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LINEAR OPERATORS AS MEASURE PRESERVING TRANSFORMATIONS

Elias FLYTZANIS

University de Thessalonique., Grèce

Abstract. We examine conditions under which a bounded

linear operator in a separable complex Banach space accepts
an invariant probability Borel measure. Also we define a

class of operators for which the measure preserving trans-

formations they define have always complete point spectrum.

~ 

~ 1. We consider a complex separable Banach space B ~.

and we denote by T a continuous linear operator in B :

and by m a probability measure defined on the Borel

a-algebra of B . The support of m is the subset of B ~

consisting of the elements whose every neighborhood has

non-zero measure. We say that T:B-B accepts an invariant

probability measure if there exists m as above whose

support spans B and for which meT -1 (.»= m ..
We are interested in characterizing the operators that

have this property and also in determining the type of
measure preserving transformation (m.p.t.) arising in

each case. The case where B is finite dimensional

can be solved completely and we consider it first. In

§2 we solve the problem for a class of operators in

infinite dimensions which includes the isometries and

finally we apply the resuits to an example. The present
work is a continuation of the results in t3~ .
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We consider first some notions from the theory of

m.p.t. If h is a m.p.t in a probability space its
’ 

eigenvalues are the complex numbers {c} for which the

equation f (h ( . ) ) =cf ( . ) has non-trivial complex-valued
measurable solutions f(.). We note that the eigenvalues
of a m~p.t~ h form always a subgroup of the unit circle

group and they coincide with the eigenvalues of the isome-

try V induced by h in each of the (complex) L~ spa-

ces, 1  p~ ~.’ over the probability space, defined by
Vf(.)=f(h(.)). We say that h has complete point spec-
trum-, .if L"2 is spanned. by the eigenvectors of 

°

These are in a sense the simplest m.p.t.

being completely characterized by the spectrum of.

We will need the following result whose proof
we ommit as it is similar to a corresponding result in

~4.p214).

Lemma 1. h is a m,p,t, in a probability space.
If a collection of eigenfunctions of h generates the

a-algebra of the space then h has complete point spec-
trum. Also the eigenvalues of h are given by the sub-

group of the unit circle group generated by the eigen-
values of the collection.

Considering now the case where B is finite dim-

mensional we have:

Theorem 1. B is a finite dimmensional complex
Banach space and T:B~B a linear operator. Then 

’

I ( i ) T accepts an invariant m as above iff B
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is spanned by eigenvectors having eigenvalues pfis spanned by eigenvectors of T having eigenvalues of

norm 1. .. 
° 

;

.. (ii) If T accepts an ivariant m then the m. p ..t .
defined by T has complete point.spectrum given by the

subgroup of the unit circle group generated by the eigen-
values of T ~ .

. 

. 

Proof: (i~) T preserves the Haar measure on the

torus defined by the cartesian product of the unit cirle

group in each one-dimmensional, eigenspace. (1+) Assuming

. 

the existence of an invariant m whose support spans B

we consider also the duals B*,~T* . Any eigenvalue of

T* must have norm 1 because it is also an eigenvalue of
the m.p.t. defined by T. Assume now that an eigenvalue
c of T* does not have index 1. Then there exist x*,y*.
in B* such that T*x*=cx* and T*y*=cy*+x*. It follows
that or considering the elements of

* as functions on B that 
and in particular that

We can find c&#x3E;0 so that for we have

because of the assumption on the support of m.

We can also f ind so that for we

have &#x3E;0. Setting it f ollows from
the measure preserving property of h that for some

integer we have and then the

inequality (*) above is contradicted for each 

Indeed for the expression on the left side we have
zEA while for that on the right
side we have zeA-{zeA2 and TnzeA}-{ZeA2 and 

-
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M and It follows that T*

has a spanning set of eigenvectors having eigenvalues of

1. Hence so does T, which proves (i). As for part

(ii) we note that the functions {x*(.):x*eB*} genera-

te the Borel a-algebra of B . By above so do the func-

tions {x* ( . ) : x* an eigenvector of T* } which are also

eigenfunctions of the m.p.t. T having the same eigen-
values. The result then follows f rom Lemma 1. Q.E.D.

’ 

§2. In infinite dimmensions the problem considered

above with T assumed to be a linear contraction.appears
in (1} in the following form : "Solve the equation
X(h(.))=TX(.) where h is an ergodic m.p.t. in a proba-

bility T:B+B is a linear contraction

and X:S+B is Borel measurable." Using this setting we

can construct m.p.t. (B,T,m) of various types as
follows: ,

~Exam le. T is taken to have the property that

there exists a sequence {x.: i=0,1,2,...} with 

Tx. =x. and Let also h be any m.p.t. on

a probability space and We defi-

ne

Then X(h(.))=TX(.) and therefore 
1 

m(.)=03BC(X-1(.)) defi-

nes a Borel probability measure on B , invariant.under
T~. The m.p.t. so defined inherits many of the proper-

ties of h . In particular if does not have any eigen-
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values if h does mot, so that Theorem 1 does not hold

generally in infinite dimmensions. We do note however

that all of the unit circle group belongs to the point

spectrum of the operator T. ,

Next we extend Theorem 1 to a class of operators
in infinite dimmensions, considering however only inva-

riant probability measures for which the norm function

on B is integrable, as is also the case in the example
above. We mention that if B is a Banach space then a

set of functionals {x* 3 C 8* is called total if x* ~x) =0

for every implies x=0, or equivalently if {x*)

spans B* in its B-topology.

