
ANNALES SCIENTIFIQUES

DE L’UNIVERSITÉ DE CLERMONT-FERRAND 2
Série Mathématiques

E. NUMMELIN

R. L. TWEEDIE
Geometric ergodicity for a class of Markov chains
Annales scientifiques de l’Université de Clermont-Ferrand 2, tome 61, série Mathéma-
tiques, no 14 (1976), p. 145-154
<http://www.numdam.org/item?id=ASCFM_1976__61_14_145_0>

© Université de Clermont-Ferrand 2, 1976, tous droits réservés.

L’accès aux archives de la revue « Annales scientifiques de l’Université de Clermont-
Ferrand 2 » implique l’accord avec les conditions générales d’utilisation (http://www.
numdam.org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit
contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASCFM_1976__61_14_145_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


145

GEOMETRIC ERGODICITY FOR A CLASS OF MARKOV CHAINS

NUMMELIN, E. AND TWEEDIE, R.L.

UNIVERSITE DE CANBERRA (ENGLAND)

Suppose is a Markov chain on a countable state space S = {0,1,...} ,

with transition probabilities Pn(i,i) = Pr(X =j I X - i). If {X } is
non

irreducible and aperiodic, then it is known (cf. that for every

pair (i,j) the transition probabilities Pn(i,j) have limits 7ijl in-

dependent of i as n ~ 00. In [21, Kendall showed that if, for some state i,

this convergence is geometrically fast in the sense that, for some p..  1,

then for every pair (K,j), there exists such that
kj

Hence this property of "geometric ergodicity" is a solidarity property of

the chain, rather than of individual states.

In C11], Vere-Jones significantly improved the result of Kendall by ex-

hibiting the existence of a common value p I such that for

every pair (k,j). In the transient case, where TT i 0,P can be chosen
j

as the best-possible rate of convergence for all the pairs ( k, j ) ; 3 but

this is not the case in the positive recurrent case, when 7T. &#x3E; 0 . Vere-
j

Jones [11 H gives an example of a 3-state chain where p cannot be chosen

as a common rate of convergence, and in [8J Teugels gives a chain on n+1

states with n different values for the optimal convergence rates pi of
the states i.
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In this note we consider a Markov chain on a general state space

(X, .F S) with transition probabilities

which are assumed to be measures on t3~ for each x, and measurable func-

tions on X for each fixed A £g( The basic assumption we shall make

throughout is that there exists an atom a E X, which can be reached

with positive probability from every point x E X ; that is, ¿pn(x.aJ &#x3E; 0

n

for all x E X. Such a chain is, in the nomenclature of Revuz ([71, p.71),

a -irreducible, where 6out is the Dirac measure at a ; J and so from 1101,

there is a "maximal" irreducibility measure Ma (which can be taken in this

case as M (.) - ~ Pn(a,.)2 n) such that tl iAl &#x3E; 0 implies I Pn(x,A) &#x3E; 0

n 
~ 

n

for every x ; J and such that Mot (A) = 0 implies

From [91 we know that can be classified as either 1-recurrent. if

A) Eooforalixe X and all (A) &#x3E; 0 ; or as

n 
a

1-transient, when there exists a sequence of sets Aij) fi X and constants

bi t - with E Pn(x, b. for all x c X. In the latter, 1-transient,
J 

n 

- J

case an analogue of Vere-Jones result is already known : from Theorem 1 of

[9] we have

Theorem 1. If, for some p  1.

then there is a sequence R(j) fi X, and a number p1 such that for

Ma-almost all x c X, and each j,
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We now turn to the situation where {X} is I-recurrent, and Pn(a,a) tends

to a positive limit (clearly geometric ergodicity cannot hold when {Xn}
is 1-recurrent with P n 0, i.e. in the null-recurrent case). We

then know that there is a unique probability measure TI on g1, which is

equivalent to M . satisfies 7T = 7P, and is such that 7ia)
a

(cf. [9] , or in the more usual case where F is countably generated, Sec-

tion 3.2 of C7 J) . We now prove :

