Annales scientifiques de l'Université de Clermont-Ferrand 2 Série Mathématiques

R. BERTHUET

Loi du logarithme itère pour certaines intégrales stochastiques

Annales scientifiques de l'Université de Clermont-Ferrand 2, tome 69, série Mathématiques, n° 19 (1981), p. 9-18

http://www.numdam.org/item?id=ASCFM 1981 69 19 9 0>

© Université de Clermont-Ferrand 2, 1981, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'Université de Clermont-Ferrand 2 » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

LOI DU LOGARITHME ITERE POUR CERTAINES INTEGRALES STOCHASTIQUES

R. BERTHUET

Université de Clermont-Ferrand II

Nous remercions particulièrement M. YOR pour ses remarques, G. FOURT pour les nombreuses discussions fructueuses que nous avons eues et D. COURAGEOT pour le soin porté à la mise en page de cette note.

Etant donné un mouvement brownien $(X_t, Y_t)_{t \geq 0}$ à valeurs dans \mathbb{R}^2 , issu de 0, on considère les processus définis par $U_t = \int_0^t X_s dY_s, V_t = \int_0^t X_s dX_s$. On se propose d'établir un loi du logarithme itéré pour les processus $(\alpha U_t + \beta V_t)_{t \geq 0}$, α, β réels, à savoir :

- (1) $l(\alpha,\beta) = \lim_{n \to \infty} \sup_{t \to \infty} |\alpha U_t + \beta V_t| / t \log_2 t = |\alpha-\beta| / Arc \cos(2\alpha\beta/\alpha^2 + \beta^2)$ Ce résultat est déjà établi dans le cas :
- i) $\alpha = \beta = 1$, la formule d'Itô donnant $U_t + V_t = X_t Y_t$ on a l(1,1) = 1 ((1) donnant le résultat par continuité).
- ii) α = β = 1 on a l(1,-1) = 2/ Π , le processus (U $_t$ V $_t$) $_t$ $_t$ jouant un rôle important pour le groupe d'Heisenberg [3], [4].

La méthode suivie est celle utilisée classiquement [1] pour le Mouve, ment Brownien, ce qui suppose l'établissement de quatre lemmes préliminaires. Dans toute la suite, nous poserons $Z_t = \alpha U_t + \beta V_t$.

I. Quelques remarques évidentes

1. Compte-tenu des propriétés du mouvement brownien :

$$Z_t / t = Z_1$$
 et Z_t symétrique

2. De par la définition de l'intégrale d'Itô [2], si on pose :

$$T_{n} = \alpha \sum_{k=1}^{n-1} X_{k/n} (Y_{k+1/n} - Y_{k/n}) + \beta \sum_{k=1}^{n-1} Y_{k/n} (X_{k+1/n} - X_{k/n})$$

$$= \sum_{k=1}^{n} [\alpha X_{k-1/n} + \beta (X_{1} - X_{k/n})] [Y_{k/n} - Y_{k-1/n}]$$

la suite (T_n , $n \ge 1$) converge en probabilité et donc en loi vers Z_1 .

3. Si pour tout processus $(X_t, t \ge 0)$, on pose $\theta(s, X_t) = X_{t+s} - X_s$ on a la décomposition $\theta(s,Z_t) = \theta(s,Z_t) + \alpha X_s \theta(s,Y_t) + \beta Y_s \theta(s,X_t)$ avec $\theta(s, Z_t) = \alpha \int_0^t \theta(s, X_u) d\theta(s, Y_u) + \beta \int_0^t \theta(s, Y_u) d\theta(s, X_u)$

$$= \alpha \theta(s, U_t) + \beta\theta(s, V_t)$$

 $\theta(s,Z_t)$ étant indépendant de $(Z_u,u\leq s)$ et ayant même loi que $Z_t.$