Theorem 2. B is a separable complex Banach space
and T:B4B a continuous linear operator with the proper-

ty that a total set of functionals has bounded orbits

under T*. Then: 
’ 

’

(i) T accepts an invariant m of integrable norm

iff B is spanned by eigenvectors of T having eigenvalues
of norm 1.

(ii) If T leaves m of integrable norm invariant,
then the m.p.t. defined by T has complete point spectrum

given by the subgroup of the unit circle group genera-
ted by the eigenvalues of T. Concerning the structure

of T we add:

If T leaves m of integrable norm invariant
then the eigenvalues of the operators T, T* are count-

able, they coincide and they all. have. norm 1. Also the

eigenvectors of T* span.B* in its B-topology.
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Proof : (i-) Let be a countable collection

of eigenvectors of T spanning B with eigenvalues 
of norm 1. We consider the torus group s=nci’ icI, where

Ci is the unit circle group, equipped with the Haar mea-

sure, and the m.p.t. h:S-S given by multiplication by
the element The projection functions 

are eigenfunctions of h with eigenvalues ci correspo-
dingly. The function X: S B defined by 
is strongly integrable and satisfies X Ch t . ) ) =TX ( . ) .

Also the essential range of X spans B . Clearly the mea-
sure induced in B by X satisfies all the requirements.

For the rest of the proof we use the following
construction. Assuming that T accepts an invariant m

of integrable norm we consider the bounded linear ope-
rator K : L~ ( B, m~ -~B defined by the strong integral

Kf= zf (z) dm . The adjoint L* is defined by
We have

(*) K*T*=VK* 
.

where V:L1-~L1 is the isometry induced by the m.p.t. T.

, We take now x*eB* for which the orbit {x*,,T*x*,T *2x*,,...,
under T* is norm bounded. Considering B* with its

B-topology we have that the closure C(x*) of the orbit

is compact and the restriction of K* to C(x*) is injec-
tive and continuous. Indeed K* is injective because the

support of m spans B . Also from "[51 we have that
K is compact and therefore the restriction of K* to

the norm bounded subset C(x*) of B* equipped with the

B-topology is continuous*[2,p*.4861. Denoting by S the

image of C(x*) we have : (a) S is compact in the norm
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topology of L 1 as the continuous image of a compact set.

(b) S is invariant under the isometry V by (*) and the

fact that C x* is invariant under * c) X=K* 1: 
is norm bounded and continuous in the B-topology because

. 

K* : C (x* ) -~ S is a homeomorphism. Also we have
’ 

(**) 
~ 

x(V(,~)~T*X(,) .

Having a compact metric space S and an isometry V:S+S

it is well known that there exists a Borel probability
measure 03BC with support S which is invariant under

Y and such that the measure preserving transformation

so defined has complete point spectrum. In fact it is

also ergodic because V:S~S has,a dense orbit by const-
ruction [1). Let now "{c.} . be" the collection of eigen-
values of the m.p.t. V and the corresponding
collection of eigenfunctions with 1fil=1 a.e. The

weak integrals
. 

x*= lfXd03BC
are well defined as elements of B* in the sense that

for every xsB . Also we have

by (**) and finally we note that ’x*

liens in the subspace of B* sparined by the collection

(xt), in the B-topology. In particular we have, by
i

the assumption on T*, that B* is spanned,in the B-to-

pology by the eigenvectors of T*, which proves the last

part of (iii). Let be the collection of eigen-
vectors of T* . I t is a total set of functionals by 

"

above and therefore their images under K* form a span-

ning set for From the separa- _

bility of B it follows that the collection 
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generates the Borel a-algebra of B E6,p.74]. Therefore so
does the collection {xj(.):xj eigenvector of T* }
which consists of eigenfunctions of the m.p.t. T. It fol-

fows now from Lemma 1 that the m.p.t. T has complete

point spectrum generated by the eigenvalues of T* which

in particular must all have norm 1. This proves the first

part of (ii).

~i-~) Assuming that T accepts an invariant m of

integrable norm we have shown above that the m.p.t. T -

has c . p . s . be the eigenfunctions of the

m.p.t. T in L (B,m). We define the strong integrals

We have that {x.} are eigenvectors of T having eigen-
values of norm 1. Also they span B because the functions

L form a total set of functionals for L and
for all x. implies x*(.)=0 u-a. e . which

implies x*=0 by the injectivity of K*.

