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THE MODEL-COMPLETION OF STONE ALGEBRAS

Peter H. SCHMITT

Simon Fraser University, BURNABY, Canada

INTRODUCTION

The notion of model-completion was introduced and studied by A. Robinsonin [5 ],
It leads to a general theory of «algebraically closed» structures. The model-completion of the
theory of fields is the theory of algebraically closed fields and the theory of real closed fields
is the model-completion of the theory of ordered fields. The model-completion of a theory
need not exist but if it does it is unique. It is known that the model-completion of the theory
of Boolean algebras is the theory of atomfree Boolean algebras. The model-completion of the
theory of distributive lattices without endpoints is the theory of relatively-complemented
distributive dense lattices without endpoints. These results are commonly known. In this
paper the model-completion of the theory of Stone algebras is determined. Furthermore this

theory is proved to be complete, substructure complete and R o categorical.
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§ 1. MODEL THEORETICAL PRELIMINARIES

We assume familiarity with the basic concepts of model theory. We use capital Gothic
letters 9 , ® ,... to range over models; the corresponding capital Latin letters A, B ...
always denote the corresponding universe. If ¥ isa substructureof ® (Y ¢ % )and
a € Bthen ¥ (a)denotes the substructure of B generated by A u f{a}. XY is the set

of all functions from X into Y and card A stands for the cardinality of A.

L.1.DEFINITION : A structure ¥ iscalled X -homogeneous if for any two finitely generated

substructures B, Boof " any isomorphism ffrom ®;onto Bgandanyae A
thereisb € A such that f can be extended to an isomorphism f from B 1(a) onto 8 o(b).
We shall employ the following two well-known theorems on X -homogeneous

structures.

1.2. THEOREM : Any two countable X -homogeneous structures having upto isomorphism
the same finitely generated substructures are isomorphic.

1.3. THEOREM : If 9" is a countable X -homogeneous structure then every isomorphism

between two finitely generated substructures of % can be extended to an automorphism of ! .

For proofs of these theorems see [6 ] lemma 20.1 and 20.4.
1.4. DEFINITION : A theory T is called substructure complete if for any two models 975, 9" o

of T and any common substructure B holds ( 1Ppben = (¥ab)y ¢ B
L.5. DEFINITION : A theory T* is the model-completion of a theory T if
@) T ¢ T*

(ii) every model of T'can be embedded into a model of T*

(iii)  for any two models M, ¥qof T* and any common substructure ¥ which is
a model of T holds
(Tph)pep = (Yab)y ¢ B
These two definitions are related to the concept of Ro-homogeneity by the following theorems.
1.6. THEOREM : Let T be a complete theory having only X -homogeneous models then T is
substructure complete.

PROOF : In showing that T satisfies the requirements of definition 1.4. we may w.l.o.g. assume

that ¥4, 9 5 are countable models of T with ® as a finitely generated common substructure.
Since T is complete there are a countable model € of T and elementary embeddings g; from

" .into €. Since € is R,-homogeneous by assumption the mapping g2g'1l restricted to

gl(B) can by theorem 1.3. be extended to an automorphism of € . Thus
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(€. 0pep = (F.50)peB
Since g; is elementary this implies
(Upb)y e * (U 2b) ¢ B
We note the following converse of theorem 1.6.
1.7. THEOREM : K Tis ¥ .categorical and substructure complete then T has only
® -homogeneous models. )
PROOF : Let 91 be a model of T. Since Tis X -categorical ¥ islocally finite. Let
£, = {ag.,a,, ], ® 9 = {bg, .0y bn-l} be substructures of * ., f an isomorphism
between ¥, and ¥, such that f(a;) = b;. Substructure completeness yields
1) (U,ap,.,ayq) = (Y ,bg,....by )
Let a;, be an arbitrary element of A. Since T is ® -categorical there is a formula ¢ (v, ..., V)
generating the type realized by <a,..,a; > in 9 .Now using (l)wefindb e A
satisfying U |= ¢ [bO, ey bn] . Thus <ag, ..., ap > and <b, .., bn> realize

the same type in 9 which implies that f can be extended to an isomorphism from
B,(a,) onto B (b ).

§ 2. ALGEBRAIC PRELIMINARIES
We briefly review the theory of Stone algebras as far as needed in the sequel. A thorough
treatment may be foundin [ 2].

