Annales scientifiques de l'Université de Clermont-Ferrand 2 Série Mathématiques

HAYRI KOREZLIOGLU

Two-parameter gaussian Markov processes and their recursive linear filtering

Annales scientifiques de l'Université de Clermont-Ferrand 2, tome 67, série Mathématiques, n° 17 (1979), p. 69-93

http://www.numdam.org/item?id=ASCFM_1979__67_17_69_0

© Université de Clermont-Ferrand 2, 1979, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'Université de Clermont-Ferrand 2 » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

TWO-PARAMETER GAUSSIAN MARKOV PROCESSES AND THEIR RECURSIVE LINEAR FILTERING

Hayri KOREZLIOGLU(*)

SUMMARY: A class of two-parameter Gaussian Markov processes is characterized and conditions are given for a process of this class to have a representation in terms of Wiener processes. When the signal is a Gaussian Markov process having a representation in terms of a two-parameter Wiener process and the noise is another Wiener process independent of the signal, and when the observation is defined as in the one-parameter Kalman filtering model, recursive linear filtering equations satisfied by the estimation of the signal are obtained by using the linear filtering method of Hilbert space-valued Gaussian processes.

INTRODUCTION

In this work, we develop and improve the short exposé [1] on the linear filtering of two-parameter Gaussian Markov processes.

In §1, we give the definition of a Markov property for two parameter Gaussian processes and express conditions on the covariance functions of such processes having the defined Markov property in order that they may possess a representation in terms of Wiener processes.

Shortly after the Saint-Flour seminars in 1978, Dr. D. NUALART kindly communicated to us his work in collaboration with M. SANZ, on the characterization of Gaussian Markov fields [2]. We show, in §1, that our characterization is equivalent to theirs.

In § 2, we consider the following "signal and observation" model. The signal X is a Gaussian Markov process, defined by

^(*) Ecole Nationale Supérieure des Télécommunications 46 rue Barrault, 75634 PARIS CEDEX 13.

$$X_{s,t} = \varphi_{s,t} \int_{0}^{s} \int_{0}^{t} \varphi_{u,v}^{-1} G_{u,v} dB_{u,v}$$

where B is a Wiener process and φ and G are non-random functions. The observation Y is given by

$$Y_{s,t} = \int_{0}^{s} \int_{0}^{t} H_{u,v} X_{u,v} dv du + W_{s,t}$$

where W is a Wiener process independent of B and H is a non-random function. We regard various processes appearing in this model as taking their values in an L²-space when indexed by their first parameter. Then, by using a result due to OUVRARD [3] on linear filtering of Hilbert space-valued Gaussian processes, we obtain the horizontal filtering equation (in the first parameter) satisfied by the estimation $\hat{X}_{s,t}^h(t_0)$ of $X_{s,t}$ in terms of the observations $\{Y_{u,v}:u\leq s,v\leq t_0\}$, with $t\leq t_0$. By commuting the roles of the two parameters, we obtain the vertical filtering equation (in the second parameter) satisfied by the estimation $\hat{X}_{s,t}^\nu(s_0)$ of $X_{s,t}$ in terms of the observations $\{Y_{u,v}:u\leq s_0,v\leq t\}$, with $s\leq s_0$. Finally, for the case $s_0=s$ and $t_0=t$, we give the expression of the second differential, in s and t, of $\hat{X}_{s,t}=\hat{X}_{s,t}^h(t_0)=\hat{X}_{s,t}^\nu(s_0)$ in terms of innovation processes appearing in the horizontal and vertical filtering equations.

§ 0 NOTATIONS

The random processes considered here will be indexed by $[o,S] \times [o,T] \subset \mathbb{R}^2$, where S and T are finite positive numbers^(*). For a second order centered process $X = \{X_{s,t} : (s,t) \in [o,S] \times [o,T]\}$, defined on a probability space (α,\underline{A},P) , $\underline{H}_{s,t}^X$ will denote the smallest Hilbert subspace of $L^2(\Omega,\underline{A},P)$ generated by $\{X_{u,v} : u \leq s,v \leq t\}$ and $\underline{F}_{s,t}^X$, the smallest σ -subalgebra generated by $\{X_{u,v} : u \leq s,v \leq t\}$ and all P-negligible sets of \underline{A} . If $Z \in L^2(\Omega,\underline{A},P)$ and if \underline{H} is a Hilbert subspace of

^(*) Throughout this work, the index set $[0,S] \times [0,T]$ can be replaced by $\mathbb{R}_+ \times \mathbb{R}_+$, with little precaution. In particular, this substitution would not bring any modification to the text of §1.

 $L^2(\Omega, \underline{A}, P)$, we shall denote by (Z/\underline{H}) the projection of Z onto \underline{H} . If $Y, Z \in L^2(\Omega, \underline{A}, P)$, we shall denote by (Z/Y) the projection of Z onto the subspace (of dimension 1) generated by Y.

For a random process $X = \{X_{s,t}: (s,t) \in [o,S] \times [o,T]\}$, we extend the domain of the parameters to negative numbers by putting $X_{s,t} = o$, when at least one of the parameters is negative. We denote by $\coprod_{S,t}^X V \coprod_{S,T}^X$ the smallest Hilbert space generated by $\coprod_{S,t}^X and \coprod_{S,T}^X$, Notice that $\coprod_{S,t}^X V \coprod_{S,T}^X = \coprod_{S,t}^X if t < 0$ and $\coprod_{S,t}^X V \coprod_{S,T}^X = \coprod_{S,t}^X if s < o$.

We shall write $(u,v) \le (s,t)$ for $u \le s$, $v \le t$, and (u,v) < (s,t) for $u \le s$, $v \le t$, $(u,v) \ne (s,t)$.

For two Hilbert spaces H $_1$ and H $_2$ such that H $_1$ $^{\subset}$ H $_2$, H $_2$ 0 H $_1$ will denote the orthogonal complement of H $_1$ in H $_2$.

§ 1. GAUSSIAN SIMPLE MARKOV PROCESSES

In this paragraph, $X = \{X_{s,t} : (s,t) \in [o,S] \times [o,T]\}$ will be a centered Gaussian process, defined on a given probability space (Ω,\underline{A},P) .

DEFINITION 1 : X will be called a horizontal Markov process, if

(1) for all s,t and
$$u \le s$$
, $(X_{s,t}/H_{u,T}^X) = (X_{s,t}/X_{u,t})$ and a vertical Markov process, if

(2) for all s,t and $v \le t$, $(X_{s,t}/H_{s,v}^X) = (X_{s,t}/X_{s,v})$ X will be called a <u>simple Markov process</u>, if it is a horizontal and a vertical Markov process.

We identify, here, random variables with their P-equivalence classes.

Conditions (1) and (2) are respectively equivalent to the following ones.

