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TWO-PARAMETER GAUSSIAN MARKOV PROCESSES

AND THEIR RECURSIVE LINEAR FILTERING

Hayri KOREZLIOGLU(*)

SUMMARY : A class of two-parameter Gaussian Markov processes is charac-
terized and conditions are given for a process of this class to have
a representation in terms of Wiener processes. When the signal is a
Gaussian Markov process having a representation in terms of a two-para-
meter Wiener process and the noise is another Wiener process independent
of the signal, and when the observation is defined as in the one-parame-
ter Kalman filtering model, recursive linear filtering equations satis-
fied by the estimation of the signal are obtained by using the linear
filtering method of Hilbert space-valued Gaussian processes.

INTRODUCTION

In this work, we develop and improve the short expose [ 1~ on

the linear fi 1 tering of two-parameter Gaussian Markov processes.

In § 1, we give the defi ni ti on of a Markov property for two

parameter Gaussian processes and express conditions on the covariance

functions of such processes having the defined Markov property in order

that they may possess a representation in terms of Wiener processes.

Shortly after the Saint-Flour seminars in 1978, Dr. D. NUALART

kindly communicated to us his work in collaboration with M. SANZ, on the

characterization of Gaussian Markov fields [ 2~ . We show, in § 1, that

our characterization is equivalent to theirs.

In § 2, we consider the following "signal and observation"

model. The signal X is a Gaussian Markov process, defined by

(*) Ecole Nationale Superieure des Télécommuni cations

46 rue Barrault, 75634 PARIS CEDEX 13.
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where B is a Wiener process and w and G are non-random functions. The

observation Y is given by

where W is a Wiener process independent of B and H is a non-random

function. We regard various processes appearing in this model as taking

their values in an L 2 -space when indexed by their first parameter. Then,

by using a result due to OUVRARD [31 on linear filtering of Hilbert

space-valued Gaussian processes, we obtain the horizontal filtering

equation (in the first parameter) satisfied by the estimation s,t (to)

of in terms of the observations s,v  
s, t u,v o o

By commuting the roles of the two parameters, we obtain the vertical

filtering equation (in the second parameter) satisfied by the estima-

tion kv,t(so) of Xs,t in terms of the observations t},
o s ,t L U,V 0

with s  s0 Finally, for the case So = s and t - t, we give the ex-

pression of the second differential, in s and t, of X s,t = =

S , u s,t o

terms of innovation processes appearing in the horizontal
s, t o

and vertical filtering equations.

§0 NOTATIONS

The random processes considered here will be indexed by
9 / 

[o,S] x[o,T] c P2. where S and T are finite positive numbers(:".). For
a second order centered process X = x[o,T]}, defined

on a probability space d x will denote the smallest Hilbert- =s ,t

subspace of generated by {X 2013u  s,v  t} and F x the- u,v s,t 

smallest a-subalgebra generated by {X :u  s ,v  t) and all P-negli-
. u ,v

gible sets of A. If and if H is a Hilbert subspace of

(~) Throughout this work, the index set [o,S] x[o,T] can be replaced
by R+xR+ ’ with little precaution. In particular, this substitu-
tion would not bring any modification to the text of §1 .
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L(Q,A,P) , we shall denote by (Z/U) the projection of Z onto H. If

we shall denote by (Z/Y) the projection of Z onto the

subspace (of dimension 1) generated by Y.

For a random process X = x[o,T)}, we

extend the domain of the parameters to negative numbers by putting

= o, when at least one of the parameters is negative. We denote
s,t

by the smallest Hilbert space generated by and 
-S,t s,T

For two Hilbert spaces H1 and H2 such that H 2 9 HI
will denote the orthogonal complement of Hi in H2*

§1. GAUSSIAN SIMPLE MARKOV PROCESSES

In this paragraph, X = x[o,Tj} will be

a centered Gaussian process, defined on a given probability space

(Q,A,P).

DEFINITION 1 : X will be called a horizontal Markov process, if

(1) for all s,t and u  s, = (X,t/X,)
and a vertical Markov process, if

(2) for all s,t and v t, = 

X will be called a simple Markov process, if it is a

horizontal and a vertical Markov process.

We identify, here, random variables with their P-equivalence

classes.