II. Quelques remarques sur le processus $\xi_t = (X_t, Y_t, U_t, V_t)$ à valeurs dans \mathbb{R}^4 .

(ξ_{t} , $t \ge 0$) est un processus de diffusion de dérive nulle et de matri-

$$a(x,t) = \begin{pmatrix} 1 & 0 & 0 & x_2 \\ 0 & 1 & x_1 & 0 \\ 0 & x_1 & x_1^2 & 0 \\ x_2 & 0 & 0 & x_2^2 \end{pmatrix}$$
 (il possède donc la propriété de Feller et, en particulier, de Markov fort)
$$(x = (x_1, x_2, x_3, x_4)).$$

$$(x = (x_1, x_2, x_3, x_4)).$$

Les probabilités de transition sont telles que :

Pour la première assertion, il suffit de remarquer que $(\xi_t, t \ge 0)$ est solution de l'équation différentiel stochastique

avec
$$\sigma(x,t) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & x_1 \\ x_2 & 0 \end{pmatrix}$$

$$W_t = \begin{pmatrix} X_t \\ Y_t \end{pmatrix}$$

d'où le résultat [2] avec $a(x,t) = \sigma(x,t) \sigma^*(x,t)$.

Compte-tenu de la remarque 3, on a :

$$\theta(s,\xi_{t}) = \theta(s,X_{t},Y_{t},U_{t},V_{t}) + (0,0,X_{s},\theta(s,Y_{t}),Y_{s},\theta(s,X_{t}))$$

$$\theta(s,\xi_{t}) = \theta(s,X_{t},Y_{t},U_{t},V_{t}) + (0,0,X_{s},\theta(s,Y_{t}),Y_{s},\theta(s,X_{t}))$$

$$\theta(s,\xi_{t}) = \theta(s,X_{t},Y_{t},U_{t},V_{t}) + (0,0,X_{s},\theta(s,Y_{t}),Y_{s},\theta(s,X_{t}))$$

ce qui implique, pour toute fonction f acceptable, la relation (2) ou

$$\mathsf{E}(\mathsf{f}(\xi_{\mathsf{t+s}}) \mid \xi_{\mathsf{s}} = \mathsf{x}) = \mathsf{E}\left[\mathsf{fo}\,\Psi(\mathsf{x},\,\theta(\mathsf{s},\,\xi_{\mathsf{t}}))\right] = \mathsf{E}\left[\mathsf{fo}\,\Psi(\mathsf{x},\,\xi_{\mathsf{t}})\right].$$

LEMME 2 (lemme maximal)

$$\forall t \ge 0 \qquad \forall z \ge 0 \qquad P(\max_{s \le t} Z_s \ge z) = 2 P(Z_t \ge z).$$

Montrons d'abord la "propriété de l'Image".

Soit τ_b = inf $\{t/Z_t = b\}$,(Z_t , $t \ge 0$) étant continu, τ_b est un t.a. relativement à celui-ci et, par conséquent, au processus (ξ_t , $t \ge 0$). Compte-tenu du lemme 1 : propriété de Markov fort et relation (2), on peut écrire :

$$P(2b - Z_{t+\tau_{b}} \in B) = \iint_{\{\alpha y_{3} + \beta y_{4} \in 2b - B\}}^{(y)} dP_{t+\tau_{b}, \tau_{b}}^{(y)} dP_{\xi_{\tau_{b}}}^{(x)}$$

$$= \iint_{\{\alpha y_{3} + \beta y_{4} + \alpha x_{1} y_{2} + \beta x_{2} y_{1} \in b - B\}}^{(x,y)} dP_{t,0}^{(y)} dP_{\xi_{\tau_{b}}}^{(x)}$$

(P $_{\rm Z_{\rm T_h}}$ étant une mesure de Dirac en b).