(1)'
$$\begin{cases} \text{for all } (u,v) \text{ and } (s,t) \text{ such that } u \leq s, v \geq t \\ (X_{s,t}/\frac{H}{u}^{X},v) = (X_{s,t}/X_{u,t}) \end{cases}$$

(2)'
$$\begin{cases} \text{for all } (u,v) \text{ and } (s,t) \text{ such that } u \geq s, v \leq t \\ (X_{s,t}/H_{u,v}^X) = (X_{s,t}/X_{s,v}) \end{cases}$$

PROPOSITION 1: If X is a simple Markov process, then

(3)
$$\begin{cases} \text{for all } (u,v) \text{ and } (s,t) \text{ such that } (u,v) \leq (s,t) \\ (X_{s,t}/\underline{H}_{u,v}^{X}) = (X_{s,t}/X_{u,v})^{(*)}. \end{cases}$$

Proof : For $(u,v) \leq (s,t)$, we have, according to (1) and (2)',

$$(X_{s,t}/\underline{\mu}_{u,v}^{X}) = ((X_{s,t}/\underline{\mu}_{u,T}^{X})/\underline{\mu}_{u,v}^{X}) = (aX_{u,t}/\underline{\mu}_{u,v}^{X})$$

= $a(X_{u,t}/\underline{\mu}_{u,v}^{X}) = abX_{u,v}$

where a and b are adequate constants. Therefore, condition (3) is satisfied.

The following corollary is an obvious consequence of the above proposition.

COROLLARY: If X is a simple Markov process, then for any increasing path C in [o,S] x[o,T], $\{X_{s,t}:(s,t)\in C\}$ is a one-parameter Markov process with respect to the filtration $\{\underline{F}_{s,t}^X:(s,t)\in C\}$, hence, with respect to its natural filtration.

Let K be the covariance function of X and let Φ be defined

by
$$\Phi((s,t),(u,v)) = \begin{cases} K((s,t),(u,v))K^{-1}((u,v),(u,v)) & \text{if } K((u,v),(u,v)) \neq 0 \\ 0 & \text{if } K((u,v),(u,v)) = 0 \end{cases}$$
 for $(u,v) < (s,t)$ and $\Phi((s,t),(s,t)) = 1$.

^(*) This implication is proved by Pascal LEFORT in his current research work on the Markov property of two-parameter processes. In [1], we had defined a simple Markov process as a process satisfying conditions (1), (2) and (3).

Notice that we have

(5)
$$(X_{s,t}/X_{u,v}) = \Phi((s,t),(u,v))X_{u,v}$$
 for $(u,v) \leq (s,t)$.

Using this equation, one can show that conditions (1), (2) and (3) are equivalent to following conditions (6), (7) and (8), respectively.

(6)
$$\begin{cases} \text{For all } (s,t), (u,v) \text{ and p such that } u \leq p \leq s \\ K((s,t),(u,v)) = \Phi((s,t),(p,t))K((p,t),(u,v)) \end{cases}$$

(7)
$$\begin{cases} \text{For all } (s,t), (u,v) \text{ and } q \text{ such that } v \leq q \leq t \\ K((s,t),(u,v)) = \Phi((s,t),(s,q))K((s,q),(u,v)) \end{cases}$$

(8)
$$\begin{cases} \text{ For all } (u,v), \ (p,q) \ \text{and} \ (s,t) \ \text{such that} \ (u,v) \leqslant (p,q) \leqslant (s,t) \\ K((s,t),(u,v)) = \Phi((s,t),(p,q))K((p,q),(u,v)) \end{cases}$$

Condition (8) implies that

(9) $\Phi((s,t),(u,v))=\Phi((s,t),(p,q))\Phi((p,q),(u,v))$ for $(u,v) \leq (p,q) \leq (s,t)$ and, according to the above corollary, if X is a simple Markov process, then for any increasing path C, the restriction of Φ to C^2 is the Markov transition function of the process $\{X_{s,t}:(s,t)\in C\}$.

PROPOSITION 2: For a simple Markov process X, the following orthogonality relation holds.

Proof: $\underline{\mathbb{H}}_{S,t}^{X} \theta \underline{\mathbb{H}}_{S,t}^{X}$ is generated by $\{X_{p,q} - (X_{p,q}/\underline{\mathbb{H}}_{S,t}^{X}) : p > s,q \leq t\}$ and $\underline{\mathbb{H}}_{S,T}^{X} \theta \underline{\mathbb{H}}_{S,t}^{X}$ is generated by $\{X_{u,v} - (X_{u,v}/\underline{\mathbb{H}}_{S,t}^{X}) : u \leq s,v > t\}$. Since, $(X_{p,q}/\underline{\mathbb{H}}_{S,t}^{X}) = (X_{p,q}/\underline{\mathbb{H}}_{S,T}^{X})$ and $X_{u,v} - (X_{u,v}/\underline{\mathbb{H}}_{S,t}^{X}) \in \underline{\mathbb{H}}_{S,T}^{X}$ for

p > s, q \leq t, u \leq s, v > t, we have $X_{p,q} - (X_{p,q}/\underline{\underline{H}}_{s,t}^X) \perp X_{u,v} - (X_{u,v}/\underline{\underline{H}}_{s,t}^X)$. From this, the relation (9) follows. The equivalence of this relation with the conditional independence of $\underline{\underline{F}}_{s,t}^X$ and $\underline{\underline{F}}_{s,T}^X$ with respect to $\underline{\underline{F}}_{s,t}^X$ is a known property of Gaussian spaces (cf. [4]).

PROPOSITION 3: If X is a simple Markov process, then, for (u,v) < (s,t), the random variable

(11)
$$\hat{X}_{s,t} = \Phi((s,t),(u,t))X_{u,t} + \Phi((s,t),(s,v))X_{s,v} - \Phi((s,t),(u,v))X_{u,v}$$
is the projection of $X_{s,t}$ onto $\coprod_{s,v}^{X} V \coprod_{u,T}^{X}$.

Proof: Since $\hat{X}_{s,t} \in \underline{H}_{S,v}^X \vee \underline{H}_{u,T}^X$, we only have to prove the orthogonality of $X_{s,t} = X_{s,t} - \hat{X}_{s,t}$ to $\underline{H}_{S,v}^X \vee \underline{H}_{u,T}^X$. Notice that this last space has the following orthogonal decomposition.

$$\underline{\mathbb{H}}_{S,v}^{X} \vee \underline{\mathbb{H}}_{u,T}^{X} = (\underline{\mathbb{H}}_{S,v}^{X} \Theta \underline{\mathbb{H}}_{u,v}^{X}) \oplus (\underline{\mathbb{H}}_{u,T}^{X} \Theta \underline{\mathbb{H}}_{u,v}^{X}) \oplus \underline{\mathbb{H}}_{u,v}^{X}.$$

Then

$$(\widetilde{X}_{s,t}/\underline{\underline{H}}_{S,v}^{X},\underline{V}\underline{\underline{H}}_{u,T}^{X}) = (\widetilde{X}_{s,t}/\underline{\underline{H}}_{S,v}^{X}) + (\widetilde{X}_{s,t}/\underline{\underline{H}}_{u,T}^{X}) - (\widetilde{X}_{s,t}/\underline{\underline{H}}_{u,v}^{X})$$

It can easily be verified that each of the projections of the righthand side is zero.

In [2], the Markov property of X was defined as follows:

With our convention of §0, in extending the domain of the parameters to negative numbers, one can deduce that, if X satisfies condition (12), then it satisfies conditions (1) and (2); thus X is a simple Markov process. Conversely, if X is a simple Markov process, according to Proposition 3, it satisfies condition (12). Therefore, conditions (1) and (2) together are equivalent to condition (12).

