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ROOT CLOSURE IN COMMUTATIVE RINGS

David F. Anderson* and David E. Dobbs

University of Tennessee

Knoxville, Tennessee 37996-1300, U.S.A.

Moshe Roitman**

University of Haifa

Mount Carmel, Haifa 31999, ISRAEL

0. Introduction.

’Nhen solving polynomial equations by radicals over a field K , one

generaity cannot express the solutions as rational functions of roots of elements

in K . For example, to express the radical ~ 1 + 1 + ~12 over Q , one has

to extract roots in 3 steps and no fewer: 1

(Example 2.1 (b) below). More generally, this paper

deals with the question of how many steps are needed to obtain the "total root

closure" of a given domain. Often the number of steps is infinite (Example

2.1 (a)). Even though the number of steps is finiie for any affine domain, it is

*D.F. Anaerson was supported in part by a National Security Agency grant.
**M. Roitman thanks the University of Tennessee at Knoxville for its hospitality
during his visit in August 1989.



2

unbounded in the class of affine domains (Theorem 2.2 and Example 2.1 (b)) .

For background and related work, see [BCM], [An], and especially [A],

[All], and the references in all these papers.

1. Preliminaries.

We first present some basic conventions, definitions and facts.

Throughout this paper, we denote by S a nonempty subset oT ~ _ {~ , 2, 3,...} .

All rings in this paper are commutative with identity.

We assume in this sec;ion that A c B are rings. The ring A is called

S-ro in B if whenever b E B and bn e A for some n in S , then

b c- A. The ring A is called in B if whenever b ~ B and E A for

all n in S , then b E A . (See [A, §3, especially Theorem 3.2]) . These two

definitions coincide in case S contains just one element n ; we say in this case

that A is n-root cfos2 in B . In this paper, we will use mainly the first definition.

The smallest subring of B which contains A and is S-root closed in B

is called the total S-root closure of A in B and is denoted Thus

A S(A, B) is the intersection of all the subrings of B which contain A and are
oo

S-root closed in B . For 0 :S; m  00 define A S(A, B) induc:ively as follows:
m

R S(A, B) = A ; and for m &#x3E; 0 , ~ S(A, B) is the subring of B generated by
0 m

~ S (A, B) and the elements b E B such that bn e RS (A, B) for some
m-1 m-1

n E S . Thus for A, B), B) . Note that if
m i ~ m-1 

(

S c T , then RS(A, B) c RT (A, B) for all 0 _ m:5 .. In case S = fii , we delete
m m

reference to S ; so the tolal root closure means the total N-root closure. If



3

S = {n} , we write R n(A, B) rather 8) .
m m 

)

Rather than representing the total S-root closure as an intersection, the

following proposition represents it more explicitly as an ascending union.

PROPOSITlON 1.1. Let A £ B be rings. Then RS(A, B) = U R S (A, B)
, 0 :5m. m

PROOF. Since A S(A, B) is S-roct closed in B , we obtain by induc;ion on m
oo

that A S(A, B) B) for all 0::; m  00; so
m -

D: = U R S(A, B c R S(A, B). On the other hand, let B and n e S
m ) ( )

such that bn e D . There is an integer m such that B) , so
m

be RS (A, 8) . It follows that the ring D is S-root closed in B , so
m+1

R S(A, B) c D , and we have equality. c
coo

Let S be a subset of N . We denote by D(S) the set of all divisors of

integers in S . The set S will be called divisorially closed if S = D(S) . Of

course, D(S) is always divisorially closed. Moreover, it is easy to show that for

all However, on the other hand, we
m m

have

EXAMPLE 1.2. Let S and T be two distinct divisonally closed subsets of N .

We can assume that S T , and let r E 8BT. Let F be a field of characteristic

0 , and X an indeterminate over F. Let A = FrXg and B = F[X . Clearly

A S(A, B) = B . However, B) . Otherwise, there exists g E B and
1 1

t e T such that gt E A and the coefficient of X in g is nonzero. If the constant

coefficient of g is nonzero, then X has a nonzero coefficient in gt (since
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char(F) = 0) , whence X E A and r = 1 , a contradiction. So we can assume

that the constant coefficient of g is zero, whence Xt E A . Hence r is a diviscr

of t and r E D(T) = T , a contradiction. It follows that RS(A, E3) # R T(A, B), 0
1 1

Let S&#x3E; be the multiplicative submoncid of M generated by S (by

definition. 1 E 8»). It is easy to see that A S(A, B) = B). Thus, A is
oo 00

S-root dosed in B if and only if A is closed in B .