Comme ξ_t et $\xi'_t = (-X_t, Y_t, -V_t, -V_t)$ ont même loi et que Z_t est symétrique, on a:

on a:

$$P(2b-Z_{t+\tau_b} \in B) = \iint_{\{\alpha y_3 + \beta y_4 + \alpha x_1 y_2 + \beta x_2 y_1 \in B-b\}} (x,y) dP_{\xi_{\tau_b}} (x)$$

$$= P(Z_{t+\tau_b} \in B) \quad \text{(en remontant)}.$$

Pour achever la preuve, il suffit de façon classique de considérer :

$$\begin{split} Z_{t}' &= \begin{cases} Z_{t} = & Z_{t} \text{ si } t \leq T_{b} \\ 2b - Z_{t} & \text{ si } t > T_{b} \end{cases} & \sigma_{b} = \inf \{ t / Z_{t}' = b \} = T_{b} \end{split}$$

$$P[\underset{s \leq t}{\text{Max}} Z_{s} \geq b] = P[Z_{t} \geq b] + P[\underset{s \leq t}{\text{Max}} Z_{s} \geq b, Z_{t} < b]$$

$$= P[Z_{t} \geq b] + P[\tau_{b} < t, Z_{t} < b]$$

$$= P[Z_{t} \geq b] + P[\sigma_{b} < t, Z_{t}' < b]$$

$$= P[Z_{t} \geq b] + P[\underset{s \leq t}{\text{Max}} Z_{s} \geq b, Z_{t}' > b] = 2P[Z_{t} \geq b]$$

III. Comportement asymptotique de la fonction de répartition de Z_1

LEMME 3

La fonction caractéristique Ψ de Z $_1$ est donnée par :

$$\Psi(t) = \begin{cases} \left[ch^2 \left(\frac{\alpha - \beta}{2} t \right) + \frac{(\alpha + \beta)^2}{(\alpha - \beta)^2} & sh^2 \left(\frac{\alpha - \beta}{2} t \right) \right]^{-1/2} & si \alpha \neq \beta \\ \left[1 + \alpha^2 t^2 \right]^{-1/2} & si \alpha = \beta \end{cases}$$

Compte-tenu de la remarque 2, nous allons étudier la suite (\P_n , $n \ge 1$) des fonctions caractéristiques des v.a. T_n .

Les v.a. $(Y_{k/n} - Y_{k-1/n})_{1 \le k \le n}$ étant indépendantes et ayant même loi que $Y_{1/n}$, on a :

$$\Psi_{n}(t) = (\frac{n}{2\pi})^{n} \int_{\mathbb{R}^{2n}} \exp \left[it \sum_{k=1}^{n} \left[\alpha x_{k-1} + \beta (x_{n} - x_{k}) \right] y_{k} - \frac{n}{2} \sum_{k=1}^{n} y_{k}^{2} - \frac{n}{2} \sum_{k=1}^{n} y_{k}^{2} \right]$$

avec la convention $X_{\Omega} = 0$ et :

correspondent à la loi de X = $(X_{k/n}, 1 \le k \le n)$

$$d'où \mathbf{Y}_{n}(t) = (\frac{n}{2\pi})^{n/2} \int_{\mathbb{R}^{n}} \exp \left(-\frac{n}{2} \left[^{t} XNX + \frac{t^{2}}{n^{2}} \sum_{k=1}^{n} \left[\alpha x_{k-1} + \beta(x_{n} - x_{k})\right]^{2}\right] dX$$

$$= (\frac{n}{2\pi})^{n/2} \int_{\mathbb{R}^{n}} \exp \left(-\frac{n}{2} t^{t} XMX\right) dX$$

soit
$$1/\sqrt[4]{n}(t) = \Delta = \det(M)$$

Un calcul élémentaire donne en développant suivant la première ligne : (l'indice k notant la dimension)

$$\Delta_{k} = a \Delta_{k-1} - b^{2} \Delta_{k-2} + (-1)^{k-1} bc (E_{k-2} + F_{k-2}) - c^{2} A_{k-2} avec \Delta_{0} = 1, \Delta_{1} = e$$

$$E_{k-2} = b E_{k-3} + (-1)^{k-3} c A_{k-3}$$
 avec $E_{0} = 1$ $E_{1} = d$

$$F_{k-2} = b F_{k-3} + (-1)^{k-3} c A_{k-3}$$
 avec $F_{0} = 1$ $F_{1} = d$

$$A_{k-2} = a A_{k-3} - b^{2} A_{k-4}$$
 avec $A_{0} = 1$ $A_{1} = a$

avec si A_{k-2} est la matrice obtenue en enlevant la première et dernière ligne et colonne de M_k

$$E_{k=1} = \begin{bmatrix} b & b & c & c \\ A_{k-2} & \vdots & \vdots & \vdots \\ A_{k-2} & c & \vdots \\ C & C & C & C \end{bmatrix}$$