From now on, we suppose that X is a centered Gaussian simple Markov process.

We make the following hypothesis on the covariance function ${\sf K}$ of ${\sf X}$.

<u>HYPOTHESIS H</u>₁: K is continuous on $([o,S] \times [o,T])^2$, K((s,t),(s,t)) is strictly positive for st > o, K((s,o),(s,o)) is either identically null or strictly positive on [o,S] and K((o,t),(o,t)) is either identically null or strictly positive on [o,T].

Under this hypothesis K((s,t),(u,v)) is strictly positive for all s,t,u,v such that K((s,t),(s,t))K((u,v),(u,v)) > 0. In fact, any pair of different points (s,t) and (u,v) can be joined by a path consisting of at most one horizontal and one vertical line segments on each of which K is a one-parameter covariance function. Therefore, the proof of the mentioned property reduces to that of the one-parameter case (cf. [4], p. 55).

Suppose now that the function Φ , defined by (4), verifies the following hypothesis.

HYPOTHESIS H_2 : There exists a strictly positive continuous function $\varphi_{s,t}$, defined on [o,S] x[o,T], such that $\Phi((s,t),(u,v)) = \varphi_{s,t} \varphi_{u,v}^{-1}$ for all (u,v) for which K((u,v)(u,v)) > o. (We can always suppose $\varphi_{o,o} = 1$ by dividing φ by a constant, without changing (13). That is what we shall do).

Notice that, if K is strictly positive on $([0,S] \times [0,T])^2$, the function φ defined by

$$\varphi_{s,t} = K((s,t),(o,o))K^{-1}((o,o),(o,o))$$

verifies H_2 . More generally, if, for (p,q) < (s,t) in D, $\Phi((s,t),(p,q))$ has a strictly positive continuous limit $\varphi_{s,t}$, as $(p,q) \rightarrow (o,o)$ and if φ has a continuous and strictly positive extension to the entire domain $[o,S] \times [o,T]$, then this extension, denoted again by φ , verifies the hypothesis H_2 . In fact, for (p,q) < (u,v) < (s,t) in D, we have $\Phi((s,t),(p,q))\Phi^{-1}((u,v),(p,q)) = K((s,t),(p,q))K^{-1}((u,v),(p,q)) = K((s,t),(u,v))K^{-1}((u,v),(u,v))K((u,v),(p,q))K^{-1}((u,v),(p,q))$ = $\Phi((s,t),(u,v))$.

Therefore, for (u,v) < (s,t),

$$\varphi_{s,t}\varphi_{u,v}^{-1} = \lim_{(p,q) \to (o,o)} [\Phi((s,t),(p,q))\Phi^{-1}((u,v),(p,q))]$$
$$= \Phi((s,t),(u,v))$$

where the limit is to be taken for (p,q) < (u,v) in D.

PROPOSITION 4: Let M be defined by

(14)
$$M_{s,t} = K((s,t),(s,t))\varphi_{s,t}^{-2}, (s,t) \in [o,S] \times [o,T].$$
Then

(15)
$$K((s,t),(u,v)) = \varphi_{s,t} M_{s \wedge u,t \wedge v} \varphi_{u,v}$$
 for all $((s,t),(u,v)) \in ([o,S] \times [o,T])^2$, where \wedge stands for the infinum.

Proof: The proof can be obtained by a direct verification of the equality

 $K((s,t),(u,v)) = \varphi_{s,t}K((s_{\Lambda}u,t_{\Lambda}v),(s_{\Lambda}u,t_{\Lambda}v))\varphi_{s_{\Lambda}u,t_{\Lambda}v}^{-2}\varphi_{u,v}$ for all possible configurations of the line segment joining (u,v) to (s,t).

Now, we can characterize the process X in terms of a Gaussian strong martingale.

PROPOSITION 5: The process defined by $Z_{s,t} = \varphi_{s,t}^{-1} X_{s,t}$ is a (centered) Gaussian strong martingale with respect to the filtration $\{F_{s,t}^X:(s,t)\in[o,s]\times[o,T]\}$. Hence, Z has independent increments and $E(Z_{s,t}Z_{u,v})=M_{s_\Lambda u,t_\Lambda v}$, where M is defined by (14). In particular,

 $U_{s,t} = Z_{s,t} - Z_{o,t} - Z_{s,o} + Z_{o,o}$ defines a Gaussian strong martingale U with respect to the same filtration. Similarly, $U'_{s,o} = Z_{s,o} - Z_{o,o}$ and $U''_{o,t} = Z_{o,t} - Z_{o,o}$ define two Gaussian martingales U' and U", respectively, with respect to the filtrations $\{F_{s,o}^X:s\in[o,S]\}$ and $\{F_{o,t}^X:t\in[o,T]\}$. The random variable $X_{o,o}$ and the processes U, U' and U" are mutually independent.

Proof: We refer to [5] for the definition of a strong martingale. Let Z(](u,v),(s,t)] be the increment of Z between (u,v) and (s,t) with (u,v) < (s,t), i.e.

$$Z([(u,v),(s,t)]) = \varphi_{s,t}^{-1} X_{s,t} - \varphi_{s,v}^{-1} X_{s,v} - \varphi_{u,t}^{-1} X_{u,t} + \varphi_{u,v}^{-1} X_{u,v}.$$

In order to prove that Z is a strong martingale we only have to prove that the projection of the above increment onto $\underline{H}_{S,v}^X V \underline{H}_{u,T}^X$ is null. But, $\varphi_{s,t} Z([(u,v),(s,t)]) = X_{s,t} - \hat{X}_{s,t}$, where $\hat{X}_{s,t}$ is given by (11), and Proposition 3 says that the projection of $X_{s,t} - \hat{X}_{s,t}$ and, hence, of Z([(u,v),(s,t)]) onto $\underline{H}_{S,v}^X V \underline{H}_{u,T}^X$ is zero.

The fact that U is a strong martingale is due to the equality of the increments of U to those of Z.

As a consequence of Proposition 3, $\{Z_{s,o}:s\in[o,S]\}$ and hence U' is a martingale with respect to $\{F_{s,o}^X:s\in[o,S]\}$. A similar argument holds for U". The independence of $X_{o,o}$, U', U" and U is due to the fact that these quantities are increments of Z and that Z has independent increments.

We can say more about the representation of X in terms of martingales, if the function M, defined by (14), verifies the following hypothesis.

 $\frac{\text{HYPOTHESIS H}_3}{\text{such that}}$: There exist square integrable functions G, G' and G"

$$M_{s,t} - M_{o,t} - M_{s,o} + M_{o,o} = \int_{0}^{s} \int_{0}^{t} G_{u,v}^{2} dv du$$

$$M_{s,o} - M_{o,o} = \int_{0}^{s} (G_{u}^{i})^{2} du$$

$$M_{o,t} - M_{o,o} = \int_{0}^{t} (G_{v}^{u})^{2} dv.$$

- THEOREM 1: Under hypotheses H_1 , H_2 and H_3 , there exist one-parameter Wiener processes $B' = \{B'_s : s \in [o,S]\}$ and $B'' = \{B''_t : t \in [o,T]\} \text{ and a two-parameter Wiener process}$ $B = \{B_s, t : (s,t) \in [o,S] \times [o,T]\} \text{ such that } X_{o,o}, B', B'' \text{ and } B \text{ are mutually independent and}$
- (16) $X_{s,t} = \varphi_{s,t}[X_{o,o} + \int_{o}^{s} G_{u}^{\dagger}dB_{u}^{\dagger} + \int_{o}^{t} G_{v}^{\dagger}dB_{v}^{\dagger} + \int_{o}^{s} \int_{o}^{t} G_{u,v}dB_{u,v}].$ Conversely, if φ , G', G', G', G, $X_{o,o}$, B', B'' and B are as above, then the process X defined by (16) is a centered Gaussian simple Markov process verifying hypotheses H_{1} , H_{2} and H_{3} . In both cases, X has a modification with continuous trajectoires.