2.1. DEFINITION : A structure 9= < A, n,u , *,0,1> is called a pseudo complemented distri-

butive lattice if <A, n , u,0,1> isa distributive lattice with least and greatest element

and the one-place operation * satisfies the following axioms
(SL1) ana* = 0
(SL2) anb =0 — b = a*
A pseudo complemented distributive lattice is a Stone algebra if in addition holds
(SL3) a*u a** =1
We denote the theory of Stone algebras by STA.
There are two interesting substructures of a Stone algebra ' .
The skeletonof 9 = Sk( %) ={a e A|a** =al={a*|a e A}.
Sk() = <Sk(¥),n, u,*, 0, 1> isaBoolean algebra.
The set of dense elements = D(¥) = {a€e A| a* = 0}
D(%) = < D(¥), n,u,l> isadistributive lattice with greatest element. Both

substructures are linked together by the structure map Og »whichisa homomorphism from
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Sk( 9 ) into the lattice of filters over D( ) preserving 0 and 1 defined by
oy (@) = {x e D(¥): x> a* }.
% is upto isomorphism uniquely determined by the tripel <Sk(¥),D( ), Oﬁ >
Let ® be an arbitrary Boolean algebra, ® a distributive lattice with 1 and ¢ ahomo-
morphism from % into F(¥T ), the lattice of filters over T , preserving 0 and 1. For any
be Bwehave 0 (b) u o(b*) = D.Thus there are for any x € D uniquely determined
elements x, xg such that x; € o(b), xg € o (b*)
X = Xy N Xg

We use thelnotation X] = pp(X):x9 = ppe (x).‘

On the set of pairs A = { {x,b> |beBx € o (b) } we define a partial order by
<xp,b) 7= <x9bg> iff by £ by andx; = pbl(x2)

<A, £> induces a Stone algebra % . We furthermore have
sk(#)= {<1p> |be B} = ®
D(¥) {&x1> |x e D} =D

og ( <1b> ) ={<x,1> |xe o (b)}

[}

[}

In the following we identify any Stone algebra ¥ with the algebra given by
<Sk(¥),D(% ), 0> .We shall tacitly use the following rules of computation.

2.2, LEMMA :
(aub)®* = a* nb* (a nb)* = a*u b*
a®#¥® - g% a< b_,b* £ a*

x € o(b) iff pp(x) = x iff ppe(x) = 1

x £ p,y(x) PR P (X)) =  punp(®)
X = pa(®) e (x) 1= p(x)up &)
Pa(x Ny) = pu(x) n pu(x) Pa(xuy) = pa(x)u p,(y)
Pa nb(X) = pa(x) U pp(x) Paub(® = pa(x) n pp(x)

We conclude with two lemmas characterizing isomorphisms and subalgebras in terms of the

corresponding tripels. The proofs may be found in [1].

2.3.LEMMA : Suppose %, ¥, are Stone algebras given by the tripels <51’ Dy, 07>,
<8y, Py, 09> resp.
(i) Let F be an isomorphism from ¥, onto ¥ 5 then there are isomorphisms

f: Ql—yﬂz and fq : Sl — 8 such that
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(a) F(<xa>) = <fj(x), fo(a) >
(8)  oglfa@) = {fix) | xe oy
@) If fj: ®) —- Dy, fy: B; —» By areisomorphisms satisfying (§ ) then
( @) defines an isomorphism from % ; onto ¥ ,.
(iii) Condition (B ) is equivalent to
(v) f1(pp(x) = p fz(b)(f](x»°
2.4. LEMMA : Notation as in lemma 2.3.
@) If 9 € 9Mgthen
(a) ® 1 S D 9
(B) By < B,
(v) Vxe Dy Vb e By (pp(x) € Dy)
(i) KH(a)to(vy)holdthen U, < 9,
(iii) Condition ( v ) is equivalent to
(8) Vae By (oy(a = a9(@ n Dy
At some pointin § 3 we shall make use of the following representation theorem
2.5. THEOREM : Every Stone algebra is a subdirect product of the three-element Stone algebra
3. (where Ag = {0,e,1} suchthat0 < e <1 and 0* = 1,e* = 1*= 0).
PROOF : see [3].

§ 3. X-HOMOGENEOUS STONE ALGEBRAS

Before we state and prove the main theorem we dispose of some trivial exeptions. A Stone
algebra 9 is called trivial if card D( ') = 1 or card Sk(¥ ) < 4.
The proofs of the following statements are easy or variations of arguments used in the

proof of the main theorem, so we omit them.

3.1. THEOREM : Let ¥ be a Stone algebra.
(i) IfcardD(¥) = 1thenSk(¥) = 9 and the problem is reduced to Boolean
algebras. :
A Boolean algebra is X -homogeneous iff it has at most 4 elements or is atomfree.
(i) If card Sk(9) = 2then
9 is R -homogeneousiff D()is X -homogeneous
iff  D( %) isrelatively complemented, without antiatoms
and without least element
(iii) If card S(9) = 4 then
¥ is R -homogeneousiff D(¥)= 1.
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3.2. MAIN THEOREM : Let % be a nontrivial Stone algebra.
o is X -homogeneous iff the following conditions hold
(PI) Sk( ¥ ) is atomfree
(PII)  D( %) is relatively complemented distributive lattice without antiatoms and without

least element
(PIII) Forallb € Sk(" ),b # 0, & (b)hasno least element

(PIV) ¥x,y € D(M) (xuy= 1 — Jce Sk(") (x € 0(c) & y € 0(c*)))
We first prove necessity of the conditions PI to PIV.
3.3.LEMMA : Suppose ¥ isan ¥ -homogeneous Stone algebra.by, by € Sk(¥),
by n by = Oandby,by # 0,1.
Then there is an automorphism g of D(9 ) such that

o) = (g | xe o(bg)}.
PROOF : Consider the subalgebra % | < % generated by

{<l,b1:~ , < l,bl* >, <Lbg >, <1,b§ >} . It is easily checked that there is an
embedding F from ¥, into ¥ taking <1bg> to <1b;>.By ¥ -homogeneity F
can be extended to an automorphism F = <gf> of 9 . Now lemma 2.3. yields

o(by) = o (f(bg)) = { g(x) | xe o (bg)} and g is an automorphism of D().

