Annales scientifiques de l'Université de Clermont-Ferrand 2 Série Mathématiques

D. NUALART RODON M. SANZ SOLE

Intégrales stochastiques par rapport au processus de Wiener à deux paramètres

Annales scientifiques de l'Université de Clermont-Ferrand 2, tome 61, série Mathématiques, nº 14 (1976), p. 89-99

http://www.numdam.org/item?id=ASCFM 1976 61 14 89 0>

© Université de Clermont-Ferrand 2, 1976, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'Université de Clermont-Ferrand 2 » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

INTEGRALES STOCHASTIQUES PAR RAPPORT AU PROCESSUS DE WIENER

A DEUX PARAMETRES

- D. NUALART RODON, UNIVERSITE DE TOULOUSE
 - M. SANZ SOLE, UNIVERSITE DE BARCELONE

Nous développons ici le calcul différentiel stochastique au sens d'Itô par rapport au processus de Wiener à deux paramètres $W=\{W_{z},z\in R_{+}^{2}\}$ celui-ci étant défini comme un processus Gaussien, à moyenne nulle et fonction de covariance $E(W_{z},W_{z})=(x\wedge x')(y\wedge y')$, où z=(x,y) et z'=(x',y').

On présente, dans la Section 1, plusieurs conditions de martingales qu'on peut imposer aux fonctions aléatoires à deux paramètres, d'après les idées de Cairoli et Walsh [1]; et on étudie après, dans la Section 2, les diverses intégrales stochastiques par rapport au processus de Wiener à deux paramètres, qui nous seront nécessaires pour en déduire des formules de différentiation stochastique présentées dans la Section 3.

1. Propiété de martingale pour les fonctions aléatoires à deux paramètres.

Dans un espace de probabilité (Ω, A, P) on considere une suite croissante $\{A_z, z \in R_+^2\}$ de sous- σ -algebres de A, par rapport à l'ordre partiel de R_+^2 :

 $(x,y) \leq (x',y')$ si et seulement si $x \leq x'$ et $y \leq y'$.

On dira qu'un processus $X=\{X_z,z\in R_+^2\}$ est A_z -adapté si X_z est A_z -mesurable pour tout z.

<u>Définition 1.1.</u> Un processus $X = \{X_z, z \in R_+^2\}$ est une <u>martingale par rapport à l'ordre partiel</u> si X est intégrable, A_z -adapté et $E\{X_z, A_z\} = X_z$ $\forall z \leq z'$.

D'autre part, on peut introduire la notion de martingale comme extension de celle de processus à accroissements indépendants. Rappelons qu'un processus $X=\{X_z,z\in R_+^2\}$ est à accroissements indépendants si pour toute famille de rectangles $\Delta_i=(x_i,x_i^*]$ $x(y_i,y_i^*]$ deux à deux disjoints, les accroissements $X(\Delta_i)=X(x_i^*,y_i^*)^{-X}(x_i^*,y_i^*)^{-X}(x_i^*,y_i^*)^{+}$ $X_{(x_i^*,y_i^*)}$ sont des variables aléatoires indépendantes. Le processus de Wiener à deux paramètres en est un example.

X étant un processus intégrable, on peut donner les définitions suivantes:

Définition 1.2. X est une martingale si X est A_z -adapté et $E\{X(\Delta)/A_z\}=0$, pour tout rectangle Δ tel que $\Delta \cap A_z=\phi$, où $A_z=[0,x)x[0,y)$ si z=(x,y).

Définition 1.3. X est une <u>i-martingale</u> (i=1,2) si X est A_z^i -adapté (où $A_z^1 = \bigvee_{t \ge 0} A_{(x,t)}$ et $A_z^2 = \bigvee_{s \ge 0} A_{(s,y)}$ si z = (x,y)), et

 $E\{\chi(\Delta) / A_z^i\}=0,$ pour tout rectangle Δ tel que $\Delta \cap A_z^i=\phi$, où $A_z^1=[0,x)xR_+$ et $A_z^2=R_+x[0,y)$ si z=(x,y).