Proof: Notice first that the right hand side of (16) devided by $\varphi_{s,t}$ should represent $Z_{s,t}$ defined in Proposition 5. Consider the martingale U of the same proposition. U is null on the coordinate axes and has independent increments. If $|G_{s,t}| > 0$ for almost all (s,t), then a Wiener measure B can be defined by $dB_{s,t} = G_{s,t}^{-1} dU_{s,t}$ and we have $U_{s,t} = \int_0^s \int_0^t G_{u,v} dB_{u,v}$. If not, let $D = \{(s,t): |G_{s,t}| > 0\}$ and define

a Wiener measure \overline{B} on D by $d\overline{B}_{s,t} = G_{s,t}^{-1} dU_{s,t}$ and take any other Wiener measure \overline{B} on $[o,S] \times [o,T] \setminus D$, independent of X; then, put $B = \overline{B} + \overline{B}$. U has again the same representation in terms of B. The Wiener process B considered in the theorem is generated by the Wiener measure B of the proof. The process B and the corresponding stochastic integral $\int_{0}^{S} \int_{0}^{t} G_{u,v} dB_{u,v} \text{ have continuous modifications (cf. [6])}.$

The construction of B' and B" can be made in the same way, by starting, respectively, from the martingales U' and U" of Proposition 5. The independence of $X_{0,0}$, B, B' and B" is a consequence of this proposition.

The proof of the converse part of the theorem is a matter of direct verification.

§ 2. LINEAR FILTERING

We consider the following "state and observation" model for the filtering problem.

The state process or the signal X is a continuous Gaussian simple Markov process defined by

(1)
$$X_{s,t} = \varphi_{s,t} \int_{0}^{s} \int_{0}^{t} \varphi_{u,v}^{-1} G_{u,v} dB_{u,v}, (s,t) \in [0,S] \times [0,T]$$

where φ is a continuous strictly positive random function having continuous first partial derivatives $\frac{\partial \varphi}{\partial s}$, $\frac{\partial \varphi}{\partial t}$; B is a continuous Wiener process and G is a square-integrable non-random function.

The observation process Y is defined by

(2)
$$Y_{s,t} = \int_{0}^{s} \int_{0}^{t} H_{u,v} X_{u,v} dv du + W_{s,t}$$
,

where H is a continuous non-random function and W is a continuous Wiener process, independent of B.

For some regularity properties of the probability space (Ω,\underline{A},P) on which the processes considered in the above model are defined, we shall identify it with the canonical space of (B,W).

We shall put $\underline{G}_S = \bigcap_{u>S} \underline{F}_{u,T}^Y$ and denote by \underline{G} the filtration $\{\underline{G}_S,s\in[o,S]\}$ and by L^2 the space $L^2(\Omega\times[o,S]\times[o,T],\underline{A}\boxtimes\underline{B},dP\boxtimes dS\boxtimes dt)$, where \underline{B} is the Borel σ -algebra of $[o,S]\times[o,T]$. Let $\underline{B}_{[o,S]}$ (resp. $\underline{B}_{[o,T]}$) the Borel σ -algebra of [o,S] (resp. [o,T]). If \underline{P}' denotes the σ -algebra of \underline{G} -predictable sets of $\underline{A}\boxtimes\underline{B}_{[o,S]}$, then we shall denote by \underline{P} the product σ -algebra $\underline{P}'\boxtimes\underline{B}_{[o,T]}$ and by $L^2(\underline{P})$ the Hilbert subspace of L^2 generated by all \underline{P} -measurable elements of L^2 . The space $L^2([o,T],\underline{B}_{[o,T]},dt)$ will be denoted by $L^2(dt)$.

DEFINITION 2: For a process Z in L^2 , the <u>G-predictable projection</u> Z^p of Z will be defined by the conditional expectation of Z with respect to the σ -algebra \underline{P} and the measure $dP \otimes ds \otimes dt$.

The predictable projection in the sense of the above definition can be constructed as follows, by using the notion of predictable projection in the sense of [7]. Let Z be a process defined by

(3)
$$Z_{s,t} = U 1_{[u,s]}(s) 1_{[v,T]}(t)$$

where U is a bounded random variable and let $\{U_s: s \in [o,S]\}$ be the right-continuous version of the martingale $\{E(U/\underline{G}_S): s \in [o,S]\}$. Let us put

(4)
$$Z_{s,t}^p = U_{s-1}u_{s}(s) 1_{v,T}(t)$$
,

where $U_{s-1}u_{s}(s)$ coincides with the \underline{G} -predictable projection of $U_{u,s}(s)$ in the sense of [7]. Notice that, for almost all s, $Z_{s,t}^p$ is a version of $E(Z_{s,t}/\underline{G}_s)$. On the other hand, the space $L^2(\underline{P})$ is generated by processes of type

$$L_{s,t} = V_{lu',S}(s)_{lv',T}(t)$$
,

where V is a bounded $\underline{\underline{G}}_u$ -measurable random variable. (There is no loss of generality in choosing V \geqslant o). By using the fact that the measure dP \mathbb{B} ds commutes with predictable projections (cf. [7], T30, p. 107), we find

$$E \int_{0}^{S} \int_{0}^{T} (Z_{s,t} - Z_{s,t}^{p}) L_{s,t} dt ds = 0.$$

Therefore, the process Z^p is the predictable projection of Z in the sense of the above definition. Now, let Z be an arbitrary element of L^2 and let $\{Z_n:n\in\mathbb{N}\}$ be a sequence consisting of processes that are linear combinations of processes of type (3) and converging to Z in L^2 . (The space L^2 is generated by processes of type (3)). To each Z_n there corresponds a process Z_n^p defined as linear combinations of processes of type (4) and the sequence $\{Z_n^p,n\in\mathbb{N}\}$ converges to the predictable projection Z^p of Z as defined in Definition 2. Therefore, there exists a subsequence $\{Z_{k_n}^p,n\in\mathbb{N}\}$ such that, for almost all $\{s,t\}$, $\{Z_{k_n,s,t}^p,t^n\in\mathbb{N}\}$ converges to $Z_{s,t}^p$ in $L^2(\Omega,\underline{A},P)$. From this, we deduce that, for each $Z\in L^2$ and for almost all $\{s,t\}$, $Z_{s,t}^p$ is a version of the conditional expectation $E(Z_{s,t}/\underline{G}_s)$.

Now, let us consider the following $\underline{\text{horizontal evolution equation for } X$.