Conditions (1) and (2) are respectively equivalent to the

following ones.
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PROPOSITION 1 : If X is a simple Markov process, then

1 for all (u,v) and (s,t) such that (u,v)  (s,t)

Proof : For (u,v)  (s,t), we have, according to (1) and (2)’,

where a and b are adequate constants. Therefore, condition (3) is satis-

f ied. ·

The following corol lary is an obvious consequence of the

above proposition.

COROLLARY : If X is a simple Markov process, then for any increasing

path C in [o,S] x[ o,T] , is a one-parameter

Markov process with respect to the filtration

hence, with respect to its natural f i 1-
-Slt }, hence with respect to its natural fil-

tration.

Let K be the covariance function of X and let (D be defined

by

(::) This implication is proved by Pascal LEFORT in his current research

work on the Markov property of two-parameter processes. In [1], we

had defined a simple Markov process as a process satisfying condi-

tions ~1), (2) and (3).
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Noti ce that we have

Using this equation, one can show that conditions (1), (2)

and (3) are equivalent to following conditions (6), (7) and (8), res-

pectively.

Condition (8) implies that

and, according to the above corollary, if X is a simple Markov process,

then for any increasing path C, the restriction of ~ to C2 is the Markov
transition function of the process 

PROPOSITION 2 : For a simple Markov process X, the following orthogona-

1 ity rel ation holds.

This is equivalent to saying that the a-algebras FXq ying that the o-algebras FkS,t 

and are conditional ly independent with respect to=s,T y p p e
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From this, the relation (9) follows. The equivalence of this relation

with the conditional independance of FXS and with respect to FXp 
=S,t =s,T 

p ~ 
=S,

is a known property of Gaussian spaces (cf. ( 4] ~ .

PROPOSITION 3 : If X is a simple Markov process, then, for (u,v)  (s,t~,

the random variable

we only have to prove.the orthogonality

Notice that this last space has

the following orthogonal decomposition.

Then

It can easily be verified that each of the projections of the right-

hand side is zero. ·

In f 2] , the Markov property of X was defined as follows :

r For all (u,v) and (s,t) such that (u,v)  (s,t),

L where a, b and c are adequate constants.

With our convention of §0, in extending the domain of the parameters

to negative numbers, one can deduce that, if X satisfies condition (12),

then it satisfies conditions (1) and (2) ; thus X is a simple Markov

process. Conversely, if X is a simple Markov process, according to Pro-

position 3, it satisfies condition (12). Therefore, conditions (1) and

(2) together are equivalent to condition (12).
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From now on, we suppose that X is a centered Gaussian simple

Markov process.

We make the following hypothesis on the covariance function

K of X.

H Y P OTHE S I S H : K is continuous on ([o,S] x [ o , T l ~ 2 , K ( ( s , t ) , ( s , t ) ) is

strictly positive for st &#x3E; o, K~~s,o~,~s,o)~ is either

identically nul l or strictly positive on ]o,S] and

K((o,t),(o,t)) is either identically null or strictly

positive on 1o,T].

Under this hypothesis K((s,t),(u,v)) is strictly positive

for all s,t,u,v such that K((s,t),(s,t))K((u,v),(u,v)) &#x3E;o. In fact,

any pair of different points (s,t) and (u,v) can be joined by a path

consisting of at most one horizontal and one vertical line segments

on each of which K is a one-parameter covariance function. Therefore,

the proof of the mentioned property reduces to that of the one-parame-

ter case (cf. [ 4~ , p. 55).

Suppose now that the function 4), defined by ~4~, verifies

the following hypothesis.

HYPOTHESIS H 2 : There exists a strictly positive continuous function

s,t , defined on (o,S] x [ o,T1, such that

for all (u,v) for which K((u,v)(u,v)) &#x3E; o.

(We can always suppose = 1 by dividing y by a cons-

tant, without changing ~13). That is what we shall do).

Notice tha t, if K is strictly positive on (E o , S 1 x[o»T] )2,
the function ~ defined by
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verifies H . More generally, if, for (p,q)  (s,t) in D, 4)((s,t),(p,q))

has a strictly positive continuous as ~p,q) -~ (o,o) and if

~ has a continuous and strictly positive extension to the entire domain

( o, s] x ( o, T] , then this extension, denoted again by ~, verifies the

hypothesis H . In fact, for ~p,q)  ~u,v)  ~s,t) in D, we have

Therefore, for (u,v)  (s,t) ,

where the limit is to be taken for (p,q)  (u,v) in D.