Définition 1.4. X est une martingale forte si X est A_z -adapté et

$$E\{X(\Delta) / A_z^1 V A_z^2 \} = 0$$

pour tout rectangle Δ tel que $\Delta \cap (A_z^1 \cup A_z^2) = \phi$.

Alors, on peut vérifier facilement les propiétes suivantes (voir [1]) :

- 1. Tout processus X à accroissements indépendants, nul sur les axes et à moyenne constante est une martingale forte si on prend comme A_z la σ -algèbre générée par les variables $X_\alpha, \alpha \leqslant z$.
- 2. X est une martingale si et seulement si X est 1 et 2-martingale, et ceci entraîne la propiété de martingale par rapport à l'ordre partiel si $\{X_{(x,0)},A_{(x,0)},x\geq 0\}$ et $\{X_{(0,y)},A_{(0,y)},y\geq 0\}$ sont des martingales à un parametre.
- 3. Réciproquement, toute martingale par rapport à l'ordre partiel est une martingale si les σ -algèbres A_z^1 et A_z^2 sont conditionnellement indépendantes par rapport à A_z .

Dorénavant, on supposera toujours que A_z est la σ -algèbre générée par les variables $W_\alpha, \infty \le z$, où $W = \{W_z, z \in R_+^2\}$ est un processus de Wiener à deux paramètres, et alors la propiété de <u>martingale</u> équivaut à celle de <u>martingale</u> par rapport à l'ordre partiel.

Cependant, il faut la définition 1.2 pour construire l'intégrale stochastique par rapport à une martingale quelconque.

2. Intégrales stochastiques.

Soit $T=[0,1]^2$ et $W=\{W_z, z\in T\}$ un processus de Wiener à deux paramètres.

Nous savons (voir:[2],[3]) que pour un processus $\phi = \{\phi_Z, z \in T\}$ tel que

- (a) $\phi(z,\omega)$ est BMA-mesurable, où B désigne la tribu des Boréliens de T,
- (b) ϕ est A_z -adapté et
- (c) $\int_{\mathbb{T}} E(\phi_t^2) dt < \infty$,

on peut définir l'intégrale stochastique de premier type

$$I_1(\phi) = \int_T \phi_z dW_z$$

qui suppose une généralisation immédiate de l'intégrale d'Itô et satisfait les propiétés:

- (i) isométrie: $E\{I_1(\phi)I_1(\psi)\}=\int_T E\{\phi_z\psi_z\}dz$, et
- (ii) $\{I_1(\phi.1_{A_z}), z \in T\}$ est une martingale forte.

Le problème de représentation de toute martingale relative à la suite de σ -algèbres $\{A_Z,z\in T\}$ sous la forme d'intégrales stochastiques par rapport au processus de Wiener à deux paramètres, a obligé à E. Wong dans [3], à introduire un deuxième type d'intégrale stochastique:

Pour tout processus $\psi = \{\psi(z,z'),(z,z')\in TxT\}$ tel que

- (a) $\psi(z,z',\omega)$ est $\mathbb{B}^{2} \mathbb{A}$ -mesurable,
- (b) $\psi(z,z')$ est $A_{z \vee z}$,-mesurable, où $z \vee z' = (x \vee x', y \vee y')$ et
- (c) $\int_{\mathbf{T}} \int_{\mathbf{T}} E\{\psi(z,z')^2\} dzdz' < \infty$,

on définit l'intégrale de deuxième type

$$I_2(\psi) = \int_T \int_T \psi(z,z') dW_z dW_z'$$
,

dont l'idée est de prendre la restriction à l'ensemble $G = \{(z,z') \in TxT/\ z \ \text{et}\ z' \ \text{sont non ordonn\'es}\}$ de l'intégrale stochastique double au sens d'Itô (voir [4]).

Pour développer le calcul différentiel stochastique à deux paramètres, on doit considérer d'autres types d'intégrales stochastiques.