(5)
$$X_{s,t} = \int_0^s \frac{\partial \varphi_{u,t}}{\partial u} \varphi_{u,t}^{-1} X_{u,t} du + \int_0^s \int_0^t \varphi_{u,t} \varphi_{u,v}^{-1} G_{u,v} dB_{u,v}.$$

X, Y, W and the system noise, represented here by the last term in (5), have continuous trajectoires. Therefore, for fixed s, X_s , W_s , and $\int_0^S \int_0^{\cdot} \varphi_u, \varphi_u^{-1} G_{u,v} dB_{u,v} \text{ can be considered as taking their values in } L^2(\text{dt}) = L^2([o,T], \underline{B}_{[o,T]}, \text{dt}).$

If $U = \{U_{s,t} : (s,t) \in [o,S] \times [o,T]\}$ is a process such that, for all s and almost all $\omega \in \Omega$, $U_{s,\cdot}(\omega) \in L^2(dt)$, we shall denote by $U = \{U_s, s \in [o,S]\}$ the corresponding $L^2(dt)$ -valued process. We shall denote by $\|\cdot\|$ and $<\cdot,\cdot>$, respectively, the norm and the scalar product on $L^2(dt)$.

The covariance operator of W_S is sW, where W is the nuclear operator on L²(dt), the kernel of which is $t \wedge \tau$, i.e. $\forall f,g \in L^2(dt)$ $E[\langle W_S, f \rangle \langle W_S, g \rangle] = s \langle Wf, g \rangle = s \int_0^T \int_0^T t \wedge \tau f(t)g(\tau)dt d\tau$. The operator W is called the covariance operator of W. We define the bounded linear operator H_S on L²(dt) by

$$(H_{S}f)(t) = \int_{0}^{t} H_{S,V} f_{V} dV$$
, $f \in L^{2}(dt)$

Consequently, equation (2) can be written as

(6)
$$Y_S = \int_0^S H_u X_u du + W_S$$
.

<u>DEFINITION 3</u>: Let X^p be the <u>G</u>-predictable projection of the state process x. Then the process y defined by

(7)
$$v_{s,t} = Y_{s,t} - \int_{0}^{s} \int_{0}^{t} H_{u,v} X_{u,v}^{p} dv du$$

will be called the horizontal innovation process of Y

Notice that, as an $L^2(\mbox{dt})\mbox{-valued process, }\nu$ can be defined by

(8)
$$v_s = Y_s - \int_0^s H_u X_u^p du .$$

PROPOSITION 6: The L²(dt)-valued process $v = \{v_s : s \in [o,S]\}$ is a \underline{G} -Brownian motion with covariance operator \underline{W} . In particular, $\{v_{s,t} : (s,t) \in [o,S] \times [o,T]\}$ is a two-parameter Wiener process such that for all s' < s, $\{v_{s,t} - v_{s',t} : t \in [o,T]\}$ is independent of $\underline{G}_{s'}$.

Proof: We refer to [8] for the definition and properties of a Hilbert space-valued Brownian motion. Notice first that ν can be written as

(9)
$$\begin{cases} v_{s,t} = \int_{0}^{s} \int_{0}^{t} H_{u,v} \widetilde{X}_{u,v} dv du + W_{s,t} \\ v_{s} = \int_{0}^{s} H_{u} \widetilde{X}_{u} du + W_{s} \end{cases}$$

where $\widetilde{X}_{u,v} = X_{u,v} - X_{u,v}^p$. It is a matter of easy verification that v is square-integrable, i.e. $E\|v_S\|^2 < \infty$, and it is strongly continuous as an $L^2(dt)$ -valued process. To prove that v is a \underline{G} -Brownian motion, according to [8], it is enough to show that, for all $f \in L^2(dt)$, $\{\langle v_S, f \rangle : S \in [0,S]\}$ is a \underline{G} -martingale, and for all $f,g \in L^2(dt)$ and all s' < s

$$E[\langle v_s - v_{s'}, f \rangle \langle v_s - v_{s'}, g \rangle / \underline{G}_{s'}] = (s-s') \langle Wf, g \rangle.$$

These two properties can be proved in exactly the same way as in the proof of the well known innovation theorem of the one-parameter filtering problem ([9], Lemma 2.2). The second part of the proposition is an immadiate consequence of the first. ■

Let us consider the process $\{E(X_{s,t}/\underline{G}_s):t\in[0,T]\}$, for fixed s. As $\{X_{s,t}:t\in[0,T]\}$ is continuous in the quadratic mean, the same goes for this process. It has therefore, a measurable version (in t) which is what we shall consider below.

PROPOSITION 7: Let M be defined by

(10)
$$M_{s,t} = E(X_{s,t}/\underline{G}_s) - \int_0^s \frac{\partial \varphi_{u,t}}{\partial u} \varphi_{u,t}^{-1} X_{u,t}^p du.$$

Then $M = \{M_s : s \in [o,S]\}$ is a square-integrable $L^2(dt)$ -valued Gaussian \underline{G} -martingale. Moreover, for almost all t, $\{M_{s,t} : s \in [o,S]\}$ also is a Gaussian \underline{G} -martingale.

Proof: The square-integrability of M_S is easy to show by direct computation. For s'<s and $f \in L^2(dt)$, we have

$$E[\langle M_s - M_{s'}, f \rangle / \underline{G}_s] = E[\langle \int_{s'}^{s} \int_{0}^{\cdot} \varphi_u, \varphi_{u,v}^{-1} G_{u,v} dB_{u,v}, f \rangle / \underline{G}_s] = 0.$$

This shows that M is an $L^2(dt)$ -valued \underline{G} -martingale. The proof of the last part of the proposition is similar.

In the sequel, we shall only consider the right continuous modification for the process $\{E(X_S, /_{\subseteq S}), s \in [0,S]\}$, taken as an $L^2(dt)$ -valued process, that we shall denote by $X^0 = \{X_S^0 : s \in [0,S]\}$. We shall rather write equation (10) as follows :

(11)
$$M_{s,t} = X_{s,t}^{0} - \int_{0}^{s} \frac{\partial \varphi_{u,t}}{\partial u} \varphi_{u,t}^{-1} X_{u,t}^{p} du,$$

keeping in mind that $X_{s,t}^0$ is a version of $E(X_{s,t}/\underline{G}_s)$ and, as an $L^2(dt)$ -valued process X^0 is right-continuous. Notice that $X_{s,t}^0 = X_{s,t}^p$ a.s. for almost all (s,t).

Let P_s be the covariance operator of $\widetilde{X}_s = X_s - X_s^0$, defined by $E[\langle \widetilde{X}_s, f \rangle \langle \widetilde{X}_s, g \rangle] = \langle P_s f, g \rangle, \qquad f, g \in L^2(dt).$

Then P_s is a symmetric nuclear operator the kernel of which is defined by

$$P_{s}(t,\tau) = E[(X_{s,t} - X_{s,t}^{o}) (X_{s,\tau} - X_{s,\tau}^{o})]$$

$$= E[(X_{s,t} - X_{s,t}^{p}) (X_{s,\tau} - X_{s,\tau}^{p})]$$

for almost all s,t,τ .

PROPOSITION 8 : Let K be defined by

(12)
$$K_{S}(t,\tau) = P_{S}(t,\tau) H_{S,\tau}$$

for almost all s,t, τ . Then the martingale M defined by (11) thas the following representation

(13)
$$M_{s,t} = \int_{0}^{s} \int_{0}^{T} K_{u}(t,v) dv_{u,v}$$

for almost all t.

