an S-rcot clesed domain, then D + 1 is S-root closed if and only if
D is S-roct closed in F. Indeed, let K be the quotient field of F +1 (and also
of D+1,since |=0). Then by Proposition 1.5 and Theorem 1.7, D +1 is

S-root closed (in K) & D +1 is S-root closedin F +1 < D is S-root closed in
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F . This generalizes [A, Lemma 2.1(c)] .
For further applications of Theorem 1.7, let A £ B be given rings. Then

by Theorem 1.7, forall 0 <m <=, we have 'ﬁsngA + XB[X], B[X]) =

H?n(A, B) + XB[X] . In particular, let A=F and B =K be fields. Thus by
Propasition 1.5 and Thecrem 1.7, fRSngF + XK[X]) = H?n(F + XK[X], K(X))

= Hﬁ(F + XK[X], K[X]) = ﬂ%(F, K) + XK[X] . This enables us to obtain
examples regarding Hi(D) for a domain D using constructions of the type
H?n(F, K) ,where F and K are fields. (Instead of the polynomial extension
B[X], one can also use the power series extensicn B[[X]] .)

As a further illustraticn of Thecrem 1.7, applying the previously described

method to Example 1.2, one obtains a domain D such that fR?(D) = SRT{(D) A

similar remark holds for Example 1.4.

By analogy with Theorem 1.7, we have

THEOREM 1.8. Let A and B be rings with acommon ideal |. Then A is
S-closedin B if and only if A/l is S-clesedin B/l.

We recall (cf. Swan [S]) that a domain A is semingrmal if and only if it is
{2, 3}-closed in its quotient field. Note thatif x is an elementin an extension
domain of A such that x2 and x3 arein A, then x e Q(A). (Indeed,if x=0,
then x = x3/x2 e Q(A).)

Using Theorem 1.8 and Proposition 1.8, we obtain:
COROLLARY 1.9. Let A C B be domains with a common nonzeroideal | B .

If A/l is {2,3}-closedin B/l and B is seminormal, then A is seminormal.
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COROLLARY 1.10. If D1 € Do are seminormal domains, then the domains
D4 + XD2[X] and D4 + XDo[[X]] are also seminormal.

PROOF. D4 is seminormal in (i.e., {2, 3}-closed in) Do, by the above remarks.
For the first assertion, apply Corollary 1.9, with A =Dq + XD2[X], B = D5[X] and
I = XDo[X]. (One also needs the fact that the pclynomial ring and the power
series ring over a seminormal domain are semincrmal: cf. [BCM], [BEN].)

Similarly, use A=D1 + XDp[[X]] forthe second remark.a

The preceding corollary can be generalized to any number of variables.

2. The number of stens for the total root closyrse.

EXAMPLE 2.1. (a) A quasilocal one-dimensional seminormal domain A such

that forall 0 <m< e, Rp(A) CRm.1(A) . Moreover, for every finite m, Rm(A)
Is generated as an A-algebra by one element.
(b) For each positive integer m , a quasilccal (resp., affine) one-

cimensicnal seminormal domain A such that

A =Rg(A) C Ry(A) g ,E Rm(A) = Ro(A) ; i.e., the total root closure of A is

obtained in exactly m steps. Moreover, R(A) is generated as an A-algebra by

cne element.

(@) Define inductively a sequence (vp) of positive real numbers: vg = 1
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andfer n>0, vo=-N+v_ ..

Q(vg) £ Q(vq) C ... Set K= Q(vg, v1,...) .

Clearly Vo> 1 fcr n21 and

We prove by inductionon n21 that vqe Q(vp-1) . Thisis evident fcr

n=1 since V2 isirrational. Now suppcse, as induction hypothesis, that

vn € Q(vn.t) forseme n=1. Then N@(Vn)/@(vn ) (V§+1)

= N@(Vn)/@(vn » (1 +vp) =(1 +vp)(1-vp) =-vp.1 is negative, and sc cannct ce 2

square cfan elementin Q(vp) € R . Thus vpe1 2 Q(vp), completing the
induction step.