Pour tout processus $\phi = \{\phi_z, z \in T\}$ tel que

- (a) $\phi(z,\omega)$ est BA-mesurable,
- (b) ϕ est A_z -adapté et
- (c) $\int_{\mathbb{T}} E(\phi_z^2) xydz < \infty$,

on peut définir une simplification de l'intégrale de deuxième type,

$$\tilde{I}_2(\phi) = \int_{T} \phi_z d_1 W_z d_2 W_z$$
.

En effet, si ϕ est simple, c'est à dire, s'il existe une partition de T $\{\Delta_{\nu}\}_{\nu=1,\dots,k}$, $\Delta_{\nu}=[x_{\nu},x_{\nu}')x[y_{\nu},y_{\nu}']$ telle que

$$\phi = \sum_{\nu=1}^{k} \phi_{\nu} \cdot 1_{\Delta_{\nu}}, \text{ on pose:}$$

$$\widetilde{I}_{2}(\phi) = \sum_{v=1}^{k} \phi_{v}[W(x_{v}, y_{v}')^{-W}(x_{v}, y_{v})][W(x_{v}', y_{v})^{-W}(x_{v}, y_{v})],$$

et on prolonge cette définition par la méthode usuelle de passage à la limite en moyenne quadratique.

Cette intégrale vérifie les propiétés suivantes:

- (i) isométrie: $E\{\widetilde{I}_{2}(\phi)\widetilde{I}_{2}(\phi')\}=\int_{T}E\{\phi_{z}\phi_{z}'\}xydz$,
- (ii) $\{\widetilde{I}_{2}(\phi.1_{A_{2}}), z \in T\}$ est une martingale et
- (iii) si on écrit $\psi(z,z')=\phi_{(z \vee z')}$, alors $2\widetilde{I}_2(\phi)=I_2(\psi)$.

Il faut aussi introduire les <u>intégrales stochastiques mixtes</u>: Pour tout processus $\phi = \{\phi_7, z \in T\}$ tel que

- (a) $\phi(z,\omega)$ est $R \Omega \Lambda$ -mesurable,
- (b) ϕ est A_z^1 -adapté et
- (c) $\int_{\mathbb{T}} E(\phi_z^2) y dz < \infty$,

on construira l'intégrale

$$\widetilde{I}_3(\phi) = \int_T \phi_z d_1 W_z dy$$
,

en prenant pour les processus simples la définition

$$\widetilde{I}_{3}(\phi) = \sum_{\nu=1}^{k} \phi_{\nu} [W_{(x_{\nu}', y_{\nu})} - W_{(x_{\nu}, y_{\nu})}] (y_{\nu}' - y_{\nu}).$$

On a les propiétés suivantes:

(i) calcul comme une intégrale itérée:

$$\widetilde{I}_{3}(\phi) = \int_{0}^{1} [\int_{0}^{1} \phi(x,y)^{d} W(x,y)] dy,$$

(ii) isométrie:

$$E\{\widetilde{I}_{3}(\phi)^{2}\}=2\int_{T}\int_{0}^{y}E\{\phi_{z}\phi_{(x,\eta)}\}\eta d\eta dz \leq \int_{T}E\{\phi_{z}^{2}\}y dz \text{ et}$$

(iii) $\{\widetilde{I}_3(\phi.1_{A_7}), z \in T\}$ est une 1-martingale.

De la même façon on peut construire

$$\widetilde{I}_{4}(\phi) = \int_{T} \phi_{z} d_{2} W_{z} dx$$
.

Si ϕ est un processus tel qu'on peut définir toutes les intégrales $I_1(\phi)$, $\widetilde{I}_2(\phi)$, $\widetilde{I}_3(\phi)$, $\widetilde{I}_4(\phi)$, alors la deuxième est orthogonale aux autres et on peut vérifier les égalités suivantes:

$$\begin{split} & E\{\widetilde{I}_{3}(\phi)I_{1}(\phi)\} = \int_{T} \int_{0}^{y} E\{\phi_{z}\phi_{(x,\eta)}\} d\eta dz, \\ & E\{\widetilde{I}_{4}(\phi)I_{1}(\phi)\} = \int_{T} \int_{0}^{x} E\{\phi_{z}\phi_{(\xi,y)}\} d\xi dz, \\ & E\{\widetilde{I}_{3}(\phi)\widetilde{I}_{4}(\phi)\} = 1/2 \int_{T} \int_{T} E\{\phi_{z}\phi_{z,1}\} . 1_{G}(z,z') dz dz' \end{split}$$