Proof: For the proof of the representation (13), we refer to the representation theorem 2.6 in [3]. Let M be an L²(dt)-valued square-integrable G-martingale. Then there exists a G-predictable process Ψ with values in the Hilbert space of (not necessarily bounded) linear operators in L²(dt) such that $\int_0^S E[\operatorname{tr}(\Psi_u \, \mathcal{W} \, \Psi_u^{\mu})] \, du < \infty$, where Ψ^{μ} is the adjoint of Ψ_u , and that

(14)
$$M_{s} = \int_{0}^{s} \Psi_{u} d\nu_{u}.$$

(Cf. [10] for the definition of this kind of stochastic integrals).

Let the representation of the martingale M of Proposition 7 be given by (14). Then, for almost all t,

(15)
$$M_{s,t} v_{s,\tau} - \int_{0}^{s} \int_{0}^{\tau} P_{u}(t,v)H_{u,v} dv du$$

is a \underline{G} -martingale in terms of s. To see this, it is enough to apply the Ito differentiation rule to $M_{s,t}$ $v_{s,\tau}$ and take the conditional expectation with respect to $\underline{G}_{s'}$ for s'<s. This part of the proof is similar to that of Proposition 2.11 in [3]. Considered as an operator, the integral term of (15) can be written as $\int_0^s P_u H_u^x du$. This, with the above mentioned representation theorem, implies that M_s has the following representation

$$M_s = \int_0^s P_u H_u^* W^+ dv_u$$
,

as given in Theorem 2.12 in [3], where \mathfrak{W}^+ is the pseudo-inverse of \mathfrak{W}^- defined by

$$W^+f = \lim_{n \to \infty} [(\int_0^n \exp[(s-n)w^2] ds) W f]$$
, $f \in rg W$

with the limit taken in $L^2(dt)$. Notice that $P_u \stackrel{\times}{H_u} \stackrel{\times}{\mathbb{W}}^+$ is a non-random operator. Then, for almost all t, $M_{s,t}$ is an element of $\stackrel{\times}{\underline{H}}_{s,T}^{\nu}$. Therefore, by taking the mathematical expectation of (15), which equals o, we obtain

$$E(M_{s,t}v_{s,\tau}) = \int_{0}^{s} \int_{0}^{\tau} K_{u}(t,v)dv du = E[(\int_{0}^{s} \int_{0}^{\tau} K_{u}(t,v)dv_{u,v})v_{s,\tau}]$$

From this, follows representation (13).

Let us consider now the equation

(16)
$$U_{s,t} = \int_0^s \frac{\partial \varphi_{u,t}}{\partial u} \varphi_{u,t}^{-1} U_{u,t} du + \int_0^s \int_0^T K_u(t,v) dv_{u,v}$$

and let Z be a measurable version of

(17)
$$Z_{s,t} = \varphi_{s,t} \int_{0}^{s} \int_{0}^{T} \varphi_{u,t}^{-1} K_{u}(t,v) dv_{u,v}$$
.

The existence of a measurable version of Z is guaranteed by the measurability of its covariance function. By substituting U by Z in (16), it can be verified that Z satisfies equation (16).

We want to show that if equation (16) is satisfied a.e. $dP \cdot ds \cdot dt$ by two different processes U and U' in L^2 , then U = U' a.e. $dP \cdot ds \cdot dt$. In this case, we can also replace $K_u(t,v)$ in (16) and (17) by any other measurable function equal to K for almost all u, v, t.

Suppose that we have two processes U and U' in L^2 satisfying equation (16) a.e. dP m ds m dt. Then Y = U-U' satisfies the equation

$$Y_{s,t} = \int_{0}^{s} \frac{\partial \varphi_{u,t}}{\partial u} \varphi_{u,t}^{-1} Y_{u,t} du$$

a.e. dP m ds m dt. Then we have

$$\begin{split} E(Y_{s,t}^2) &\leqslant \int_0^s F_{u,t}^2 \, du \quad \int_0^s E(Y_{u,t}^2) \, du \\ &\leqslant A \quad \int_0^s E(Y_{u,t}^2) \, du \qquad \text{a.e.} \qquad ds \, \text{e} \, dt \; , \end{split}$$

where $F_{u,t} = \frac{\partial \varphi_{u,t}}{\partial u} \varphi_{u,t}^{-1}$ and A is an upper bound, independent of (s,t), of the integral in which F appears. Let us put

$$f_{s,t} = \int_{0}^{s} E(Y_{u,t}^{2}) du.$$

Then the above inequality becomes

$$\frac{\partial f_{s,t}}{\partial s} - A f_{s,t} \leq 0 \quad \text{a.e.} \quad ds \otimes dt ,$$

which gives, after multiplication by e^{-As} ,

$$\frac{\partial}{\partial s} (e^{-As} f_{s,t}) \le 0$$
 a.e. ds@dt'.

Therefore,

$$\int_{0}^{S} \frac{\partial}{\partial s} (e^{-As} f_{s,t}) ds = e^{-AS} f_{s,t} \le 0 \quad a.e. \quad dt.$$

This is possible only if, for almost all t, $f_{S,t} = o$. Consequently we have $\int_{0}^{S} \int_{0}^{T} E(Y_{s,t}^{2}) dt ds = o$.

Equation (11) and representation (13) show that X^p and X^o satisfy equation (16) a.e. $dP \otimes ds \otimes dt$. Therefore, $Z = X^p = X^o$ a.e. $dP \otimes ds \otimes dt$. Then, according to (7), we have

$$\gamma_{s,t} = \int_0^s \int_0^t H_{u,v} Z_{u,v} dv du + v_{s,t}$$
 a.s.

This implies that $Y_{s,t}$ is an element of $\underline{\underline{H}}_{s,T}^{\nu}$. Hence $\underline{\underline{H}}_{s,T}^{\gamma} \subseteq \underline{\underline{H}}_{s,T}^{\nu}$. Consequently, the filtration $\underline{\underline{G}}$ coincides with $\{\underline{\underline{F}}_{s,T}^{\nu}: s \in [o,S]\}$ and is, therefore, continuous. All these imply that $\underline{\underline{G}}_{s}$ is generated by $\underline{\underline{H}}_{s,T}^{\gamma} = \underline{\underline{H}}_{s,T}^{\nu}$.

Moreover, by using the continuity of \underline{G} , one can show that, as function of (s,t), $E(X_{s,t}/\underline{G}_s)$ is continuous in the quadratic mean. Hence, $P_s(t,\tau)$ can be chosen as a continuous function of (s,t,τ) . That is what we shall do in the sequel. In this case, the process Z defined by (17) is continuous in the quadratic mean. Therefore, $Z_{s,t}$ is a version of $E(X_{s,t}/\underline{G}_s)$ for all (s,t).