En notant r_1 et r_2 les racines de r^2 - ar + b^2 ($r_1 > r_2$, $\alpha \neq \beta$)on obtient successivement :

$$A_{k} = (r_{1}^{k+1} - r_{2}^{k+1})/(r_{1} - r_{2})$$

$$E_{k} = F_{k} = b^{k}(1 + \frac{c}{a+2b}) + \frac{c}{r_{1} - r_{2}} \left[\frac{(-r_{1})^{k+1}}{b+r_{1}} - \frac{(-r_{2})^{k+1}}{b+r_{2}} \right]$$

$$(r_{1} - r_{2})\Delta_{k} = \lambda(r_{1}, r_{2}) r_{1}^{k} - \lambda(r_{2}, r_{1}) r_{2}^{k} + \mu(-b)^{k}$$

avec
$$\begin{cases} \lambda(r_1, r_2) = e^{-r_2} - \frac{2bc}{b+r_1} \left(1 + \frac{c}{a+2b}\right) + (k-1) \frac{c^2}{r_1 - r_2} \frac{b-r_1}{b+r_1} - \frac{c^2r_2}{(r_1 - r_2)^2} \\ \times \left[\frac{b-r_1}{b+r_1} + \frac{b-r_2}{b+r_2} \right] \end{cases}$$

$$\mu = 2c \left(1 + \frac{c}{a+2b}\right) \left(\frac{r_2}{b+r_2} - \frac{r_1}{b+r_1}\right)$$

De
$$E_k = b E_{k-1} + (-1)^{k-1} c A_{k-1}$$
, on déduit
$$E_k = b^k - c \sum_{j=0}^{k-1} (-1)^j c b^{k-1-j} A_j \text{ et le résultat concernant } E_k.$$

Il en est de même pour F_k .

Pour l'étude de Δ_k , on a Δ_k = a Δ_{k-1} - b² Δ_{k-2} - H_{k-2}

d'où
$$\begin{pmatrix} \Delta_k \\ \Delta_{k-1} \end{pmatrix} = \begin{pmatrix} a - b^2 \\ 1 & 0 \end{pmatrix} \quad \begin{pmatrix} \Delta_{k-1} \\ \Delta_{k-2} \end{pmatrix} - \begin{pmatrix} H_{k-2} \\ 0 \end{pmatrix}$$

soit, avec de nouvelles notations, $V_k = AV_{k-1} - B_{k-1}$

et le résultat concernant Δ_{k} .

Nous obtenons alors facilement les résultats :

$$\lambda(\mathbf{r}_{1}, \mathbf{r}_{2}) / (\mathbf{r}_{1} - \mathbf{r}_{2}) \xrightarrow{n \infty} \frac{1}{2} + \frac{\alpha\beta}{(\alpha - \beta)^{2}}$$

$$\mu / (\mathbf{r}_{1} - \mathbf{r}_{2}) = -2\alpha\beta/(\alpha - \beta)^{2}$$

$$\Delta_{n} \xrightarrow{n \infty} [(\alpha^{2} + \beta^{2}) \operatorname{ch}(\alpha - \beta)t - 2\alpha\beta]/(\alpha - \beta)^{2}$$

et le résultat annoncé.

Remarquons qu'en fait, nous obtenons la transformée de Fourier du couple $(\mathsf{U_1},\,\mathsf{V_1}).$

Les calculs pénibles peuvent être évités en faisant appel à la formule de PAUL-LEVY

E [exp 2it(
$$U_1$$
- V_1) | X_1 = x, Y_1 = y] = $\frac{2t}{sh2t}$ exp [$\frac{x^2+y^2}{2}$ (1-2t coth2t)] comme nous l'a fait remarquer M. YOR [5].

