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OMITTING TYPES ALGEBRAICALLY

J. Donald MONK

University of Colorado

The purpose of this note is to give algebraic formulations and proofs for the consistency
property theorem (Smullyan, Makkai, Keisler) and the omitting types theorem (Henkin, Orey,
Grzegorczyk, Mostowski, Ryll-Nardzewski). For formulations of these theorems see Keisler [ 3 ] .
We follow the notation of Henkin, Monk, Tarski [ 2 ] .

Let 2L be an Lf w A constant of 91 is an element k C A such that 

c k = 1, and k . sOk s d . Constants have been treated in various guises in the literature ; g
0 1 01

see e.g. Halmos [ 1 ] and Pinter [ 4 ] . The version we are using is due to Henkin, but its development
and applications have not yet appeared in print. Given a constant k and an i E we define

for all x E A. Then sk is an endomorphism of ~ . This fact is essential in the detailed proofs of
the results below. A representation pair is a pair (t1 ,K) such that U is a denumerable Lf ú) and K

is a denumerable set of constants of U . A consistency family over ( 11,K) is a family S of subsets of
Zd 91 such that for any F E S the following conditions hold, for any x, y ~ A and any

K :

(1) x 9- F or -x V F ;

(2 ) if x E F and x s y, then F U f y) E S ;

(3) if x + y E F, then F U ( xl E S or F U { y} E S ;

(4) for any i E w , if cix E F, then there is a k E. K such that F S ;
k

(5) 1 E F ;

(6 ) if and c 0 (£.m) E F, then c 0 (k.m) E. F;
(7) if F, then G E S.

Given a consistency family S over ( tt ,K), a function f : S -+ S is admissible over ( H ,K) provided
that F c fF for every F E S.

Now we can give an algebraic version of the model existence theorem.
...._......_.................,...........

(1 ) Research supported in part by U. S. NSF Grant MPS75-03583.
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Theorem 1. Let ( 11, K) be a representation pair, S a consistency family over (t ,K), and

 fi : i c w &#x3E; a system of functions from S into S admissible over ( it, K). Then for any F E S,

there is a cylindric set algebra le of dimension w and with base U and there is a homomorphism g
of g into 1.B such that the following conditions hold :

(i) U={[k]:k~ K } for some equivalence relation E on K ;

(iii) for each i E w there is a G E S such that F c fiG 9: 
(iv) for each k E K, we have gk = { u E [k]} .

Proof. It is easy to construct a set M c Zdtl such that the following conditions hold for all
x,y E A and k, ~,m E K :

(8) x fl M or -x ~ M ;

(9) if x E M and x ~ y, then y E M ;

(10) if x + y E M, then x E M or y E M ;

( 11 ) if cix E M, then sl x E M for some k E K;
k

(12) 1 C K ;

(13) if c0(k. P. ) E M and c 0 ( ~ .m) 
E M, then c 0 (k.m) E M ;

(14) for every i  w there is a G E S such that F I fiG c K.

Now we let E = I (k, * ) E K x K : c 0 (k. ~ ) e M I . It is easily seen that E is an equivalence

relation on K. We set U = K/E. Now we are ready to define the homomorphism g. For any x 6 A,
let

gx = {u E wU : there is a w E "C such that wi E ui for all i E w and

The desired conditions of the theorem are now easily checked.

For the application of this result to proving an algebraic version of the omitting types theorem
we need the following preliminary result, which is almost of a general algebraic character.

Theorem 2. Let it be a non-discrete Lf ~ . Then there is a representation pair ( t8 ,K) with the

following properties :
(i) ~t ~ ~ , and in facet 18 is generated by A U K ;
(ii) if is any CAw , f is a homomorphism of 5 into a , and g is a mapping of K into the

set of constants of G , then there is a homomorphism t of % into 9 such that f U g z t ;

(iii) if f is a homomorphism of 6 into the cylindric set algebra « of all subsets of

CVU, a E Sg(A U T) with T c K, k E K m T, and fcia = wU, then there is a homomorphism g
of 18 into C such that Sg(A U T)1 g = Sg(A U T)1f and 

(iv) any element of B can be written in the form
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for some a E A, some finite r ç ci , and some k C  K.
Now let 91 be an n E ci , and N I Nrn 91 . A homomorphism f from 91 into a

Csw admits N provided that n x C N fx ~ 0 ; otherwise we say that f omits N. Now we prove

our algebraic version of the omitting types theorem.