Les conditions plus faibles d'intégrabilité d'un processus :

$$f_T = \phi_z^2 dz^{<\infty}$$
, $f_T = \phi_z^2 xydz^{<\infty}$, $f_T = \phi_z^2 xdz^{<\infty}$, $f_T = \phi_z^2 ydz^{<\infty}$, p.s.,

qui entraînent des définitions des intégrales au moyen de la convergence en probabilité, et les intégrales stochastiques sur tout le domaine R_{+}^{2} , peuvent être introduites de la façon habituelle.

3. Formule de différentiation.

D'abord on peut établir la suivante formule de différentiation pour le processus

$$X = \{ X_z = f(W_z, z) - f(W_{(x,0)}, x, 0) - f(W_{(0,y)}, 0, y) + f(W_{(0,0)}, 0, 0), z = (x, y) \in T \},$$

où $f(u,x,y)$, $u \in \mathbb{R}$, $(x,y) \in T$ est une fonction réelle.

Théorème 3.1. Si la fonction f admet les dérivées partielles continues

$$\frac{\partial^4 f}{\partial u^4}$$
, $\frac{\partial^3 f}{\partial x \partial u^2}$, $\frac{\partial^3 f}{\partial v \partial u^2}$, $\frac{\partial^2 f}{\partial x \partial v}$,

on a pour tout $z \in T$:

$$X_z = M(z) + M_1(z) + M_2(z) + B(z)$$
,

où

$$\begin{split} &M(z) = \int_{A_{z}} f_{u}^{\prime}(W_{\alpha}, \alpha) \, dW_{\alpha} + \int_{A_{z}} f_{uu}^{\prime\prime}(W_{\alpha}, \alpha) \, d_{1}W_{\alpha}d_{2}W_{\alpha}, \quad \alpha = (\xi, \eta) \, \epsilon \, T, \\ &M_{1}(z) = \int_{A_{z}} D_{2}(f_{u}^{\prime}) \, (W_{\alpha}, \alpha) \, d_{1}W_{\alpha}d\eta \quad , \\ &M_{2}(z) = \int_{A_{z}} D_{1}(f_{u}^{\prime}) \, (W_{\alpha}, \alpha) \, d_{2}W_{\alpha}d\xi \quad , \\ &B(z) = \int_{A_{z}} (D_{1} \circ D_{2}) \, (f) \, (W_{\alpha}, \alpha) \, d\alpha \quad , \end{split}$$

étant D_1 et D_2 les opérateurs différentiels

$$D_1 = \frac{1}{2} y \frac{\partial^2}{\partial u^2} + \frac{\partial}{\partial x} , \quad D_2 = \frac{1}{2} x \frac{\partial^2}{\partial u^2} + \frac{\partial}{\partial y} .$$

<u>Démonstration</u>. Il suffit d'appliquer la formule d'Itô à un parametre et de faire un passage à la limite au sens de la convergence en probabilité, en prenant une suite de partitions de T, dont le diamètre tend vers zéro.□

Remarquons que le processus $M=\{M(z),z\epsilon T\}$ est une martingale et le processus $M_i=\{M_i(z),z\epsilon T\}$ (i=1,2) est une i-martingale, tandis que B(z) a ses trajectoires absolument continues p.s. .