PROPOSITION 4 : Let M be defined by

f r 11 u v E o S x o T 
2 

where A standsfor a ((s,t) , (u,v) ) E ([ o,S] l x[o,T]) , where" stands

for the infinum.

Proof : The proof can be obtained by a direct verification of the equa-

lity

for all possible configurations of the 1 ine segment joining (u,v) to

ts,t~ . ·

Now, we can characterize the process X in terms of a Gaussian

strong martingale.
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PROPOSITION 5 : The process defined by Z = -1 x is a (centered)
Gaussian strong martingale with respect to the filtra-

tion x[o tT]}. Hence, Z has indepen-slt

dent increments and E(Zs,t Zu,v) = MsAu,tAV, where M is
defined by (14). In particular,

= Zs.t - zo,t - + Z0,0 Gaussian

strong martingale U with respect to the same filtration.

Similarly, U’s 10 = and U" Olt = Zo,o
define two Gaussian martingales U’ and U", respectively,

with respect to the filtrations and
=s,o

The random variable Xo,o and the pro-=0,t o,o

cesses U, U’ and U" are mutually independent.

Proof : We refer to [5] for the definition of a strong martingale. Let

Z(](u,v),(s,t)]) be the increment of Z between (u,v) and (s,t) with

In order to prove that Z is a strong martingale we only have to prove

that the projection of the above increment onto is null.
=S,v =u,T

But, ys,tZ (l(u.v). (s.t)] = Xslt - is given by (11),

and Proposition 3 says that the projection of X.. - and, hence,

of Z(](u,v),(s,t)]) onto is zero.

The fact that U is a strong martingale is due to the equality

of the increments of U to those of Z.

As a consequence of Proposition 3, and hence

U’ is a martingale with respect to A similar argument=S )o

holds for U". The independence of X 0,0 U’, 
U" and U is due to the fact

that these quantities are increments of Z and that Z has independent in-

crements..
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We can say more about the representation of X in terms of mar-

tingales, if the function M, defined by (14), verifies the following

hypothesis.

HYPOTHESIS H3 : There exist square integrable functions G, G’ ‘ and G"

such that

THEOREM 1 : Under hypotheses H 2 and H39 there exist one-parameter
Wiener processes B’ and

B" = and a two-parameter Wi ener processt

B x [ o, T] } such that Xo,o, B’ , B" and

B are mutually independent and

Conversely, G’ , G; G, B’ , B" and B are as above,

then the process X defi ned by (16) i s a centered Gaussian

simple Markov process verifying hypotheses His H 2 and H .
In both cases, X has a modification with continuous trajec-

toires.

Proof : Notice first that the right hand side of (16) devided s ,t

should represent Zs t defined in Proposition 5. Consider the martingale. 

s,t

U of the same proposition. U is null on the coordinate axes and has

independent increments. If I &#x3E; o for almost all (s,t), then a

Wiener measure B can be defined by dB = G-1 dU and we haves,t s,t s,t

and define
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a Wiener measure B on D by d’s,t = G s 1 t dUs,t and take any other Wiener
measure B on [ o,S] x [ o,T]·D, independent of X ; then, put B = B + g .

U has again the same representation in terms of B. The Wiener process

B considered in the theorem is generated by the Wiener measure B of

the proof. The process B and the corresponding stochastic integral

IS It G V dB U,V have continuous modifications (cf. [6]).
o o uv uv

The construction of B’ and B" can be made in the same way,

by sta rting, respectively, from the martingales U’ and U" of Proposi-

tion 5. The independence of X o,o , B, B’ and B" is a consequence of this

proposition.

The proof of the converse part of the theorem i s a matter of

di rect versification.

§ 2. LINEAR FILTERING

We consider the following "state and observation" model for

the filtering problem.

The state process or the signal X is a continuous Gaussian

simpl e Markov process def i ned by

where y is a continuous strictly positive random function having conti-

nuous first partial derivatives 
)y s,t 

asp 
t B is a continuous Wienernuous f i rst partial derivatives 20132013, B is a continuous Wiener

)s )t

process and G is a square-integrable non-random function.