LEMME 4

Si F est la fonction de répartition de Z_1 alors il existe deux constantes strictement positives C_1 et C_2 et deux fonctions F_1 et F_2 équivalentes au voisinage de l'infini à

$$\exp(-bx\ /\big|\alpha\ -\beta\big|\) \quad \text{avec b = Arc cos}\ (2\alpha\beta\ /\alpha^2\ +\ \beta^2)$$
 telles que C $_1$ F $_1$ (x) $/$ x \le 1 - F(x) \le C $_2$ F $_2$ (x) \qquad ($\alpha\ne\beta$) .

Remarquons que Υ se met sous la forme :

$$\Upsilon(t / \alpha - \beta) = \sqrt{1-B} / \sqrt{cht + B}$$
avec B = 2 $\alpha\beta/(\alpha^2 + \beta^2)$ (|B| < 1 si $\alpha \neq \pm \beta$)

d'où
$$\Pi | \alpha - \beta | f((\alpha - \beta) \times) / \sqrt{1 - B} = \int_0^\infty \frac{\cos t \times}{\sqrt{\cosh - B}} dt$$
 où f est la densité de Z_1

En intégrant $e^{i \times \overline{Z}} / \sqrt{ch \ Z-B}$ le long du contour :

$$\begin{aligned} &(\textbf{Z=t, 0} \leq \textbf{t} \leq \textbf{R}) \ \, (\textbf{Z=R+iy, 0} \leq \textbf{y} \leq \textbf{II}) \ \, (\textbf{Z=t+iII, 0} \leq \textbf{t} \leq \textbf{R}) \ \, (\textbf{Z=iy, b+}\epsilon \leq \textbf{y} \leq \textbf{II}) \\ &\textbf{Z=(i(b-}\epsilon e^{\textbf{i}\theta}), 0 \leq \theta \leq \textbf{II}) \ \, (\textbf{Z=iy, 0} \leq \textbf{y} \leq \textbf{b} - \epsilon) \end{aligned}$$

et, par passage aux limites (R \rightarrow + ∞ , ϵ \rightarrow 0), on obtient en particulier :

$$\int_0^\infty \frac{\sin tx}{\sqrt{cht-B}} dt + e^{-\prod x} \int_0^\infty \frac{\cos tx}{\sqrt{cht+B}} dt = \int_0^b \frac{e^{-xt}}{\sqrt{cost-B}} dt$$

d'où, on en déduit
$$\int_0^\infty \frac{\cos tx}{\sqrt{\mathrm{cht}^*B}} \, \mathrm{d}t = \frac{1}{\mathrm{chII}x} \int_0^{\mathrm{II}-\mathrm{b}} \frac{\mathrm{ch} \, x \, t}{\sqrt{\mathrm{cost}+B}} \, \mathrm{d}t \, .$$

En remarquant que
$$\int_{0}^{\Pi-b} \frac{dt}{\sqrt{B+\cos t}} = K < + \infty$$

on en déduit :

$$\sqrt{1-B}$$
 sh [(II-b) x/ $|\alpha-\beta|$]/ II $\sqrt{1+B}$ x ch[II x/ $|\alpha-\beta|$] \leq f(x)

$$f(x) \leq K \sqrt{1-B} \quad \text{ch} \left[(\Pi-b) \times / |\alpha-\beta| \right] / \Pi \quad |\alpha-\beta| \quad \text{ch} \left[\Pi x / |\alpha-\beta| \right]$$

d'où :

$$\sqrt{\frac{1-B}{1+B}} \quad \frac{\left|\alpha-\beta\right|}{\Pi b} \quad \frac{F_1(x)}{x} \le 1 - F(x) \le \frac{\sqrt{1-B}}{b \; \Pi} \quad K \quad F_2(x)$$

et le résultat annoncé.

IV. Loi du logarithme itéré pour $(Z_t, t \ge 0)$

THEOREME

Etant donné un mouvement brownien $(X_t, Y_t, t \ge 0)$ à valeurs dans ${\rm p\!\!\!R}^2$, issu de 0, on a pour tout couple (α,β) de nombres réels

$$\lim_{t \to \infty} |\alpha \int_0^t X_s dY_s + \beta \int_0^t Y_s dX_s| / t \log_2 t = |\alpha - \beta| / Arc \cos(2\alpha\beta/\alpha^2 + \beta^2)$$

On procède comme pour le Mouvement Brownien [1] .