En conséquence, si $D_2(f)=0$, $D_1(f)=0$, ou $D_1(f)=D_2(f)=0$, le processus X est respectivement une 1-martingale, une 2-martingale,

En généralisant, on peut considérer, comme extension de la notion de semimartingale à un paramètre, un processus $X=\{X_Z, z\in T\}$ admettant une décomposition de la forme

$$X_z = M(z) + M_1(z) + M_2(z) + R(z)$$

avec les conditions suivantes:

 $\{M(z), z \in T\}$ est une martingale de carré intégrable, $\{M_1(z), z \in T\}$ est une 1-martingale A_z -adaptée et pour tout $x \in [0,1]$ fixé, $\{M_1(x,y), y \in [0,1]\}$ a ses trajectoires absolument continues avec dérivée $N_1(x,y)$ telle que $\int_0^y E(N_1(x,\eta)^2) d\eta < \infty$, $\{M_2(z), z \in T\}$ est une 2-martingale A_z -adaptée et pour tout $y \in [0,1]$ fixé, $\{M_2(x,y), x \in [0,1]\}$ a ses trajectoires absolument continues avec dérivée $N_2(x,y)$ telle que $\int_0^x E(N_2(\xi,y)^2) d\xi < \infty$, $\{B(z), z \in T\}$ est à trajectoires absolument continues.

On se pose d'abord le problème d'exprimer le processus X sous forme d'intégrales stochastiques par rapport au processus de Wiener à deux paramètres.

Le théorème de représentation de Wong (voir [3]) fournit deux processus uniques ϕ_z , $\psi(z,z')$ I_1 -intégrable et I_2 -intégrable respectivement, et tels que

$$M(z) = \int_{A_z} \phi_{\alpha} dW_{\alpha} + \int_{A_z} \int_{A_z} \psi(\alpha, \alpha') dW_{\alpha} dW_{\alpha'}.$$

Pour le processus $M_1(z)$ on a obtenu le résultat suivant:

<u>Proposition 3.1.</u> Il existe un processus unique $\Gamma_1(\alpha, \eta')$, où $\alpha = (\xi, \eta) \in T$, $\eta' \in [0, \eta]$, avec les propiétés:

- (a) $\Gamma_1(\alpha,\eta',\omega)$ est B'QA-mesurable, où B' désigne les Boréliens de T'= $\{(\alpha,\eta')/\alpha\epsilon T, \eta'\epsilon[0,\eta]\}$.
- (b) $\Gamma_1(\alpha,\eta')$ est A_{α} -mesurable, et
- (c) $\int_{A_7} \int_0^{\eta} E(\Gamma_1(\alpha, \eta')^2) d\eta' d\alpha < \infty$ pour chaque $z \in T$,

tel que

$$M_1(z) = \int_{A_z} \int_0^{\eta} \Gamma_1(\alpha, \eta') dW_{(\xi, \eta')} d\eta$$
.

Remarque: Cette intégrale mixte qu'on vient d'introduire, peut

être définie pour les processus $\Gamma_{i}(\alpha,\eta')$ vérifiant (a), (b), (c) comme une intégrale itérée:

$$I_{3}(\Gamma_{1}) = \int_{0}^{y} \int_{A(x,\eta)} \Gamma_{1}((\xi,\eta),\eta') dW_{(\xi,\eta')} d\eta$$
,

et satisfait les propiétés:

- (i) $\operatorname{si} \Gamma_{1}(\alpha, \eta') = \Gamma_{1}(\alpha)$ ne dépend de η' , alors $I_{3}(\Gamma_{1}) = \widetilde{I}_{3}(\Gamma_{1})$,
- (ii) isométrie: $E(I_3(\Gamma_1)^2) = 2 \int_{A_Z} \int_0^{\eta} \int_0^{\eta_1} E(\Gamma_1((\xi,\eta),\eta') \Gamma_1((\xi,\eta_1),\eta') d\eta' d\eta_1$ $d\xi d\eta \leqslant \int_{A_Z} \int_0^{\eta} E(\Gamma_1(\alpha',\eta)^2) d\eta' d\alpha ,$
- (iii) $\{I_3(\Gamma_1.1_{A_2}(\alpha)), z \in T\}$ est une 1-martingale.