The observation process Y is defined by

where H is a continuous non-random function and W is a continuous Wiener

process, independent of B.
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For some regularity properties of the probability space

(Q,A,P) on which the processes considered in the above model are defi-

ned, we shall identify it with the canonical space of (B,W).

We shall put F y and denote by G the filtration=S 
U&#x3E;s 

=U,T

and by L the space dP ads adt),

where B is the Borel a-algebra of [o,S]x{o,TL Let 

the Borel a-algebra of to,S] (resp. to,T]). If P’ denotes the a-algebra

of G-predictable sets then we shall denote by P the productx = 91 o.Sl’ -

a-algebra and by L2(P) the Hilbert subspace of L 2 generated
2 2

by all Measurable elements of L . The space will

be denoted by L2(dt).

DEFINITION 2 : For a process Z in L2, the g-predictable projection
Zp of Z will be defined by the conditional expectation
of Z with respect to the a-algebra P and the measure

dP ods odt.

The predictable projection in the senseof the above definition

can be constructed as follows, by using the notion of predictable pro-

jection in the senseof [7]. Let Z be a process defined by

where U is a bounded random variable and let be the ri ght-

continuous version of the martingale Let us put

where 1. n(s) coincides with the G-predictable projection ofs-[u,S] =

u 11 U’SI(s ) in the senseof t7]. Notice that, for almost al l s, Zp iss,t

a version of E Z ~/G~). On the other hand the space L2(E) is generated

by processes of type
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where V is a bounded Gu-measu rabl e random variable. (There i s no 1 oss

of generality in choosing V&#x3E;o). By using the fact that the measure

dP a ds commutes with predictable projections (cf. [ 7] , T 30, p. 107),

we find

Therefore, the process Zp is the predictable projection of Z in the

senseof the above definition. Now, let Z be an arbitrary element of
2

L and let {Z n: n EN} be a sequence consisting of processes that are
linear combinations of processes of type (3) and converging to Z in L 2

(The space l2 is generated by processes of type (3)). To each Z there

corresponds a process Zp defined as linear combinations of processes
of type (4) and the sequence converges to the predictable
n

projection Zp of Z as defined in Definition 2. Therefore, there exists
a subsequence such that, for almost all (s,t), 

p n 2 
converges to L (o,A,P). From this,we deduce that, for each

s , t -

ZEL2 and for almost all (s,t), Zp is a version of the conditional
s , t

expectation E(Z 4./G ).
Now, let us consider the following horizontal evolution equa-

tion for X.

X, Y, W and the system noise, represented here by the last term in ~ 5 ~ ,

have continuous trajectoires. Therefore, for fixed s, X , V and
can be considered as taking their values in
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If U = iUs,t : (s,t)~[o,S] x[O,Tl) is a process such that,

for all s and almost al I shall denote by

U = the corresponding L2(dt)-valued process. We shall
denote by 11 . 11 and .,.&#x3E; , respectively, the norm and the scalar pro-

duct on L 2(dt).
The covariance operator of M is where W is the nuclear

operator on L 2 (dt), the kernel of which is t AT,i.e. 

The operator W is called the covariance operator of W. We define the

bounded linear operator Hs on L2(dt) by

Consequently, equation (2) can be written as

DEFINITION 3 : Let XP be the G-predictable projection of the state pro-

cess X. Then the process v defined by

will be called the horizontal innovation process of Y

Notice that, as an L2(dt)-valued process, v can be defined

by

PROPOSITION 6 : The L2(dt)-valued process v = fv s : s~[ o,S]} is a G-
Brownian motion with covariance operator W. In particu-

tar, is a two-parameter Wiener

process such that for all 

is independent of G , . .
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Proof : We refer to ( 8] for the definition and properties of a Hilbert

space-valued Brownian motion. Notice first that v can be written as

where $i = X - xp that vwhere  u,v =  Xu.v - Xu , v . I t i s a matter of easy verification that v

is square-integrable. i.e. Ellv sll2  oo , a n d it is st r ongly cont in uo u s

as an L2(dt)-valued process. To prove that v is a G-Brownian motion,

according to [8], it is enough to show that, for all 

Iv~,f&#x3E; : s G[ o ~ S 1 } is a G-martingale, and for al l and al l

s‘S

These two properties can be proved in exactly the same way as in the

proof of the wel l known innovation theorem of the one-parameter fil te-

ring probl em ([9], Lemma 2.2 ) . The second part of the proposition is

an immadiate consequence of the first. ’