PROPOSITION 1.3. Let P be the set of primes which divide some integer in S.

PROOF. Evidentty, 0(8) = P) . Hence RS(A, B) = RD(S)(A, B) =
oo 00

EXAMPLE 1.4. Let P and Q be two distinct sets of pnmes in M . Assume that

P _4-- Q . In Example 1.2 above, take S = P and T = Q . We have, fcr all

If A is a domain with quotient field Q(A) , the S-total root closure of A is

defined and denoted by RS(A) . Similarly, define RS(A) for
oo oo m

all means and a root closed domain
m

means as usual a domain which is root closed in its quotient field.

We now return to the general case of rings. The transitivity of the 

closure is straightforward. More precisely, we have the following easy
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PROPOSITION 1.5. Let A C B C C be rings such that B is S-root closed in C.

Then A is S-root closed in B if and only if A is S-root closed in C .

Similarly, we have

PROPOSITION 1.6. Let A C 8 C C be rings such that B is S-c;csed in C .

Then A is S-dosed in B if and only if A is S-dosed in C .

THEOREM 1.7. Let A and B be rings with a common ideal 1. . Then A is

S-root closed in B if and only if All is S-roct c!osed in B/I. Moreover, if

v: B -~ Bil is the canonical homomorphism and 0 ~ m s 00 , then

PROOF. The thecrem follows from the fact that fcr b E B and n EM, b-" e A if

and only if (b A/I . c

In particular, let F be a field, D a subring of F , B a ring containing F ,

and I a proper ideal of B , Then D + I is S-root closed in F + I if and only if D

is S-roct closed in F . (This follows from Theorem 1.7 since we have canonical

isomorphisms (F + 1)/l = F and (D + 1)/l =- D .) If we assume in addition that ?= 0

and F + I is an S-rcot closed domain, then D + I is S-root closed if and only if

D is S-root closed in F . Indeed, let K be the quotient field of F + I (and also

of D + I , since 1 * 0~ . Then by Proposition 1.5 and Theorem 1.7, D + I is

’ 

S-root closed (in K) « D + I is S-root closed in F + I a D is S-root closed in
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F . This generalizes [A, Lemma 2.1(c)].

For further applications of Theorem 1.7, let A C B be given rings. Then

by Theorem 1.7, for all 0  m  oo , we have RS(A + XB[X], B[X]) =
m

A S(A, B) + XB[X . In particular, let A = F and B = K be fields. Thus by
m

Proposition 1.5 and Theorem 1.7, ~ S(F + XK[X]) = R S(F + XK[X], K(X))
m m

+ XK[X], K[X]) = R S(F, K) + XK[X] . This enables us to obtain
m m

examples regarding R S(D) for a domain D using constructions of the type
m

RS(F, K) , where F and K are fields. (Instead of the polynomial extension
m

B(Xl , one can also use the power series extension B[[XI]
As a further illustraticn of Theorem 1.7, applying the previously described

method to Example 1.2, one obtains a domain D such A
1 1 

()

similar remark holds for Example 1.4.

By analogy with Theorem 1.7, we have

THEOREM 1.8. Let A and B be rings with a common ideal I . Then A is

S-closed in B if and only if All is S-closed in E/I .

We recall (cf. Swan [S]) that a domain A is seminormal. if and only if it is

{2, 31-closed in its quotient field. Note that if x is an element in an extension

domain of A such that x2 and x3 are in A , then x E Q(A) . (indeed, if x r 0 ,

then x = x3/x2 E Q(A).)

Using Theorem 1.8 and Proposition 1.6, we obtain:

COROLLARY 1.9. Let A c B be domains with a common nonzero ideal I = B .

If All is {2,3}-closed in B/I and B is seminormal, then A is seminormal.
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COROLLARY 1.10. If Dl c D2 are seminormal domains, then the domains

Dl + XD2[XI and °1 + are also seminormal.

PROOF. 01 is seminormal in (i.e., {2, 31-closed in) D2 , by the above remarks.

For the first assertion, apply Corollary 1.9, with A = Dl + B = D2[Xl and

I = XD2(X]. (One also needs the fact that the polynomial ring and the power

senes ring over a seminormal domain are semincrmal: cf. [BCM], [8N].)

Similarly, use A = °1 + for the second remark.o

The preceding corollary can be generalized to any number of variables.

2. Th number f steos for the total root closure. 
°

EXAMPLE 2.1. (a) A quasilocal one-dimensional seminormal domain A suel1

that for all 0 S m  00, R m(A) g R m+1 (A) . Moreover, for every finite m , R m(A)
#

is generated as an A-algebra by one element.