Theorem 2. Suppose that for some p a  1 and 1r(a) &#x3E; 0,

Then there exists p  1 sucht that for r-almost all x,

where I I . I I denotes total variation on ’1.

so that in particular, , and

We first note two facts :

(a) from the original work of Kendall [2], our assumption (1 ) is equiva-

lent to existence of rn with 1  rg  such that

and

(b) from [91 , Theorem 4, the measure ll can be given as
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Now by considering the times of first and last entrance to a , we have

the decomposition

where * denotes convolution, and u(n) = Pn(a,a). Hence

from (5) and the fact that I For any r &#x3E; 1, then

Now from (4) and (3)~ we have that for r  rol

and this in turn implies that for

Moreover, we have for any k  n
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hence from (9), we have for each

and so using (5), for ir-almost all x

Next, we have from (6) with A = {a}that for ll-almost all x,

since for ll-almost all x in this recurrent case. Hence

for ll-almost all x and all r  ro.,

from (11) and (1). But now (9) - (12) show that all the terms on the right

hand side of (8) converge for r  r0 and it-almost all x ; and so we ha-

ve (2) as required.

Let us now turn to the situation where Xo has an arbitrary initial dis-

tribution X on ’I - . If (1) holds, then from the proof above, we will have

for some P, 1
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provided for some r &#x3E; 1

where

But (13), (14) and (1) not only imply but are in fact equivalent to (1),

together with

for some p 1  1. To see this, we note firstly that since 

00

r (n), (15) clearly implies (14) ; and secondly (1 ) and (15)
n=1 

a’a

are equivalent, from E2] , to the existence of a constant s &#x3E; 1 such

that the functions

are analytic and zero-free except at z = 1, in s. Now from (6)

again, we have that for r  s,

from which (13) follows.

We can thus see :
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Theorem 3. Suppose X is any initial distribution and that for some

Then for some p  1,

It is perhaps of interest to remark that the method used to prove Theorem 2

shows that when there is an atom a in the space, and for some &#x3E; 0

then there is a measure 1r such that for iT- almost all x,

The existence of a single 7-null set on which (16) holds can only be

shown in general provided 4 is countably generated, but the techniques

above are all independent of such an assumption.

Finally, we give an application of our results to random walk on a half-

line. Let {Y1,Y2,...} be a sequence of independently and identically

distributed random variables on ( with Pr(Yi  0) &#x3E; 0. If we write

then clearly 0 is an atom for In L3L Miller investigates condi-

tions for geometric ergodicity of the state zero, and then applies the re-

sults of [11] to deduce geometric ergodicity of the whole chain ~Xn}when
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distributions of Yi, and so defining E(Yi ) I in the extended form of Miller
i i

I [3] p. 356) we can give :

Theorem 4. (i) A necessary and sufficient condition for the existence of

Po  1 such that is
0 0

for some 0  and &#x3E; 0. If (17~ holds, then for some p ~ 1 and

MO-almost all x and all relativlly compact K,

(ii) A necessary and sufficient condition for the existence of p0  1

and &#x3E; 0 such that lpn(o, 0) _ I = 0 (pn) is
0

for some 0  D  00 and n &#x3E;0. If (19) holds, then there exists p  1

and a probability measure 7 on such that for 7-almost all x,

Proof. Miller [31 shows that (17) or (19) are, in their respective cases,

~ 

conditions such that the state zero has the required geometric ergodici-

ty properties. The rest of the results then come immediately from our

Theorems 1 and 2, except for the statement that (18) holds for all rela-

tively compact K. This last comes from Theorem 1 of [61 , as a consequen-

ce of which we know that relatively compact sets on are R-sets

(i.e. have the "correct" geometric rate of convergence), provided the tran-

sition probability kernel P maps continuous bounded functions to conti-

nuous bounded functions. Since this is true for all random walks, the theo-

rem holds.
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In conclusion, we should state that the results given here can be exten-

ded to the more general analytic context of R-positive Markov chains,

described in [91 ; and that by using the splitting technique of E4] , the

need for an atom in the state space can be eliminated. This extension of

our results is described in E5] -
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