3.4. COROLLARY : If 9 is a nontrivial Ro-homogeneous Stone algebra then o a is an

embedding.

PROOF :1t suffices to show that forb € Sk(®) b # 0 implies o (b) # {1}. Assume
b # 0and o (b) = {1}. Thisimplies 0 (b* ) = D(¥).

By lemma 3.3. ¢ (b) and o (b *) have the same cardinality contradicting the assumption
card D(9" ) > 1.

3.5.COROLLARY : If ¥ isanontrivial ¥ -homogeneous Stone algebra then (P1V) holds.

PROOF : Let x,y be elements of D(2) satisfying xu y = 1. Since card Sk( ) > 4 we find

a e Sk(¥): 0<a<l.

By corollary 3.4. this implies : {1}< o(a) < D(¥)

This enables us to choose u € 0(a), v € g(a*) such that

u=1 iff x=1

v=1 iff y=1

Inanycaseut v ¢ g(a)n g(a®*) = {1} yields uu v = 1.

Denote by 590 the sublattice of ® generated by { x,y }. Denote by ® 1 the sublattice of T
generated by {u,v} . Obviously there is an isomorphism f| from Tgonto ®y such that

fj(x) =u and fi(y) = v.
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.Define the subalgebras 9 jof ¥ forj = 0,1 by
AJ- = {<d1>[d e Dj} u {<1,0>}
The mapping F = < f},fy >, where fy is the identity mapon { 0,1} = Sk(¥ j)’ is an
isomorphism from ' onto ¥ ;.
R -homogeneity of ¥ provides us with an automorphism T = <f 1’ f_2 > of ¥
extending F. Let c be the pre-image of a under ?2, ie. f_z(c) = a.
Now o (a) g (?2(0)) = {f-l(z) | z € o(c)}
o@® = ofac?) =({fi(2) | 2 € 0(c*}

implies

x€e 0(c) and y €0 (c¥)
proving PIV.

Conditions PI to PIII are derived in quite the same way so we omit the details.

It is easily seen that the class of all Stone algebras satisfying PI to PIV is a finitely
axiometized elementary class, we denote its theory by STA*. We proceed to show that every
model of STA*is X -homogeneous. We start with the following simple though very useful

lemma.

3.6. LEMMA : Let % be an arbitrary Stone algebra x,y ¢ D(¥),x<y < land a € Sk(¥).
Assume that the relative complement of y in [ x,1] exists and denote it by y’. Assume further
that the relative complement of p ,(y)in [P ,(x), 1] exists and denote it likewise by

( p 4(y))’- Then holds
Pa(Y) = (pa(¥)) u py(x).
PROOF : y'n y = x and y’ uy = limplies p,(y) n P (y) = Pu(x) and P (y) U Py(y) = 1,
i.e. p,(y’)is the relative complement of o ,(y) with respect to [ p,(x), 1] . It is easily
checked that also (p 4(y))’ u P ,(x) is a relative complement of £ ,(y) with respect to
[0 4(x), 1 ] . Uniqueness of relative complements in distributive lattices yields the claim.
We still need one preparatory lemma.
3.7.LEMMA : Let 9 be a model of STA*. Then holds
(PV) 0 ¢ isan embedding
(PVI) ¥ b e Sk(¥)¥xye ob) [0<b&xuy=1 —
— dc e Sk(¥) 0<c<b& x€0(c)& ye 0(c¥*)]
(PVI) Letb e Sk(¥),b # 0.Letx,y,zy, ...z, ] € 0(b) satisfy
Vi<n(z # 1)
Vij <n(i#j —sz; uz = 1) and

J
¥i<n(zjux = z uy=1)and xuy=1
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then thereisc € Sk(¥)suchthat0 < ¢ < b
x € o(c), y € 0(c¥*) and
¥i<n(z ¢ 0 (c) & z; ¢ 0 (c¥)

PROOF : (PV) follows easily from (PIII).

In proving (PVI) we distinguish the following three cases

casel: x= y= 1
Use (PI) to find ¢ € Sk(¥ )suchthat 0 < ¢ < b

case2: x £ 1, y 1
Using (PIV) we obtain ¢y e Sk(" ) such that x e 0 (cp),y €0 (c* ) . Defining

c = cO n b we obviously get x € g(c)andye o (c(";) S 0 (c*)e c= 0 would imply
x € 6(0)={1}; ¢ = b wouldimply b* > ¢ thusy € a(bn b*) = {1}.Bothare

contradictory to our assumptions. So 0 < ¢ < b holds.
case 3: x # lL,y=1
By (PIII) there isz € o(b),z < x. By (PII) thereisy € D(® )satisfyingz= xn y

and1 = x u 7. Notethaty # 1andy e o(b). Using case 2 we obtain ¢ € Sk("):
0<c<b,x € 0 (c),y € o(c¥).