Theorem 3. Let R be a countable Lf ~ , n E w , and N 9 Nrn 91 , Then the following are

equivalent :
(i) there is a homomorphism f of U into a cylindric set algebra with a countable base such

that f omits N ;

(ii) there is a homomorphism f of U into an Lf w 0 with ! B) &#x3E; I such that for any non-zero

x E Nrn 5B there is a y E N such that x.-fy ~ 0.

Proof. (i) = (ii). Assume (i), where B is the range of f. Thus 1. Let 0 # x E_ Nrn b "
and assume that x.-fy = 0 for all y E N. Then x ç n yEN fy = 0, so x = 0, contradiction.

(ii) ~ (i). Assume (ii). If ? is discrete, let g be a homomorphism of 5E onto a cylindric set
algebra CS with a one-element base such that g(-fy) ~ 0 for some y t N ; g exists by (ii).
Thus gfy = 0, so g o f omits N.

So, assume that 83 is non-discrete. Let (D, K) be a representation pair formed from
as indicated in Theorem 2. Let S consist of all F s ZdD satisfying the following conditions :

(15)1 EF;
(16) F is f inite ;
(17) there is a homomorphism g of D into a cylindric set algebra with non-empty base such that
9*F = ~ 1 }.
It is easily checked that S is a consistency family over (D, K) ; part (iii) of Theorem 2 can be used
to check (4). The following additional condition holds :

(18) if F c S and k E nK , then there is a b E N such that

To check (18), several small facts about constants are needed (i,j ~ w and k a constant) :

Now assume the hypotheses of (18). By Theorem 2 (iv) we may write
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where ~ ~ K, A is finite, and d E B. By (19) we may assume that k is one-one. Define

E = ~ (i,j) : i, j  n and ki = ~. }. Thus E is an equivalence relation. Let r have one member

from each equivalence class. Now using (20) we may assume that A 9 n ; then using (21)
and the fact that A II F = 0 we may assume that if P- i = . for some i,j, then i = j E r . In

summary, by (19) we can then write

where dlj s d whenever iEj, ~ ,’ is one-one, and if range k then Z i = ki and i cr. .

Furthermore, we can assume that A d c Now choose g by (17). Then gd / 0, so

0 ~ n)d (:-7 Nrn S8 . From (ii) of our theorem it follows that there is a y ~ N such that

c.A .d . -fy ~ 0. Let h be a homomorphism of 9 into a cylindric set algebra such that

h(c(A~n)d.fy)#0. Thus

Hence by Theorem 2 (ii) there is a t C ~ U nK and an extension u of h u t such that

t and

It is then clear that u n F = 1 and

From this, (18) easily follows.

The set ’K is denumerable, and we enumerate it  ki : i  w &#x3E; . For each i W define

ri : S -~ S by setting for any F C S

where b E B is chosen minimal in some well-ordering of B so that the above set is in S. Now we

apply Theorem 1, and obtain a cylindric set algebra @ with base { [k] : : k E K J and a

homomorphism p from Tl into 11 such that for each i E w there is a G E S with

1 1 1 Z riG 7-- and satisfying Theorem 1 (iv). We claim that p o f omits N. For, let

w E  wj : j  n &#x3E; = ki. Then there is a G E S with riG 9 p-1*{ 1; , and hence
there is a b E N such that

Using Theorem I (iv), we infer that  [ wj ] : j  w &#x3E; ~ pfb. Thus po f omits N, and the

proof is complete.
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