Notice that, for any fixed t, $\{Z_{s,t}:s\in[o,S]\}$ has a continuous version satisfying (16) and, being continuous in the quadratic mean, for any fixed s, $\{Z_{s,t}:t\in[o,T]\}$ has a measurable version. Therefore, there exists a measurable process $\hat{X}=\{\hat{X}_{s,t}:(s,t)\in[o,S] \times [o,T]\}$ such that, for any fixed t, $\{\hat{X}_{s,t}:s\in[o,S]\}$ has continuous trajectoires and, for all (s,t), $\hat{X}_{s,t}=Z_{s,t}$ a.e. hence a version of $E(X_{s,t}/\underline{G}_s)$, (cf. [11]).

Noting that nothing would change in the above conclusions if T were replaced by $t_0 \in [0,T]$, we shall summarize the main results by the following theorem.

THEOREM 2: The process $\{E(X_{s,t}/F_{s,t_0}^Y): (s,t)\in[o,S] \times [o,t_0]\}$ is continuous in the quadratic mean and has a measurable modification $\hat{X}^h(t_0) = \{\hat{X}^h_{s,t}(t_0): (s,t)\in[o,S] \times [o,t_0]\}$ such that, for any fixed t, $\{\hat{X}^h_{s,t}(t_0): s\in[o,S]\}$ is continuous. Let $P^h_s(t,\tau;t_0)$ and $K^h_s(t,\tau;t_0)$ be defined respectively by

(18)
$$P_{s}^{h}(t,\tau;t_{o}) = E[(X_{s,t} - \hat{X}_{s,t}^{h}(t_{o}))(X_{s,\tau} - \hat{X}_{s,\tau}^{h}(t_{o}))],$$

(19)
$$K_s^h(t,\tau;t_0) = P_s^h(t,\tau;t_0) H_{s,\tau}$$
,

and let the horizontal innovation process of height $\mathbf{t}_{_{\mathbf{0}}}$ be defined by

(20)
$$v_{s,t}^{h}(t_{o}) = Y_{s,t} - \int_{0}^{s} \int_{0}^{t} H_{u,v} \hat{X}_{u,v}^{h}(t_{o}) dv du .$$
Then $\hat{X}^{h}(t_{o})$ satisfies the following horizontal filtering equation

(21)
$$\hat{X}_{s,t}^{h}(t_{o}) = \int_{0}^{s} \frac{\partial \varphi_{u,t}}{\partial u} \varphi_{u,t}^{-1} \hat{X}_{u,t}^{h}(t_{o}) du + \int_{0}^{s} \int_{0}^{t_{o}} K_{u}^{h}(t,v;t_{o}) dv_{u,v}^{h}(t_{o}) dv$$

(22)
$$\hat{X}_{s,t}^{h}(t_{o}) = \varphi_{s,t} \int_{0}^{s} \int_{0}^{t_{o}} \varphi_{u,t}^{-1} K_{u}^{h}(t,v;t_{o}) dv_{u,v}^{h}(t_{o}).$$

Moreover, the kernel $P_s^h(t,\tau;t_0)$ satisfies the following Riccati equation.

(23)
$$\frac{\partial P_{s}^{h}(t,\tau;t_{0})}{\partial s} = \frac{\partial \varphi_{s,t}}{\partial s} \varphi_{s,t}^{-1} P_{s}^{h}(t,\tau;t_{0}) + P_{s}^{h}(t,\tau;t_{0}) \frac{\partial \varphi_{s,\tau}}{\partial s} \varphi_{s,\tau}^{-1}$$
$$- \int_{0}^{t_{0}} P_{s}^{h}(t,v;t_{0}) H_{s,v}^{2} P_{s}^{h}(v,\tau;t_{0}) dv + \varphi_{s,t} (\int_{0}^{t_{0}} v_{s,v}^{-2} G_{s,v}^{2} dv) \varphi_{s,\tau},$$
with $P_{s}^{h}(t,\tau;t_{0}) = 0$ for $st\tau = 0$.

Proof: We only have to establish the Riccati equation. By putting $\tilde{X} = \hat{X} - X^h(t_0)$ and considering equations (5), (21), (2) and (20), we get

$$\widetilde{X}_{s,t} = \int_{0}^{s} \frac{\partial \varphi_{u,t}}{\partial u} \varphi_{u,t}^{-1} \widetilde{X}_{u,t} du + \int_{0}^{s} \int_{0}^{t} \varphi_{u,t} \varphi_{u,v}^{-1} G_{u,v} dB_{u,v}$$
$$- \int_{0}^{s} \int_{0}^{t_{0}} K_{u}^{h}(t,v;t_{0}) [H_{u,v} \widetilde{X}_{u,v} dv du + dW_{u,v}],$$

and we obtain equation (23) by applying the Ito differentiation formula to $\widetilde{X}_{s,t}$ $\widetilde{X}_{s,\tau}$ as function of s and by taking the mathematical expectation. =

By interchanging the roles of s and t, we obtain similar results for the vertical filtering problem.

THEOREM 2': The process $\{E(X_{s,t}/F_{s,t}^{Y}): (s,t) \in [0,s_0] \times [0,T]\}$, with $o < s_{\Omega} \le S$, is continuous in the quadratic mean and has a measurable modification $\hat{X}^{v}(s_{0}) = {\hat{X}^{v}_{s_{1},t}(s_{0}) : (s,t) \in [o,s_{0}] \times [o,T]}$ such that, for any fixed s, $\{\hat{X}_{s,t}^{v}(s_{0}):t\in[0,T]\}$ is continuous. Let $P_t^v(s,\sigma;s_0)$ and $K_t^v(s,\sigma;s_0)$ be defined respectively by $P_{t}^{v}(s,\sigma;s_{0}) = E[X_{s,t} - \hat{X}_{s,t}^{v}(s_{0})](X_{\sigma,t} - \hat{X}_{\sigma,t}^{v}(s_{0}))]$

(18')

(19')
$$K_{t}^{v}(s,\sigma;s_{0}) = P_{t}^{v}(s,\sigma;s_{0}) H_{\sigma,t}$$

and let the vertical innovation process of width \boldsymbol{s}_{o} be defined by

(20')
$$v_{s,t}^{v}(s_{o}) = Y_{s,t} - \int_{0}^{s} \int_{0}^{t} H_{u,v} \hat{X}_{u,v}^{v}(s_{o}) dv du$$
.

Then $\hat{X}^{\upsilon}(s_0)$ satisfies the following vertical filtering equation

(21')
$$\hat{X}_{s,t}^{v}(s_{0}) = \int_{0}^{t} \frac{\partial \varphi_{s,v}}{\partial v} \varphi_{s,v}^{-1} \hat{X}_{s,v}^{v}(s_{0}) dv + \int_{0}^{s_{0}} \int_{0}^{t} K_{v}^{v}(s,u;s_{0}) dv_{u,v}^{v}(s_{0})$$

and has the following explicit expression

(22')
$$\hat{X}_{s,t}^{v}(s_{0}) = \varphi_{s,t} \int_{0}^{s_{0}} \int_{0}^{t} \varphi_{s,v}^{-1} K_{v}^{v}(s,u;s_{0}) dv_{u,v}^{v}(s_{0}) .$$

The kernel $P_t^v(s,\sigma;s_0)$ satisfies the Riccati equation :

(23')
$$\frac{\partial P_{t}^{v}(s,\sigma;s_{0})}{\partial t} = \frac{\partial \varphi_{s,t}}{\partial t} \varphi_{s,t}^{-1} P_{t}^{v}(s,\sigma;s_{0}) + P_{t}^{v}(s,\sigma;s_{0}) \frac{\partial \varphi_{\sigma,t}}{\partial t} \varphi_{\sigma,t}^{-1}$$
$$-\int_{0}^{s_{0}} P_{t}^{v}(s,u;s_{0}) H_{u,t}^{2} P_{t}^{v}(u,\sigma;s_{0}) du + \varphi_{s,t} (\int_{0}^{s_{0}} A^{\sigma} \varphi_{u,t}^{-2} G_{u,t}^{2} du) \varphi_{\sigma,t},$$
with $P_{t}^{v}(s,u;s_{0}) = 0$ for tus = 0.