Sincey = 1 € o (c*) trivially holds we have proved (PVI).
To prove (PVII) let x,y,z(), ..., 2.1 € 0 (b) be given satistying the assumptions. By PII it is
possible to choose u; € D) such that forall i <n:z <uy< 1.

By w; we denote the relative complement of u; with respect to [z;, 1 | which exists

by PII :

zi_—_uinwi; 1=uiuwi

Define x. = () u; , = N w;
o i<n ! Yo= i <p Vi

Using distributivity we obtain the following equation
(xnx)) u(ynygp = (xuy)nN{xuy |i<n}nN{yuw;|i<n}n N{uyu wj|i,j <n}

Observing that xuy =1
Xu = xuz =1
yuw;= yuz = 1

u uw; > z.u z. =1 ifi;(j
u uw: =1

we conclude (x nxg) u(y nygp)= L

Since o (b) is a filter we still have x n x(,y n yo € o (b).
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By (PVI) we obtain ¢ € Sk(¥) satisfying

0<c<b
and X n XO € og(), yn yO € 0 (c¥)
This implies x € o(c), y € g (c¥)

u; € o(c), w; € 0(c*)

again exploiting the filter property of o (c),resp. o (c*).
This yields : z; # 0(c), 2z # o(c*) forall i < n.

Since from z;

i € 0(c) would follow w; € 0 (c) and w;€ o(c)n o(c¥) = {1}

ie.w;

; = 1 contradicting the choice of u;. Also z; € 0(x*) would entail in the same way

z; = 1 again contrary to assumption.

This completes the proof of lemma 3.7.
For the rest of this paragraph 9 =<8, T, ¢ > will denote a model of STA*. It is our

goal to show that 9 is X -homogeneous. To this end we consider two finite subalgebras

u.= <D, ? j» 03 = ,i= 1,2 and anisomorphism F= <fy,fy > from 911 onto

¥ o. Let <x,a> be an arbitrary element of A. i 1= <® 1’ ? 1s o 1 > denotes the
subalgebra of 9 generated by Au { <x,a>1}.
Problem : Extend F to an embedding F= < f] , fz > from ¥ pinto o',
We shall proceed in the following steps

Step 1 Form the closure of ® under complements
Step 2 <x,a>= <x,1>
Step 3 <x,a”= <la>
Step 4 <x,a> arbitrary

If steps 2 and 3 will be accomplished, step 4 is trivial because <x, 2= <x,1>n <1,a>.

STEP 1
Let dgy; denote the least element of ¥ ;. For x € D;, d; < x £ 1, x’ denotes the

relative complement of x with respect to [d;, 11].

ﬁl = f U{xn zi’l i<n}| new, X;, 7 € Dl} defines a sublattice of ® closed under *
and containing D. Set G j(a)= 0 (a) n ﬁl fora € By.We claim that

o 1= < p:] 1’ ? 1> 0 1~ isasubalgebra of ¥ . According to lemma 2.4. we have to show :
forallye Bl andallbe By p.(y) € 51. To begin with take z ¢ Dj. By lemma 3.6. we
have p,(z’) = (p,(2))’u py(dgy)- Since by assumption  p,(z), » a(dg1) € Dy and Dy is
closed under * we obtain p ,(2’) € —Dl'

For arbitrary y=U { xX; N2%) |i<n} € Bl we have

pa) = U (py(x) np,eli<n}e Dy.
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Now we want to extend F= < f},fg > to an embedding F from 9 pinto ¥
It is routine to check that there is an embedding ?1 from ﬁl extending f| and satisfying
f (U {x;nzyli <n}) = U{fj(x)) nfy(z) | i <n} .
In order to show that F = <fl, fg > is an embedding from o p1into ¥ we need by lemma 2.3.
only to know that for alla € By,y ¢ I_)l : Fl( payN=0p f2(a)(¥1(y)) holds. This is easily
checked using lemma 2.2. and 3.6.

STEP 2
~ We adopt the following notation :
Dl = {do, cony dl‘-l} and agree that ¥d € Dl(do < d)

By = {bg, by 1}

For m ¢ X2we use the abbreviation b, = N {r (i)b; | i< K}

where Ob = b and 1b= b*

Similarly for T e "2 d; =U {r L lj<r)

where 0d = d and 1d = d’ and d’ is the relative complement of d in [d), 1] .

