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THE BANACH FIXED POINT METHOD FOR ITO STOCHASTIC

DIFFERENTIAL EQUATIONS

T. BARTH ET A,U, KUSSMAUL

The University of HULL (England)

In this paper a simple proof is given for the existence and uniqueness of

solutions Qf stochastic differential equations with respect to Brownian

motion. The conditions imposed on the coefficients correspond to those

introduced by CARATHËODORY [2] for ordinary di fferenti al equations in 1918,

except for requiring square integrability instead of integrability. The

Banach fixed point method provides the result by means of a change of the

norm.. 
,

There are several recent proofs of this fact under similar conditions, even

in the more abstract setting of stochastic integrals with respect to semi-

martingales, e.g. by DOLEANS-DADE [3 J 1976, and PROTTER [6 ] 1977. Relative

to time dependence the Caratheodory conditions are slightly weaker than the

ones used there. But the main interest of this note consists in the ease of

carrying over methods of ordinary differential equations such as the point of

view of solutions in the sense of Caratheodory and the method of change of

the norm, as described e.g. by WALTER [ 7 ]. These methods also apply in the

abstract setting.
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Let (Wt)to denote an m-dimensional Brownian motion on a probability space

(2,F,P) and increasing family of sub-a-fields of F such that 

is an motion, i.e. adapted to 

(M. - is independent Of ft. for all Consider on m+ x 2 the

a-field P of predictable sets with respect to and the vector spaces

L2 = 2, p,x 0 P) and H 2 of predictable processes X = with

values in m d such that

resp.

where [ . [ denotes Euclidean norm and X Lebesgue measure.

Denote by (resp. the space of processes X such that there is an

increasing sequence of stopping times P-a.s. such that

T*
belongs to L (resp. the process X n := ~ 

01 belongs to H~)
for an n e IN. The sequence is called a localizing sequence for X.

We have

p redi ctab I e :

Further every continuous adapted Rd - valued process C belongs to 2 being

localized by T :=inf {t &#x3E; 0 : |C+| &#x3E; n}, n’eIN.

PROPOSITION 1: For any stopping time T, the quotient space of H2 by the
kernel of the semi norm on H2

is a Banach space with the norm II’IIT.
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Proof: Let (Xn)nEDV be a Cauchy sequence in H2 for the seminorm ~·~03C4. By

considering a subsequence one may always suppose

where X 0 : = 0. For every we have

belongs to and is P-a.s.. absolutely convergent

in IR. Hence converges P-a.s. in IR d . The process

if the limit exists

otherwise

is predictable, and by Lebesgue’s theorem, Xtin for every t~O

since the are dominated by

hence so is IxtI. Also we have t&#x3E; 0, hence 

It is now easy to see that X~ -~ X considered as elements of Hf -

THEOREM 2: Consider on x IRdthe stochastic differential equation

where the initial process C is continuous adapted with values in md, and the
coefficients are measurable functions f:IR+ x IR d -+ Rd and G: ]R+ x IRd -+ 

(dxm - matrix valued) satisfying the following conditions:

1) Lipschitz condition: There is a function t e L 2 (IR ,À.) such tha-

for all t E R+, x, y ~ R d .
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Then there exists a global solution X ~ H2 with continuous paths which is
unique up to stochastic equivalence.

REMARKS: 1) The corresponding theorem for Caratheodory solutions of ordinary
differential I equations is s valid with instead of (cf.
WALTER [7], p. 82).

2) By the Lipschitz condition, the statement of condition (2) holds for all
x E IRd if it holds for some.

The properties of the stochastic integral used in the sequel can be found e.g.
in ARNOLD [1] or FRIEDMAN [4]. For predictable sets and more general stochastic

integration see KUSSMAUL [5].

LEMMA 3: Under the hypotheses of theorem 2, the process Y. := 

t 2: 0, is in H2 for every X E H 2 For X E H2, the stopping times T~ := n,

n ~ IN, localize Y.

Proof: Let localizing sequence for X ~ H 2 Replacing T~ by
Tn^n if necessary, we may always assume n. Using H61der’s inequality, we
get for all t 2t 0

Hence locali zes Y.
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LEMMA 4: Under the hypotheses of theorem 2, the process Z~ := ft 
t ~ 0, is in H 2 for every X ~ H2 For X E H 2, the stopping times Tn := n,

n E IN, localize Z.

Proof: As the stochastic integral with respect to W is an isometry of L 2 i nto

H2, we have only to show that the process GX. := G(t,X ), t ~ 0, is in .

Let be a localizing sequence for such that n. We have

Hence GX E L2loc, and (Tn)n~N localizes GX, hence Z.

Proof of theorem 2: Consi der the, i n general non - linear, operator

defined by

The initial process C E H 2 is localized by the stopping times T~ := 0:

n ~ IN, and so is SX for all X ~ H2by Lemma 3 and 4. The map
X - therefore defines an operator 2, ’- 2 For all X,Y  2 and t e 0X -+ therefore defines an operator H. 2 For all X,Y E H 2 and t &#x3E; 0

we get
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showing in particular that S n can be considered as an operator on the quotient

space Hino Inserting e"e" with and L(s) :=fs 0 for s ~ 0

yields

where III ’III T_ denotes the semi norm on HZ defi ned by

Since , it is equivalent to 11-IlTn and so it
defines an equivalent norm on H4 . The above estimate now readsTn

For a suitable choice of a , e.g. a = 8(n + 1), the mapping S n is a contraction

on H2 By the Banach fixed point theorem there is a unique. fixed point H2n 
2 Tn 

’n

As for X E H I III X)!t-r = 0 is equivalent to = 0 for all t &#x3E; 0, this
’n 

2 
" 

n 
-r

fixed point corresponds to a process nX E H2 such that for all t &#x3E; 0, nXtn is
uniquely determined up to L(s2,P) - equivalence.

For m &#x3E; n and the corresponding fixed points mX ~ H2 and nx ~ H2 we haveTM ’n

p~ T* ~ T
hence by the uniqueness property nXt n P-a.s. for all t ~ 0 and any

representatives in H2 , and a global solution X ~ H2 is determined
uniquely up to L(2,P) - equivalence.
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By the continuity properties of the Lebesgue integral and of the Ito integral

there exist continuous versions of X, and these versions are unique up to

stochastic equivalence since it is possible to find a common null set outside

Of which the trajectories coincide.

T* T
REMARK: The reason for the use of instead of in the definition of H 2
and in the proof of theorem 2 is to admit initial processes C without integra-

bility restrictions. In the case of C ~ H 2, one could use stopping times 
converging uniformely to m, e.g. T n := n, and define Sn by (SX)Tn in the proof
of theorem 2.

By the usual estimate of the successive approximation procedure starting with

x 0 := 0 one gets the following .

COROLLARY 5: Under the hypotheses of theorem 2 and with a = 8(n + 1), L

defined as above, the solution X ( H2 satisfies

for all n E DV where
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