(iii) Since the eigenvectors of T span B and tho-

se of T* span B* in the B-topology if follows easily
that the eigenvalues of T,T* must coincide, and also

they are all of norm 1 because those of T*.are so. This

also proves the last part of (ii). 
~ 

Q.E.D. 

Corollary If T:B~B . has the property that all

x*cB* have bounded orbits under T* then Theorem 2

holds without the condition of integrability on the

norm. 
°

’ 

~ P~roof: The assumption is equivalent to the assum-

ption that the norms ~ i==0~1~2~..~ are uniform-

ly bounded. In this case we can assume w.l.o..g. that
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T is a contraction by considering ii necessary the equiva-
lent norm : 1=0 , 1 ,2, ... }. If now T is a

contraction and it accepts an invariant measure then the

closed balls are m-invariant under T

in the sense that assume that for

some ACB with positive measure we have 

Then we have for all i=1, 2, ... , which ccntra-

dicts the measure preserving property of T. If follows

that we can consider the restriction of m to the sets

Ba which give measures of integrable morm in the subspa-
ces spanned by B , and we can apply Theorem 2. Q.E.D.
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§3. In this section we apply Theorem 2 to an example
and we pose a problem related to the condition of norm

integrability:
We consider a probability space (S,Z,y) and a non-

singular transition probability P(.,E) with the property
for some c&#x3E;0 and all EeE, where Pu(E)=

We note that we always have a measure equi-
valent to u for which this happens, e.g. the measure

If this condition is

satisfied then P induces in each complex L 
p 

a bounded linear operator denoted also by P, where

Pf(.)=lf(s)dP(.,ds). Then every essentially bounded f EL p
has bounded orbit under P in L , because P is a contraction

in L0153. We can therefore apply Theorem 2 to the adjoint
. T=P*:Lq-Lq, for 1/p+1/q=1. For simplicity we will apply
Theorem 2 to the case where the transition probability

’ 

is induced by a nonsingular point transformation h:S+S

in the sense that P(..E)=1-(h(.)) where 1 E is the cha-

racteristic function. We note however that solutions obtai-

ned would be the same for the general case of a transition

probability. For convenience we assume also that h is

invertible as a m.p.t. and ergodic. The operator T=P*

is now given by Tf=f(h-l .. where the R-N deriva-

tive is essentially bounded by assumption.
Assume now that T=P* accepts an invariant m of integra-
ble norm whose support spans BCL for a fixed q, 1qoo
where B is also assumed separable if q=-. Then B is

spanned where .
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In particular we have tf-)( h (.))(P(-.)=Ifil We set
x fo (.) and By nonsingularity of h we
have p(.)&#x3E;0 and then by the ergodicity of h we
have x(.)&#x3E;0 Assuming also x(.) properly normali-
zed we have that U* is a probability measure equivalent
to 03BC and clearly invariant under h. We also have that

fi/x are eigenfunctions of h having eigenvalues c.. It
is now clear how we can construct all solutions (B,T)
for our example .. We start with an ergodic invertible
m.p.t. and we choose a positive
function x(.) such that 

, 

...

(*) and x(h(.))/%(.)=(P(.) is ess. bd..
We then set If are the eigenfunctions
of h we set These are the eigenfunctions of

T=P* . The solutions (B,T) are now given by the invariant

subspaces of the space spanned by (f~} in L. Naturally
even if the collection is nonempty*solutions exist
iff which since a.e. is equi-
valent to the condition where x(.) satisfies

(*). This condition is always satisfied if q=1 because
of (*) while for q&#x3E;l it becomes

° 

(**) 
~ for q&#x3E;1

’ ~ 
X is ess. bd. for q=w

Thus the solution depends on the eigenvalues of h and

also on the integrability properties (**) of functions

X(.) satisfying (*).
. 

Remark. The interest in the conditions above stems.

mainly from the following observation. Calling an ergodic
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m.p, t. h of type A if the condition x(h(.))/x(.) ess. bd.

implies x where X(.)&#x3E;0, we have: "If h is of

type A then any solution X(.).-.S-*-13 of the eigenoperator

equation X(h(.))=TX(.) is integrable" . While we can

construct ergodic m.p.t. that are not of type A, e.g.

cartesian product of a Bernoulli shift with irrational

rotation on the circle, we do not know if any type A

transformations exist. An equivalent condition is the

following: "For AcE with u’(A)&#x3E;0 we construct the sets

Then h 
. 

is of type A’ 
.

iff faster than any power" . We do not know
whether this is true even for irrational rotations on

the unit circle. At any rate for ergodic m.p.t. of type
A that are defined by linear operators we can use the

constructions in the proof of Theorem 2p because the

norm function is necessarily integrable.
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