Furthermore p_ stands for p}, .
m

It is checked by straightforward computation that the following holds
3.8. my £ g implies bp nb,, =0

T9 # Tg implies d-cl u d12= 1

bj=cib, | 7me kg and () = 0]
djzr‘s{dT |te T2 and t () = 0}
k
1=U {b, |7 e X2}
d0= N {dy BN 2}
X is an arbitrary element of D. We may restrict to the case x ¢ o (b, ) for some 7 e ko.

If we have solved this restricted problem we might take up the general case by extending P |
successively to D 1 such that {pﬂ(x) | me koy < Bl’ since p, (x) € a(b_).

Noticing that x = N { o (x) |7 ¢ X2} holds we will have finished.

So we assume thatx ¢ o (b 0) holds for some 7 € ko Let ® 1 be the sublattice of T
generated by D; u {x} . Since for allb e By either pp(x) = xor pp(x) = 1holds

<$1, 51, 31> is a substructure of ¥ (of course og1(@= o (@n B1)-

We shall distinguish the following three cases
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Case 2.1. dO = x £1
Case 2.2. x< dO
Case 2.3.  neither of the above

After case 2.1. and 2.2 have been accomplished case 2.3. will follow trivially : we first extend
D to contain x n d) using case 2.2. Now x ndO <x and case 2.1, applies.

CASE 2.1. : Using step 1 we may suppose without loss of generality that ¥ | is closed under
complements. The embedding f; preserves complements in the sense that x’ is mapped on the
relative complement of f{(x) with respect to [f}(dg), 1] which we also denote by f; (x)".

We shall make use of the following

3.9. CRITERION : There exists an embedding T : ﬁl — % extending F iff for every v € '2

there is y. € D such that the following four conditions are satisfied :

(39.0) y, = fjd_)

(39.1) dyux=1 iff y =1

(392) dp ux =1 iff yyu f1(d;) =1

(39.3) 1y € o(fab, O))

PROOF OF 3.9. : Necessity is clear by taking y,. = ?l(x udp).

To prove suffiency sety = (M {y, | T €2} . Now 3.9.0 to 3.9.2 imply (using 3.8)
Vd e Dydux =1 iff fiduy = 1)
Vd e Djdux’= 1 iff fj(du y'=1)

By a well-known theorem on extending isomorphisms between Boolean algebras (see e.g. [ 7 |
p. 37) applied to D | and the interval [dg, 1] there is an embedding f; from ﬁl into ®

extending f| such that ¥l(x) = y. It remains to show that <fj, fo > is an embedding from
P 1 into ¥ .
First we note that for allb ¢ By and x € Dy holds
3105 T1(pp(0) = £ gy(n)F1(0)

Foreitherb b, = 0 orbnb, = b holds.In the first case fllop) = () = 1
o o

and  ppobyE100) = 0O pp )y, ) = Losinceforall T e T2
folby ) = To®)n fob , Dields pp)ye )= L

In the second case ?1( pp(x)) = -f-l(x) = Q y¢ and

pray @) = T ppayer V= 0 ppp, )0c )-
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Using 3.9.3. this yields pf2(b)(?1(x))= Ny, |7er2}

This completes the proof of 3.10.
Everyy e ﬁl can be represented in the form

y=iL<Jn(zinx) n< w,z €Dy

]

Thus f)(0 1,(y)) [£1(Pp()) n Filopx))]

U
i<n
= b3 n [sz(b)(fl(zi)) n pf2(b)(ﬁ(x))]
= peym)FL G-
This completes the proof of 3.9.

Now let T € "2 be given. We shall find y satisfying 3.9.0 to 3.9.3.
In the trivial cases dp u x =1 and dg u x’ = 1wechoose yr= 1,y = fj(d, )

respectively.
So we arrive at the non-trivial case : d'r < d.r u x<l.

We claim that this implies
311.: »p ﬂo(dr ux)<l.

kg

2

This can be seen as follows. x € o(b, )yieldsforall = €
o
T # 1r0:xud_re o(b;) ie. p,’ro(xu d'r)= 1.
If contrary to 3.11  p . (d L x) = 1 would also be true, we obtained
0
(d'r ux) = [’? Py (xu dt) = 1. Contradiction.
From 3.11 and pﬂo(dt )< pg o(dT u x) now follows :
pﬂo(d't) < 1.
Using the assumption on <fy, f9> we infer :
P to(b wo)(fl(d'r < L
By (PII) and the fact that o (fo(b )) is a filter on ® we may choose y, € 0 (fo(b, O)) such that :
P fo(b wo)(fl(d" ) <y <1

This implies :
fl(dt )< yT <1
and y+ satisfies 3.9.0 to 3.9.3.