Let us consider the process tE[ o,T] }, for fixed

s. As : tE[o,T] I is continuous in the quadratic mean, the same
s,t

goes for this process. It has therefore, a measurable version (in t)

which is what we shall consider below. 
’

PROPOSITION 7 : Let M be defined by

Then M = i s a square- i ntegrabl e L2 dt -
valued Gaussian G-martingale. Moreover, for almost all

t, (M . : : also is a Gaussian G-martingale.
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Proof : The square-integrability of Ms is easy to show by direct compu-

tation. For s’s and we have

This shows that M is an L 2(dt)-valued G-martingale. The proof of the
last part of the proposition is similar...

In the sequel, we shall only consider the right continuous

modification for the process taken as an L2(dt)-s t * =S

valued process, that we shall denote by X 0 = We shall
s

rather write equation (10) as follows :

keeping in mind that X0 is a version of E(X /9 ) and, as an L 2(dt)-s,t s,t s

valued process X0 is right-continuous. Notice that X0 = XP a..s. for
S t L S $ L

almost all (s,t).

Let P be the covariance operator of X = xs -x0s, defined by

Then Ps is a symmetric nuclear operator the kernel of which is defined

by 
’

for almost all s,t,T..

PROPOSITION 8 : Let K be defined by

for almost all s,t,T. Then the martingale M defined by

(11) thas the following representation
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for almost all t.

Proof : For the proof of the representation (13), we refer to the repre-

sentation theorem 2.6 in [3]. Let M be an L2 (dt)-valued square-integrable
G-martingale. Then there exists a G-predictable process* with values

in the Hilbert space of (not necessarily bounded) linear operators in

L2 (dt) such that fS E[tr]YuWY*u)] du °°, where Y* is the adjoint of
o u u

and that

(Cf. ( 10~ for the definition of this kind of stochastic integrals).

Let the representation of the martingale M of Proposition 7

be given by (14). Then, for almost all t,

is a G-martingale in terms of s. To see this, it is enough to apply

the Ito differentiation rule to and take the conditional expec-s,t ,s,t

tation with respect to G , for s’s. This part of the proof is similar

to that of Proposition 2.11 in [3J. Considered as an operator, the in-

tegral term of (15) can be written as fs P H du. This, with the above
o u u

mentioned representation theorem, implies that M has the following
representation

as given in Theorem 2.12 i n [3] t where ID+ i s the pseudo-inverse of yy

defined by
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with the limit taken in L (dt). Notice that is a non-random

operator. Then, for almost all t, M is an element of Therefore,° 

s,t s, T =S,T’

by taking the mathematical expectation of (15), which equals o, we

obtain

From this, follows representation (13). "

Let us consider now the equation

and let Z be a measurable version of

The existence of a measurable version of Z is guaranteed by the measu-

rability of its covariance function. By substituting U by Z in (16), it

can be verified that Z satisfies equation (16).
~ 

We want to show that if equation (16) is satisfied a.e.

dP o dsodt by two different processes U and U’ in L2 then U = U’ a . e.

dPa ds adt. In this case, we can also replace K u (t,v~ in (16) and (17)

by any other measurable function equal to K for almost all u, v, t.