We may call any version of $E(X_{s,t}/F_{s,t}^{\gamma})$ a <u>causal estimation</u> of $X_{s,t}$ in terms of Y. It is clear that $\hat{X}_{s,t}^{h}(t)$ and $\hat{X}_{s,t}^{v}(s)$ are causal estimations of $X_{s,t}$.

Let us put $\hat{X}_{s,t} = \hat{X}_{s,t}^h(t) = \hat{X}_{s,t}^v(s)$ a.s.. For any fixed t, the process $\{\hat{X}_{s,t}: s \in [o,S]\}$ has a continuous version defined by

(24)
$$\hat{X}_{s,t} = \varphi_{s,t} \int_{0}^{s} \int_{0}^{t} \varphi_{u,t}^{-1} K_{u}^{h}(t,v;t) dv_{u,v}^{h}(t)$$

and satisfying the equation

(25)
$$\hat{X}_{s,t} = \int_{0}^{s} \frac{\partial \varphi_{u,t}}{\partial u} \varphi_{u,t}^{-1} \hat{X}_{u,t} du + \int_{0}^{s} \int_{0}^{t} K_{u}^{h}(t,v;t) dv_{u,v}^{h}(t)$$
.

Similarly, for any fixed s, the process $\{\hat{x}_{s,t}:t\in[o,T]\}$ has a continuous version defined by

(24')
$$\hat{X}_{s,t} = \varphi_{s,t} \int_{0}^{s} \int_{0}^{t} \varphi_{s,v}^{-1} K_{v}^{v}(s,u;s) dv_{u,v}^{v}(s)$$

and satisfying the equation

(25')
$$\hat{X}_{s,t} = \int_{0}^{t} \frac{\partial \varphi_{s,v}}{\partial v} \varphi_{s,v}^{-1} \hat{X}_{s,v} dv + \int_{0}^{s} \int_{0}^{t} K_{v}^{v}(s,u;s) dv_{u,v}^{v}(s) .$$

We do not know yet whether or not \bar{X} has a continuous version as a two-parameter process.

For numerical applications, it would be interesting to express $\hat{X}_{s+ds,t+dt}$, for ds > o and dt > o, in terms of $\hat{X}_{s+ds,t}$, $\hat{X}_{s,t+dt}$ and $\hat{X}_{s,t}$, that is, to have a two-parameter recursive filtering equation. We could find this equation in [1] only by extending, in a rather formal way, the results obtained in [12] for the case of discrete parameters. This equation is the following

(26)
$$d(\varphi_{s,t}^{-1} \hat{X}_{s,t}) = \varphi_{s,t+dt}^{-1} K_{s}^{h}(t+dt,t;t+dt) dv_{s,t}^{h}(t+dt) + \int_{0}^{t} d_{t}[\varphi_{s,t}^{-1} K_{s}^{h}(t,v;t)] dv_{s,v}^{h}(t) + \int_{0}^{s} d_{s}[\varphi_{s,t}^{-1} K_{t}^{v}(s,u;s)] dv_{u,t}^{v}(t)$$

where d denotes the second differential in s and t, d_s and d_t denote respectively the first differentials in s and in t. The first term of the right hand side can be replaced by φ_{s+ds}^{-1} , $t_t^v(s+ds,s;s+ds)dv_{s+ds}^v(s+ds)$.

At the view of equation (26), it seems difficult to represent $\hat{X}_{s,t}$ as the sum of stochastic integrals in terms of various innovations. For the non-linear filtering of two-parameter semi-martingales such a representation was obtained in [13]. We hope to be able to extend the method of [13] to the Gaussian case in a forthcoming publication.

We would like to mention that linear filtering equations of type (21), (21') and (26) were given by E. WONG in [14] where the martingale representation (13) was introduced without proof. Apart from providing all the tools for establishing the linear filtering equations, the extension of the method used in [13] to the Gaussian case will, we hope, also contain the proof of such martingale representation theorems.

REFERENCES

- H. KOREZLIOGLU, "Recursive Linear Filtering of Two-Parameter Gaussian Markov Processes", Proceedings of the Eight Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, Prague, August 28-Sept. 1, 1978.
- D. NUALART & M. SANZ, "Random Gaussian Markov Fields" Technical
 Report, Departamento de Matematicas, Escuela Técnica Superior de Arquitectura, Barcelona.
- 3. J.-Y. OUVRARD, "Martingale Projection and Linear Filtering in Hilbert Spaces. I: The Theory", SIAM J. Control and Optimisation, Vol. 16, N° 6, p.p. 912-937, 1978.
- 4. J. NEVEU, Processus aléatoires gaussiens, Presses de l'Université de Montréal, 1968.
- 5. R. CAIROLI & J.B. WALSH, "Stochastic Integrals in the Plane",
 Acta Math. 134, p.p. 111-183, 1975.
- E. WONG & M. ZAKAI, "Martingales and Stochastic Integrals for Processes with a Multidimensional Prameter", Z. Wahrschein.
 Verw. Gebiete, 29, p.p. 109-122, 1974.

- 7. C. DELLACHERIE, Capacité et processus stochastiques, Springer-Verlag, 1972.
- 8. M. YOR, "Existence et unicité de diffusions à valeurs dans un espace de Hilbert", Ann. Inst. Henri Poincaré, Vol. X, N° 1, p.p. 55-88, 1974.
- 9. M. FUJISAKI, M. KALLIANPUR & H. KUNITA, "Stochastic Differential Equation for the Non-Linear Filtering Problem",

 Osaka J. Math. 9, p.p. 19-40, 1972.
- 10. M. METIVIER & G. PISTONE, "Une formule d'isométrie pour l'intégrale stochastique hilbertienne et équations d'évolution linéaires stochastiques" Z. Wahrschein, Verw. Gebiete, 33, p.p. 1-18, 1975.
- 11. C. DOLEANS-DADE, "Intégrales stochastiques dépendant d'un paramètre"
 Publ. Inst. Stat. Univ. Paris, 16, p.p. 23-34, 1967.
- 12. H. KOREZLIOGLU, "Filtrage linéaire récursif des processus à deux indices discrets, markoviens au sens large", ENST-D-78004, 1978.
- 13. H. KOREZLIOGLU, G. MAZZIOTTO & J. SZPIRGLAS, "Equations du filtrage non linéaire pour des processus à deux indices", C.R. Acad. Sc. Paris, t. 287, Série A-891-893, 1978.
- 14. E. WONG, "Recursive Causal Linear Filtering for Two-Dimensional Random Fields", IEEE Trans. Inf. Th. IT-24, N° 1, p.p. 50-59, 1978.