This completes case 2.1.
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CASE2.2.: x <d
In this case we have 51 =Dyu {x}. Since ¢ (fo(b 0)) contains by (PIII) no least element,
we may choose y € 0(fo(b ")) such that y < f1(dg)-
o

The mapping ?1 defined by
f1(d) d e Dy

if
y d = x

f1d) =

is certainly an embedding from D pinto ¥
Furthermore holds

bnbw0= 0

f1( pp(x) = and

bnb . = b

1 ,fz(b) n folby ) = 0
if

y

pfz(b)(fl(x)) = sz(b)(}’) =

y fo(b) n fo(b . 0) = fo(b, 0)'
This shows that < Fl’ f9>: o 1— 9 is an embedding.
This completes step 2.
STEP3 : Let % 1 be the subalgebra of ® generated by By u {a}. Let ® 1 be the sublattice
of T generated by Dy u [ py(x) [x€e Dy} up (0] x €Dy}
Finally Gy(a)= o(a) n [_)1. It is not hard to see that 51 -<® s 51 , ('7"19’
is a subalgebra of ¥ .

Denote by dO the least element of ;. Obviously dg is also the least element of ﬁ 1
Forxe D,dy £ x £ 1,x denotes the relative complement of x with respect to | ﬂo, 1].
Step 1 allows us to assume w.l.o.g. that P is closed under ’.

We begin with three easy observations.

312.: Dy= {R(x) n pa*(z)lx,z e Dy}

The right hand side of 3.12 contains
Dy u{p,(x) | x € Dl}u {pa*(x)| x € Dy} and is closed under n and u

This is clear for n . For u we obtain
[Pa()n o ,@]u[pa()n p #M]= paxu wn P u(2U V)

since  p ,(x)u pa*(v)= pa*(z)u pa(w) = 1.
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313.: Forallx e Dy: [p(x)I’= x’ np (x)
a

This is checked by direct computation.
3.14. : ﬁl is closed under complements.
Using 3.12 and 3.13 we obtain :

(249 1.0, @] = [x' 7 0 0] [0 0,0)]
By assumption the last term is an element of ]_)1.
3.15. CRITERION : The embedding F : 9y —» 9 can be extended to an embedding
F: 9 — % iff thereisc ¢ B satisfying
3151 Vbe Bybna=20 iff folb)nc= 0)
3152 Vb eBj(bna*= 0 iff fo(b)n c* = 0)
3153 Vy eDy(yeo(a) iff fy(y) € o (c)
3154 Vye Dy(yeo(a®*) iff fi(y) € o(c*)
PROOF OF 3.15 : To prove necessity take ¢ = ?2(a). On the other hand conditions 3.15.1/ 2
ensure the existence of an embedding ?2 from ¥, into ® extending fy such that i—'z(a) = ¢
(see [7 ] p. 37).
Fory= p,()n p_,(2) e D, define fy(y) = p (fy(x))n RGTENS
We assert that f; is.an embedding from b)) 1 into @ . To this end we have to verify that
316+ pg(In p (D)= py(w) 1 p (V) iff

PN 2 (@) = pelyw) np (1)
pa(x) n pa*(z) = py(u) n pa*(v) is equivalent to the conjunction of the following two

equations :
(pa(x) np () u(py) u (P () = 1

(Pa()) u(p (@) (Pa(m)n P (2) = 1

We continue with a list of equivalent rearrangements of the first of these two equations.
Using 3.13. yields

(p a(x) npa*(z)) u(u’n p W) u (Vo)=L
Employing the fact that u” np LW=p,@) np (@)np ()
a a¥ a*
weobtain (o ,(x) 1 5, (@) u (p4) np_,(dg)u (P V) Pydg)) = 1.

Bringing the right hand side into disjunctive normal form shows that this equation is
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equivalent to the conjunction of the following eight equations :

E)  pyxuw) up () =1 (E5)  p (zuv)u py(u)
(E2)  py(xuw udg) =1 (E6)  pux(z)u py(w'u dg)
(E3)  pa(x)u Pa*(do uv)=1 (€7)  p udgu V)

(E4)  pa(x udg)u p (dg)=1 (E8) p (2 udg) 1 py(dp)

Let (Fn) stand for the equation obtained from (En) by replacing x, u, u’ ... by
f1(x), f1(u), (fy(w))’ ... and p, P by p e P respectively. '

We claim that for all 12 n < 8 (Fn) is equivalent to (En).
Except for n = 2,7 this is trivial.

n=2:
p(xuwudg) =1 iff xuuwu dye o(a*)
by (3.15.4) iff  fy(x) u f3(u)’ u f1(dg) € o (c*)

iff Pe [fl(X) u fl(u)’ u fl(dO)] = 1.
The case n = 7 is proved similarly now using (3.15.3).

Performing the same rearrangements as we did above in the reverse direction we see that the

system of equations (F1) - (F8) is equivalent to

[P e (x))n PC*(fl(Z))]U (o fr) ule M) =1
Similarly  (p,(x))’ u (pa*(z))’ u(py(w)n pa*(z)) = 1 isequivalent to
(pf1(x)" u (o (F1(2))" u(p (f(w) n pf1@)) = 1

This proves 3.16.

It remains to show that < ?l’ f2 > is an embedding from 51 into U .
Takey e Bl,y= pa(x)n pa*(z) for some x,z € Dyand b e §1 ,
b=U{bjne;ali<nl}forne w,b; ¢ By, & =0,1.