Soient $\delta > 0$, q > 1

$$A_{\delta} = \{ \limsup_{t \infty} \frac{Z_{t}}{t} \log_{2} t > 1 + \delta \} = \limsup_{t \infty} \{ \max_{t \le n} \frac{Z_{t}}{t} > (1 + \delta) q^{n} \log_{2} q^{n} \}$$

d'où, compte-tenu du lemme 2,

$$P(A_{\delta}) \le 2 \lim_{n \infty} \sum_{k \ge n} P[Z_{a^{k+1}} > (1+\delta) q^k \log_2 q^k]$$

or, d'après le lemme 4, on a :

avec 1 =
$$|\alpha-\beta|/b$$
, b = Arc cos $(2\alpha\beta/\alpha^2 + \beta^2)$

Soit, en choisissant
$$1 < q < 1 + \frac{b\delta}{|\alpha - \beta|}$$
 , $\forall \delta > 0$ $P(A_{\delta}) = 0$

cad
$$P[\lim \sup_{t \infty} Z_t / t \log_2 t \le 1] = 1.$$

De même, d'après le lemme 4, on a :

$$P \left[Z_{q^{n}(q-1)} > (1-\delta)q^{n+1} \log_{2} q^{n+1} \right] = P \left[Z_{1} > (1-\delta) \frac{q}{q-1} \log_{2} q^{n+1} \right]$$

$$\geq C_{1}(q-1)F_{1}[(1-\delta) \frac{q}{q-1} \log_{2} q^{n+1}] / q(1-\delta)\log_{2} q^{n+1}$$

$$\sim C_{1}' / \log_{2} q^{n+1} \cdot (n+1)^{\frac{q}{q-1}} (1-\frac{\delta b}{|\alpha-\beta|})$$

soit, en choisissant q > $\frac{\left|\alpha-\beta\right|}{\delta b}$, le terme général d'une série divergente.

Compte-tenu de :

ii) la loi du logarithme itéré du mouvement brownien

iii) Z_t symétrique

iv) (0 (q , Z), n
$$\geq$$
 1) sont indépendantes et ont même loi que Z q , q (q-1)

v) lemme de Borel-Cantelli

on peut écrire :

$$\limsup_{n \infty} Z_{q^{n+1}} / q^{n+1} Log_2 q^{n+1} \ge -\frac{1}{q} (1+\delta)+1-\delta + (\alpha+\beta) \frac{\sqrt{q-1}}{q} \ge 1-2\delta \qquad \text{p.s.}$$

pour q assez grand

soit, en considérant :

$$B_{\delta} = \begin{cases} \lim \sup_{t \infty} Z_{t} / t \log_{2} t > 1 - \delta \end{cases} \Rightarrow \lim \sup_{n \infty} \{ Z_{n} > (1 - \delta)q^{n} \log_{2} q^{n} \}$$

$$\forall \delta > 0 \quad P(B_{\delta}) = 1$$

cad
$$\limsup_{t \infty} Z_t / t Log_2 t \ge 1$$
 p.s.

et le résultat annoncé, $(Z_t, t \ge 0)$ étant symétrique.

V. Bibliographie

[1]	L. BREIMAN	Probability (Addison-Wesley).
[2]	A. FRIEDMAN	Stochastic Differential Equations and Applications (Academic Press).
[3]	B. GAVEAU	Principe de Moindre Action. Propagation de la Chaleur et estimées sous-elliptiques sur certains groupes nilpotents. Acta Mathematica 139 1.2 - 1977.
[4]	B. ROYNETTE	Ecole d'Eté de Probabilités de Saint-Flour 1977 Lectures Notes in Mathematics - 678 - Springer-Verlag.
[5]	M. YOR	Remarques sur une formule de Paul LEVY Ecole d'Eté de Probabilités de Saint-Flour 1979. Ann. Scientifiques de l'Université de Clermont.