Suppose that we have two processes U and U’ in L2 satisfying
equation (16) a.e. dPodsodt. Then Y = U-U’ satisfies the equation

a.e. dP B ds B dt. Then we have
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where F = u,t and A is an upper bound, independent of (s,t),u,t au u,t

of the integral in which F appears. Let us put

Then the above inequality becomes

which gives, after multiplication by e-As 91

Therefore,

This is possible only if, for almost all t, = o. Consequently we

have IS IT E(Y2 ’t)dt ds = o.o o s,t

Equation (11) and representation (13) show that XP and XO sa-

tisfy equation (16) a.e. dPedsadt. Therefore, Z = XP = X 0 a.e.

dP ads a dt. Then, according to (7), we have

This implies that is an element of Hence ~~,T. 
quently, the filtration G coincides with s~{o,S]} and is, there-

fore, continuous. All these imply that G~ is generated by = Hv
Moreover, by using the continuity of G, one can show that, as

function of (s,t), E(X -/G ) is continuous in the quadratic mean. Hence,

Ps(t,T) can be chosen as a continuous function of (S,t,T). That is what

we shall do in the sequel. In this case, the process Z defined by (17)

is continuous in the quadratic mean. Therefore, Z s,t is a version of
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Notice that, for any fixed t, {Z~ . : s6[o,S]} has a continuous

version satisfying (16) and, being continuous in the quadratic mean,

for any fixed s, lZ ,t : tE[ o,U I has a measurable version. Therefore,

there exists a measurable process X = (s,t)E[o,S] x[o,Tl} such

that, for any fixed t, sE[o,S]} has continuous trajectoires and,
for all (s,t), = Z s,t a.e. hence a version of E(X s,t/gs ), (cf. [11]).

Noting that nothing would change in the above conclusions if

T were replaced by we shall summarize the main resul ts by

the following theorem.

THEOREM 2 : The process (s,t) E[ 0,S] is conti-

nuous in the quadratic mean and has a measurable modifica-

tion Rh (t = : (s,t)E[s,S]x[o, tO] such that,0 0

for any fixed t, is continuous. Let
s, t O

and be defined respectively by

and let the horizontal innovation process of height t 0 be
defined by

Then satisfies the following horizontal filtering

equation

and has the following explicit expression
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Moreover, the kernel satisfies the following
Riccati equation. 

Proof : We only have to establ ish the Riccati equation. By putting

X = R- xh(t0) and considering equations (5), (21), (2) and (20), we get

and we obtain equation (23) by applying the Ito differentiation formula

to xs,t X. as function of s and by taking the mathematical expecta-
tion. a

By interchanging the roles of s and t,we obtain similar results

for the vertical filtering problem.

The processus {E (Xs,t/Fys o,t) ; (s.t)E [o.s] x [0.T.]}, with
201320132013201320132013 s,t S69 

"

is continuous in the quadratic mean and has a

measurable modification

xv(s 0 = x[o,T]) such that, for

any fixed s, s,t (s 0 t"lo,Tll is continuous. Let

and be defined respectively by
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and let the vertical innovation process of width s 0 be de-

f i ned by

Then iv(s 0) satisfies the following vertical filtering

equation

and has the following explicit expression

The kernel satisfies the Riccati equation :

with = o for tus =o.

We may call any version of a causal estimation

of Xs,t in terms of Y. It is clear that Xhs .(t) and Xvs .(s) are causals,t s,t s,t

estimations of 
s,t

Let us put x = = a.s.. For any fixed t,s,t s s

the process {X s,t:  s~{o,S]} has a. continuous version defined by

and satisfying the equation
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Similarly, for any fixed s, the process {Xs,t :tE[o,T] has a continuous

version defined by ,

and satisfying the equation 
’

We do not know yet whether or not X has a continuous version as a two-

parameter process.

For numerical applications, it would be interesting to express

terms of s ,t ’
that is, to have a two-parameter recursive filtering equation. We could

find this equation in [1] only by extending, in a rather formal way,

the results obtained in [12] for the case of discrete parameters. This

equation is the following

where d denotes the second differential in s and t, d s and d t denote

respectively the first differentials in s and in t. The first term of

the right hand side can be replaced by

At the view of equation ~26~, it seems difficult to represent

Xs t as the sum of stochastic integrals in terms of various innovations.s ,t

For the non-linear filtering of two-parameter semi-martingales such a

representation was obtained in [ 13]. We hope to be able to extend the

method of (13~ to the Gaussian case in a forthcoming publication.
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We would like to mention that linear filtering equations of

type (21), (21’) and (26) were given by E. WONG in [14] where the mar-

tingale representation (13) was introduced without proof. Apart from

providing all the tools for establishing the linear filtering equations,

the extension of the method used in [13] to the Gaussian case will, we

hope, also contain the proof of such martingale representation theorems.
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