Define Eoz{i<n|8i= O} El={i<n|8i=l}‘

100 = Fioappn o, 0, ()
N N
(i e By P2’ " g pa*pbi(z))
=Pc[f1 (, ﬂEo Pbi(x»] " P [fl . QEI pbi(z»]

[
.

€

= py(f1 (%)) npy(f1(2)) where u = . LeJEO fo(b) ne,w = . LeJEl

P¥2(b) p(f1(x))n p fz(b) p o#(f1(2))

p f'2(b)(1F1 )

il

[}

f2(b1) n c¥

149
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This completes the proof of 3.15.
Enumerate By = {bg, ...,by 1}. For T € ko by is defined as in step 2.
3.17. CRITERION : F can be extended to an embedding F from ¥ 1 into % iff for every
T € K2 there is cy € Bsuch that
(3.17.0) e £ fob.)
(3.17.1) byna=0 iff cg =0
(3.17.2) by na*= 0 iff fo(by)n cg =0
(317.3) Vye ob )[ye o(a) iff fi(y)e o(cy)]
3.17.4) ‘ Vy eoi(b.) [ye o(a®)iff fy(y) e o(c*) |
PROOF OF 3.17. : To prove necessity take ¢, = Tz(b cna).
Now assume c; exists for every T € ko satisfying (3.17.0) - (3.17.4).
Setc=U [cT |t e kg } . We shall show that c satisfies (3.15.1) - (3.15.4).
(3.15.1) For any b; € Bj holds
bjna=0 iff Vr e Kor() =0 —b_na=0)
(by 3.17.0,3.17.1) iff V1 € k2(1: ()= 0 —foby)n cp= 0)
(by38) iff tekar()=0_fyb, )nc=0

iff  fo(b;) nc= 0
(3.15.2) is proved analogously.
(3.15.3) Since U {op(b, )|T € ko - D there are for each y € D uniquely determined
Y ¢ € 01(bg) such that ﬂ{ytltek2}= y. |
Now ¥ € o(a) implies by (3.17.3) : ¥t ¢ K2(g € 0 (a)).
Thus V¢ € k2(f1(y_r) € 0 (cy)) which in turn yields
fy(y)= Ny, ) [t e k2le o (ep) € o (o)
This proves one part of 3.15.3
f1(y) e 0(c) — vt ekafyiy, )e o)

— ¥re Ka(f)(yr ) e o(falby ) ne))
— vt e Ko(fy(y ) eo(c.))

(by 3.17.3)  _ vt ¢ kz(YT ¢ o (a)

— Yy € o(a)
This proves the other part of (3.15.3).
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(3.15.4) Take an arbitrary y € Dy. Lety_ be as above.
yeo@) —ur ekay_c o)
(by (317.4)) — vt € K2(fy(y, ) € 0(c))

Notice that for T # T €0 (b'tz) (=3 (b";’r 1) holds. Thus

Yt o
f0) € olfab*y ) S 0 % ).
So we obtain
y € 0(a*) VT € k2(f1(y1— Ye o (N {c“f” | m € ko} ) = 0 (c¥))
— T1(y) € oa(c¥)

Now assume f1(y) € o(c*). This implies

VT € k2(f1(y) € a(c%))
-¥T € k2(f1(y-r ) € a(c%))
(by 3.17.4)) V1 € X2(y, € o(a®)
Thus y= N{y_ |ve ko1 ¢ o@a*)).
This completes the proof of 3.17.
We now show that the axioms (PI) - (PIV) suffice to find the elements ¢, ¢ B required in (3.17).
Take an arbitrary T € ko, We first dispose of the trivial cases.
If b'r =0 or anb. =0, we choose‘ c¢ =0 and (3.17.0) - (3.17.4) are trivially satisfied.
Kby na*= 0we choose c.= fo(b)and are through again.
So we are left with the only non-trivial case : 0 < a n by <b,

We enumerate ¢ l(b"-' ) = {yO, ves yr-l} ; we agree that Yo is the least element of o(b ¢ ).
For 7 €'2 define Yp=U {7 (j)yji j<r} aswe have done in step 2.
Define Yy ={y |7 ¢™2 and y e o(a)}

Yo={y,|m e T2 and y e o@a*)

Yg={y |me "2 and 1y, ¢ o(a) and y ¢ 0 (a*)}
Furthermore X; = f}(Y;) fori =1,2,3.
By property P VI thereisc_ e Sk(¥' ) such that

0 < CT <f1(b1’ )

T

Xl = O(CT)
X9 € 0(c3)
¥ x € X3(x iO(Ct) and x ta(c‘_‘r)).
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This implies immediately conditions (3.17.0) - (3.17.2) and for all 7 € 2
yp € o(@ iff  fy(y,) e a(cq)
yqp€ o@%) iff  fy(y,) € o(c})

Since every yj € 01(by ) can be represented as

yj=ﬁ{yﬂ.|ﬂer2 and ™ (j)= 0}
and for any b e B holds
yj=ﬂ{yﬂ|7r €™ and w() = 0}e a(b) iff

Vre'2(nr()=0 —y e a(b)

we infer that also (3.17.3) - (3.17.4) hold.