<u>Démonstration.</u> D'après Wong (voir [3]), toute variable Y \mathbb{A}_z -mesurable et de carré intégrable s'écrit comme:

$$Y = \int_{A_z} \phi_{\alpha} dW_{\alpha} + \int_{A_z} \int_{A_z} \psi(\alpha, \alpha') dW_{\alpha} dW_{\alpha'} = \int_{A_{(x,y)}} [\phi_{\alpha} + \int_{0}^{\xi} \int_{\eta}^{y} (\psi(\alpha, \alpha') + \phi_{\alpha}) dW_{\alpha'} + \int_{0}^{\xi} \int_{\eta}^{y} (\psi(\alpha, \alpha') + \phi_{\alpha}) dW_{\alpha'} + \int_{0}^{\xi} \int_{\eta}^{y} (\psi(\alpha, \alpha') + \phi_{\alpha'}) dW_{\alpha'} + \int_{0}^{\xi} \int_{0}^{\xi} \int_{\eta}^{y} (\psi(\alpha, \alpha') + \phi_{\alpha'}) dW_{\alpha'} + \int_{0}^{\xi} \int_{0}^{\xi} \int_{0}^{\xi} (\psi(\alpha, \alpha') + \phi_{\alpha'}) dW_{\alpha'} + \int_{0}^{\xi} \int_{0}^{\xi} \int_{0}^{\xi} \int_{0}^{\xi} (\psi(\alpha, \alpha') + \phi_{\alpha'}) dW_{\alpha'} + \int_{0}^{\xi} (\psi(\alpha, \alpha') + \phi_$$

$$\psi(\alpha',\alpha))dW_{\alpha}dW_{\alpha} = \int_{A} \Gamma^*((\xi,\eta),y)dW_{\alpha}$$
.

En conséquence, si le processus $Y=\{Y_z, z\in T\}$ est tel que, pour chaque y fixé, $\{Y_{(x,y)}, A_{(x,y)}, x\in [0,1]\}$ est une martingale à un paramètre de carré intégrable, il existe un seul processus $\Gamma^*(\alpha,y)$ définit par $\alpha=(\xi,\eta)\in T$, $\eta\leqslant y\leqslant 1$, $A_{(\xi,y)}$ -mesurable, tel que

$$Y_z = \int_{A_z} \Gamma^*(\alpha, y) dW_{\alpha}$$
.

Ce résultat appliqué au processus $\{N_1(x,\eta), (x,\eta)\in T\}$ donné par $M_1(x,y)=\int_0^y N_1(x,\eta)d\eta$, dont on peut prouver la propiété de l-martingale à partir de celle de M_1 , donne alors

$$N_{1}(x,\eta) = \int_{A(x,\eta)} \Gamma_{1}^{*}((\xi,\eta'),\eta) dW(\xi,\eta')$$
 et on prend $\Gamma_{1}((\xi,\eta),\eta') = \Gamma_{1}^{*}((\xi,\eta',\eta))$

On obtient un résultat semblable pour le processus $M_2(z)$, en introduisant une nouvelle intégrale stochastique mixte qu'on désignera par:

$$I_{4}(\Gamma_{2}) = \int_{A_{z}} \int_{0}^{\xi} \Gamma_{2}(\alpha, \xi') dW_{(\xi', \eta)} d\xi$$
,

définie pour les processus $\Gamma_2(\sigma,\xi')$, où $\alpha=(\xi,\eta)$ et $\xi'\in[\sigma,\xi]$, vérifiant les propiétés

- (a) $\Gamma_2(\alpha,\xi',\omega)$ est B''@A-mesurable, où B'' désigne les Boréliens de T''={ $(\alpha,\xi')/\alpha\epsilon T,\xi'\epsilon[0,\xi]$ }
- (b) $\Gamma_2(\alpha,\xi')$ est A_{α} -mesurable, et

(c)
$$\int_{A_z} \int_0^{\infty} E(\Gamma_2(\alpha,\xi')^2) d\xi' d\alpha < \infty$$
.

Le théorème suivant n'est que la conclusion des propositions précédentes.