Next, we show for n>1 thatif y e Q(vp)\Q(vp-1) has some pcwer in
G(vp-1) ,then v=Dbvpy with be Q(vp-1). Put F=Q(vp.1) and v=vy. Write
y =a +bv forsuitable a,be F,with b=0. Without loss of generality, a=92 ; put
c=ba"'!. By hypothesis, (1 +cv)ke F for scme integer k> 1. Since

v2 e F, the binomial expansion leadsto I  (K) (cv)ie F. As v factors cut
icdd !
1<K

of each term in the sum, and we know (by the previous paragraph) that ve F, we

H

have I (X)civi-1=0. Aseach vi-1>0 (since i-1 is even)and all the ccd
i ccd !
1<i<K

powers cf ¢ have the same sign, we have ¢i=0,andso c=0,the desired

contradicien.

Next, we prove by induction on n2>1 that vp_4 v% is nct the square ¢f an

elementin Q(vp.1). Thisisimmediate incase n=1. If vp vfm =re fcr scme

r< Q(vn) . then Nog ya(y, ) Vnv2 ) = (v3)(vno1) = vp-1v2

= (N@(Vn)/@(vn 1)(r))-2 , contrary to induction hypothesis.
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Finally, we proceed to show that R m(Q, K) = Q(vm) forall 0<m <,

This is clear for m =0 . Prcceed by induction on. m, supposing that Eq(Q, K) =

Qvm) . As vﬁ_m e Q(vmp), we have Q(Vm41) € Rms1(Q, K). Conversely,

suppose y = K has some powerin Rm(Q, K) = Q(vp) . Choose n minimal so
that y € Q(vp) and, withcut loss of generality, n>m +1. Since m<n-2,scme
power cf y isin Q(vp.2). As shown two paragraphs earlier, this leads to y = bvpy
fcr some b e Q(vp.1). Thus some power of b2 v% isin Q(vp.o) . ltiseasyto
show that b2 v% g Q(vp.2) unless b=0. So we can assume that b2 vﬁ =CVn.1
for some ¢ e Q(vp.2) . Applying N = Ngq(y LNV ) We have N(v% V1) =
N(co-2 vﬁ_‘l) is the square of an element in Q(vp.o) . However, N(vznvm) =

Vn.o v?ﬂ , which we showed above is not the square ofan element inQ(vp.2) .
This (desired) contradicticn completes the induction step, and completes the preof

that Rm(Q, K) = Q(vp) forall 0<m<ee.

Defire A=Q + XK[[X]]. By Theorem 1.7 we have fcrall 0<sm <,
Rm(A) = G(vm) + XK[[X]] ; so Rm(A) C Rmqt (A) , as claimed. By Corollary 1.10,

A is seminormal. Clearly A satisfies all the stated requirements.

(b) Modify the proof of (a), using K= Q(vm) and A= Q + XQ{vm)([X]]
(resp., A=Q + XQ(vm)(X]) . O

Forany giveninteger d22, let Yq,..., Yd-1 be independent
indeterminates over afield K. Let T (resp., T') be the complement of the ideal

(Y1,... Yg-1) in Q[Yq,...,Yg-1] (resp., K[Y1,..., Yd-1]) . Inthe preceding



David F. Anderson* and David E. Dobbs and Moshe Roitman**

example, we may replace A by GQ[Y1,..., Yg-1]T + XK[X, Y1,..., Yg-1]T in orcerto
cbtain an example with Krull dimension d.

We next show that no ring of the kind in Example 2.1(a) can be affine. More
precisely, the total root closure of any Noetherian domain with finite ncrmalization

is attained in finitely many steps.

THEOREM 2.2. Let A be a Noetherian domain such that RS(A) is a finitely

o

generated A-module. Then RS(A) = ﬂg(A) for some finite m .

PROOF. RS(A) is a Noetherian A-module. Hence the chain of submodules

A= :qg(A, B)C H?(A, B) ‘Hg(A, B) C ... stabilizes. Apply Propesiticn 1.1.

Let A be a Noetherian domain. The A-mcdule HS(A) is finitely generated

in case the integral closure of A (in its quotient field) is finitely generated. This
holds fer a large class cf domains; see e.g. [M, Ch. 12] . In particular, this holds for
affine domains.

The case in which the Noetherian domain A is local and cne-dimensional
is of special interest. If such A is seminormal, then its integral closure is A-finite.
(See [BGR] for more general results.) Thus, by Theorem 2.2, the total roct clesure
of A is obtainable in finitely many steps .

In general, the integral closure of a Ncetherian domain need not be finitely
generated; the first example of this is due to Y. Akizuki. (See also the examples in
[GL] and the references there.) In view of these examples, we conjecture that the

total root closure of a Noetherian domain A need not be obtainable in finitely

10
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many steps, evenif A islccal and one-dimensional.
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