This completes step 3 and we proved the main theorem.

3.8. EXAMPLE : We shall explicitely construct a countable model of STA*.

We consider subsystems of the power set algebra on Q » Q (the cartesian product of the

set of rational numbers with itself).
Let 89 be the Boolean subalgebra generated by all subsets of the form (a.b]x (c.d |

where (ab]={x ¢ QJa <x<b} andabed € Qu {-o,+ 1 2045 an atomfree
countable Boolean algebra.
A subset X & @ x Q is called thick if there are n € w , P;» 9; € O such that the complement

of X = U{p;}=(a;, by) |i<n}.

The thick subsets form a distributive lattice denoted by 20 04 relatively comple-

mented without antiatoms and without least element.

Forb € BOdefine g (b)={x ¢ DO|x> b*} then <80 TO_ 4 )isaStone

algebra satisfying (PT), (PII). To prove (PIIT) let b € BO and x ¢ D be such that x = b*.

Let the set theoretical complement of x bcu{{pi I ¢ li<n} and b*-U{ bg; < by;li<m }
such thati # k implies bgin by = 8. Thereisi <m such that {p Poeg © b()j * h,j.

Since bOj is infinite there is Py € bOj’ Pp # {Pgs - Py }- Define e = ¢ and y to be the

i
it

complement of U{{ p; b e i ’n} theny e D0 and x = y bh*.
To prove (PIV) let x, y be set theoretical complements of elements in DO sueh that » n y = 0.

We have to find an element b ¢ BO satisfying x © b and y © b*. Taking complements we then
arrive at (PIV).

We may represent x. y in the following way

x=u{{pi}>< ¢l i <r} u v {{pi}x RLES <n}

y=U{lp 1< dji<r}uu {{p}xd[nzi <k}
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where i # j implies p; # Pj: For every i <k there is an interval b; © Q satisfying

p; € by and ¥ j <k (i¥ j —pj ¢ by

Seth=b{bi x cili <n} then b € BO, x “bandynb=¢ ,ie y ©b*

3.19. THEOREM : (i) STA* is N -categorical

(ii) STA* is complete
(iii) STA* is substructure complete
(@iv) STA* is the model completion of STA.

PROOF :

®

(ii)
(iii)
(iv)

Let

Let ‘"1, o 9 be two countable models of STA*. We shall show that 7, 5 have
upto isomorphism the same finite substructures. Theorem 3.2. and 1.2 will then

yield % = U,

Let § =<B T, ¢> be afinite substructure of ¥ ;. We may w.l.o.g. suppose that &
is in fact a Boolean lattice. Since D( % 9) is relatively complemented without antiatoms
we find an embedding f from % into D( ¥ 5). Now <fj.id > is an embedding
from <{0,1},%, 0> into 9 which using the methods employed in step 3 of the
proof of theorem 3.2. can be extended to an embedding F from & into .

Follows from (i) by Vaught’s test.
Follows immediately from theorem 1.6. (ii), and theorem 3.2.

Since STA < STA* holds and STA* is substructure complete it remains to show that
every model of STA can be embedded into a model of STA*. If ¥ is a model of STA

we shall construct an increasing sequence (¥ ) < = of models of STA such that

@ < ﬁoand

if n = 0 (mod 3) then Sk( ﬁn) is atomfree and D( mn) has no antiatoms and no
least element
if n=1(mod3) then T satisfies axiom (PIII)

if n=2(mod3) then ¥ satisfies axiom (PIV)and D( T, ) isrelatively complemented.

2 be the union of ( ¥ Since the axioms (PI) to (PIV) are ¥ 7 -sentences and STA

n)n <w-

is even an equational theory ® will be a model of STA* extending STA.

Ifn = 0 (mod 3) take ?  to be the free product of T ; w -times with itself.

(see [ 2], section 17, [4]).

For the next two constructions we shall use theorem 2.5. Assume n = 1 (mod 3) and

I
By <O 3.Take_] = IxQ xQ andlet ‘-EO, D0 peasin example 3.18.
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The mapping F from ® ,into ¥ ‘E]; defined by F(f) (i,p,q) = f(i) is an embedding.
Consider the set C= {g € A‘g} | vi e I({<p.g> |glipg) =cle ¥ &
{<pg> | glipq) = 0} € BO). It is easily seen that C is the universe of a subalgebra

€ ¢ %3 and F( ¥ ;) € . Using the same argument as in example 3.18. one shows
that @ satisfies axiom (PIII).
I
Ifn=2(mod3) and 8 ;< Ugtake ¥, = ° 3. Then ¥, isobviously
relatively complemented and if f,g € D(® ) are given satisfying fu g =1 define h by

0 f(i) < e

h@) = if
1 i) = 1

Then h e Sk( B,) and h< f, h* < g. Thus B satisfies axiom (PIV).

This completes the proof of theorem 3.19.
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