Théorème 3.2. Il existent des processus ϕ , I_1 -intégrable, ψ , I_2 -intégrable, Γ_1 , I_3 -intégrable, Γ_2 , I_4 -intégrable et Γ , BQA-mesurable et A_7 -adapté, tels que

$$\begin{split} & X_z = \int_{A_z} \phi_\alpha dW_\alpha + \int_{A_z} \int_{A_z} \psi(\alpha,\alpha') dW_\alpha dW_\alpha + \int_{A_z} \int_0^\eta \Gamma_1(\alpha,\eta') dW_{(\xi,\eta')} d\eta + \\ & \int_{A_z} \int_0^\xi \Gamma_2(\alpha,\xi') dW_{(\xi',\eta)} d\xi + \int_{A_z} \Gamma_\alpha d\alpha \end{split}.$$

Finalement, cette expression intégrale du processus est assez générale, dans le sens où le processus

$$Y_z = f(X_z, z) - f(X_{(x,0)}, x, 0) - f(X_{(0,y)}, 0, y) + f(X_{(0,0)}, 0, 0)$$

admet une expression semblable, et on peut énoncer une formule de différentiation plus générale:

Théoreme 3.3. Avec les hypothèses du théorème 3.1., on a $Y_z = \int_{A_z} \phi_\alpha^* dW_\alpha^{+} \int_{A_z} \int_{A_z} \psi^*(\alpha,\alpha') dW_\alpha^{} dW_\alpha^{} + \int_{A_z} \int_{0}^{\pi} \Gamma_1^*(\alpha,\eta') dW_{(\xi,\eta')}^{} d\eta + \int_{z} \int_{0}^{\pi} \Gamma_2^*(\alpha,\xi') dW_{(\xi',\eta)}^{} d\xi + \int_{z} \Gamma_2^* d\alpha ,$

où les coefficients de cette formule sont donnés par:

$$\begin{split} & \phi_{\alpha}^{*} = f_{u}^{\prime}(X_{\alpha}, \alpha) \phi_{\alpha}, \\ & \psi^{*}(\alpha, \alpha') = f_{u}^{\prime}(X_{\alpha \vee \alpha'}, \alpha \vee \alpha') \psi(\alpha, \alpha') + f_{uu}^{\prime\prime}(X_{\alpha \vee \alpha'}, \alpha \vee \alpha') \delta_{1}(\alpha, n \vee n') \\ & \delta_{2}(\alpha', \xi \vee \xi') - \frac{1}{2} \phi_{\alpha} \phi_{\alpha'} f_{uu}^{\prime\prime}(X_{\alpha \vee \alpha'}, \alpha \vee \alpha'), \quad \text{où} \end{split}$$

$$\begin{split} \delta_{1} & (\alpha, \eta_{1}) = \varphi_{\alpha} + f_{0}^{\xi} f_{\eta}^{\eta_{1}} \left(\psi(\alpha, \alpha'') + \psi(\alpha'', \alpha) \right) \mathrm{d} \mathbb{W}_{\alpha''} + f_{\eta_{1}}^{\eta_{1}} \mathbf{1}_{1} \left((\xi, \tau_{1}''), \eta \right) \mathrm{d} \eta'', \\ \mathrm{et} & \delta_{2} & (\alpha, \xi_{1}) = \varphi_{\alpha} + f_{\xi}^{\xi_{1}} f_{0}^{\eta} \left(\psi(\alpha, \alpha'') + \psi(\alpha'', \alpha) \right) \mathrm{d} \mathbb{W}_{\alpha''} + f_{\xi}^{\xi_{1}} \Gamma_{2} \left((\xi'', \eta), \xi \right) \mathrm{d} \xi'', \\ \Gamma_{1}^{*} & (\alpha, \eta') = f_{u}^{'} \left(\mathbf{X}_{\alpha}, \alpha \right) \Gamma_{1} & (\alpha, \eta') + f_{uu}^{''} \left(\mathbf{X}_{\alpha}, \alpha \right) \delta_{1} \left((\xi, \eta'), \eta \right) \gamma_{1} \left(\alpha \right) + \\ & D_{2} & \left(f_{u}^{'} \right) \left(\mathbf{X}_{\alpha}, \alpha \right) \delta_{1} \left((\xi, \eta'), \eta \right), \quad \text{où} \\ & \gamma_{1} & (\alpha) = f_{A_{\alpha}} \Gamma_{1} & \left((\xi', \eta), \eta' \right) \mathrm{d} \mathbb{W}_{\alpha'} + f_{0}^{\xi} \Gamma(\xi', \eta) \mathrm{d} \xi', \\ \Gamma_{2}^{*} & (\alpha, \xi') = f_{11}^{'} \left(\mathbf{X}_{\alpha}, \alpha \right) \Gamma_{2} & (\alpha, \xi') + f_{uu}^{''} \left(\mathbf{X}_{\alpha}, \alpha \right) \delta_{2} & \left((\xi', \eta), \xi \right) \gamma_{2} & (\alpha) + \end{split}$$