(b) For each positive integer m , a quasilocal (resp., affine) one-

dimensional seminormal domain A such that

A = RO(A) c R1 (A) c ... c Rm(A) = i. e., the total root closure of A is
# # #

obtained in exactly m steps. Moreover, Roo(A) is generated as an A-algebra by

one element.

(a) Define inductively a sequence (vn) of positive real numbers: vo = 1
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and fcr n &#x3E; 0 , v n = -/1 + v . Clearly v n &#x3E; 1 and

We prove by induction on n ~ 1 that vn e (Q(vn-1) . This is evident for

n = 1 since V2- is irrational. Now suppose, as induction hypothesis, that

Vn e «’/n-i&#x3E; for some n&#x3E;1. Then 
n n-1 n+1

is negative, and so cannet be a

square of an element in C(vn) Thus vn+ 1 e completing the

induc;ion step.

Next, we show for n~1 that if has some pCwer in

ü(vn-Î) , then v = b vn with b E tQ(vn-1). Put F = a)(vn-1) and v = vn . W,.4..i.=

y = a + bv for suitabie a, b e F , with b 0 . Without loss of generality, a = 0 ; put L

By hypothesis, (1 + cv)k E F for some integer k~1 . Since

v2 E F , the binomial expansion leads to I (k) (cv)I « F . As v factors cut
i ccd I

1ik

of each term in the sum, and we know (by the previous paragraph) that v e 

have . As each vi-1 &#x3E; 0 (since i -1 is even) and all the odd

powers of c have the same sign, we have ci = 0 , and so c = 0 , the desired

co ntradic;o n.

Next, we prove by induction on n 2= 1 that vn_1 v2 is not the square or an
n

e!ement in Q(vn-1). This is immediate in case n = 1 . If vn v2 = r2 fcr see
n+1

, contrary to induction hypothesis.
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Finally, we proceed to show that R m(Q, K) = for all 0 _ m  00 .

This is clear for m = 0 . Proceed by induction on. m , supposing that K) =

Conversely,

suppose y * K has some power in Choose n minimal so

that Y s Q (vn) and, without loss of generality, n &#x3E; m + 1 . Since m ~ n - 2 , some

power of y is in G(vn.2) . As shown two paragraphs eariier, this leads to y = bvn

for some be (Q(vn-1) . Thus some power of b2 v2 is in G(vn-2) - It is easy to
n

show that unless b=0. So we can assume that b2 v2 = C ’In-1
n n

for some c E Q(vn-2). Applying N = N(Q(v n-l)/(D(vn-2 ) we have 
is the square of an element in (Q(vn-2) . However, 

n-t n

Vn-2 v’2 which we showed above is not the square of an. element 
n-1

This (desired) contradiction completes the induction step, and completes the proof

that for all 0~mo~

Define A = Q + XK[[X]]. By Theorem 1.7 we have fcr all 0 ~ m  - ,

, as claimed. By Coroitary 1.10,

A is s2minormai. Clearly A satisfies all the stated requirements.

(b) Modify the proof of (a), using and A = Q + 

For any given integer d &#x3E;_ 2 , let Y1,..., Yd,i be independent

indeterminates over a field K . Let T (resp., T) be the complement of the ideal

) . In the preceding
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example, we may repiace A by in order to

obtain an example with Krull dimension d .

We next show that no ring of the kind in Example 2.1 (a) can be affine. More

precisely, the total root closure of any Noetherian domain with finite normalization

is attained in finitely many steps.

THEOREM 2.2. Let A be a Noetherian domain such that RS(A) is a finiteiy
oo

generated A-module. Then A S(A) = R S(A) fcr some finite m .
- m

is a Noetherian A-module. Hence the chain of submodules
oo

. stabiiizes. Apply Proposition 1.1. c

Let A be a Noetherian domain. The A-mcdule RS(A) is finitely generated
om

in case the integral ciosure of A (in its quotient field) is finitely generated. This

hoids for a large class of domains; see e.g. [M, Ch. 12]. In particular, this holds for

affine domains.

The case in which the Noetherian domain A is local and one-dimensionaf

is of spec:at interest. If such A is seminormal, then its integral ciosure is A-finite.

(See [BGRI for more general results.) Thus, by Theorem 2.2, the total roct closure

of A is obtainable in finitely many steps .

In general, the integral closure of a Ncetherian domain need not be finitely

generated: the first example of this is due to Y. Akizuki. (See also the examples in

[GL] and the references there.) In view of these examples, we conjecture that the

total root ciosure of a Noetherian domain A need not be obtainable in finitely
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many steps, even if A is local and one-dimensional.
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