$$\Gamma_{2}^{*}(\alpha,\xi') = f_{ii}^{!}(X_{\alpha},\alpha) \Gamma_{2}(\alpha,\xi') + f_{uu}^{!!}(X_{\alpha},\alpha) \delta_{2}((\xi',\eta),\xi) \gamma_{2}(\alpha) + D_{1}(f_{ii}^{!})(X_{\alpha},\alpha) \delta_{2}((\xi',\eta),\xi), \quad \text{où}$$

$$\gamma_2(\alpha) = \int_{A_{\alpha}} \Gamma_2((\xi,\eta'),\xi') dW_{\alpha'} + \int_0^{\xi} \Gamma(\xi,\eta') d\eta'$$
,

$$\Gamma^*(\alpha) = f_{\mathbf{u}}'(X_{\alpha}, \alpha) \Gamma(\alpha) + f_{\mathbf{u}\mathbf{u}}''(X_{\alpha}, \alpha) \gamma_1(\alpha) \gamma_2(\alpha) + D_1(f_{\mathbf{u}}')(X_{\alpha}, \alpha) \gamma_1(\alpha) + D_2(f_{\mathbf{u}}')(X_{\alpha}, \alpha) \gamma_2(\alpha) + (D_1 \circ D_2)(X_{\alpha}, \alpha),$$

$$\text{étant} \quad D_1 = \frac{1}{2}A_2(x,y)\frac{\partial^2}{\partial u^2} + \frac{\partial}{\partial x} \quad \text{et} \quad D_2 = \frac{1}{2}A_1(x,y)\frac{\partial^2}{\partial u^2} + \frac{\partial}{\partial y} , \quad \text{où}$$

 $A_1(x,y)$ ($A_2(x,y)$) est, pour chaque $y \in [0,1]$ ($x \in [0,1]$), le processus croissant continu associé à la partie de martingale dans la décomposition de la semimartingale à un paramètre $\{X_{(x,y)}, x \in [0,1]\}$ ($\{X_{(x,y)}, y \in [0,1]\}$).

<u>Démonstration</u>: Il s'agit de déduire d'abord ce qu'on peut écrire formellement comme

$$Y_{z} = \int_{A_{z}} [f'_{u}dX + f''_{uu}d_{1}Xd_{2}X + D_{1}(f'_{u})d_{2}Xd\xi + D_{2}(f'_{u})d_{1}Xdn + (D_{1} \circ D_{2})(f)d\xi d\eta],$$

on substitue ensuite X par sa représentation intégrale.□

BIBLIOGRAPHIE.

- [1]. Cairoli, R. and Walsh, J.B.: "Stochastic integrals in the plane". Acta Mathematica, 134, 111-183 (1975).
- [2] Park, W.J.: "A multiparameter Gaussian process". Ann. Math. Satist. 41, 1582-1595 (1970).
- [3] Wong, E. and Zakai, M.: "Martingales and stochastic integrals for processes with a multi-dimensional parameter". Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 29, 109-122 (1974).
- [4] Itô, K.: "Multiple Wiener integral", J. Math. Soc. Japan, 3, 157-169 (1951)